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Abstract. This paper is devoted to the construction of a mathematical model
of the His-Purkinje tree and the Purkinje-Muscle Junctions (PMJ). A simple
numerical scheme is proposed in order to perform some simple numerical ex-
periments.

1. Introduction. The sequence of electrical activation of the human heart heavily
relies on the coordination between several different excitable tissues. In normal
conditions, the excitation of the ventricles is triggered by the depolarization of the
atrio-ventricular (AV) node which propagates quickly through the His bundle and
Purkinje fibers. This special conduction network is isolated from the muscle except
at its endpoints that are connected to the ventricular wall at special sites called
Purkinje-Muscle Junctions (PMJ). Modeling this network and its interaction with
the muscle is therefore crucial to build realistic ventricle models.

In this article, we propose a mathematical formulation of a model of the His-
Purkinje network and the PMJ. This problem has been addressed by several authors.
We refer to [18] for a recent review. Many of these models were based on cellular
automata approaches, like for example [3, 11, 15]. Such models are quite good at
representing the macroscopic electrical behavior. However, they rely on simplified
and phenomenological macroscopic assumptions on the spatio-temporal coupling
between cells. On the other hand, modern models of the propagation of the electrical
excitation, namely the monodomain or bidomain equations [14] are of different
nature and take into account the microstructure of the tissue. In such a context the
main issue is to properly write the interaction between the continuous models of
the 3D muscle and the special conduction network that should be represented by a
tree with 1D branches. Some authors recently proposed a procedure to couple the
3D bidomain equations in the ventricle to some 1D monodomain equations in the
Purkinje fibers [19, 6]. In these papers, the coupling is written at the discrete level,
considering some mesh vertices as individual cells and the PMJ as a conductance
between these vertices and an endpoint of the Purkinje tree. Such a procedure does
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not provide a correct continuous model of the PMJ, missing for instance the scaling
between the 1D current out of the Purkinje tree and the 3D current in the muscle.

Our main objective is to write a relevant model of the His-Purkinje tree and the
Purkinje-Muscle Junctions. To access such an issue, the monodomain equations are
written both in the 3D muscle and in the 1D branches of the Purkinje tree. The
PMJ is then considered to be a volume inside the muscle which contains a given
surface of Purkinje cells. Consequently only two continuous parameters are required
to describe the PMJ: the surface of Purkinje cells per unit volume ratio and the
conductance per unit surface of the PMJ.

In order to test our model we propose a numerical method to solve these equa-
tions. It consists of a finite element and finite volume discretization in space and
a first order explicit-implicit time-stepping scheme. Additionally, some numerical
examples are provided, in order to show that the model behaves as expected. The
first test illustrates anterograde and retrograde propagation of the action potential
through the PMJ. The second example depicts how it can be embedded into a more
complex optimization procedure.

The mathematical equations are given in section 2 and the numerical details are
explained in section 3. Section 4 is devoted to the numerical illustrations.

2. A mathematical model of the Purkinje-Muscle Junctions. The most
complete description of cardiac electricity is given by the bidomain equations. The
bidomain model consists of the equations for the extracellular potential and the
transmembrane potential. We refer to [14] for more detailed derivation of bido-
main model and further discussions. Moreover, in the absence of applied currents,
propagating action potential on the scale of human heart can be studied with a
monodomain model. Muzikant et al. [10] have proved that monodomain model can
be validated against the spread of action potential wavefronts, whereas bidomain
models can be validated against measurement of tissue potentials. In this work,
the monodomain model is considered for the numerical computations. This model
consist of a non linear partial differential equation for the transmembrane potential
V .

2.1. The monodomain equations for excitable tissues. A sample cardiac tis-
sue like the myocardium is represented by a 2D or 3D domain denoted by Ω. Al-
though the most complete description of cardiac electrical activity is given by the
bidomain equations, the monodomain equations are sufficient to represent accu-
rately the spread of the action potential wavefronts in general [10, 13]. For a single
homogeneous tissue, it consists of the non linear partial differential equation for the
transmembrane potential V ,

A (C∂tV + Iion(V,w)) = div (G∇V ) in Ω, (1)

for any t > 0, coupled to the ordinary differential equations

∂tw + g(V,w) = 0 in Ω. (2)

The space and time are measured in cm and s and eq. (1) is written in µA/cm3.
The parameters A, C and G are described in table 1 (see [12]). The transmembrane
current Iion is computed as a function of the transmembrane voltage V (t, x) ∈ R

and some cell state variables denoted by w(t, x) ∈ R
m. The dynamics of these vari-

ables is described by the system of equations (2). From the point of view of elec-
trophysiology, the state variables are basically voltage dependent gating variables
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(dimensionless) describing the activity of the ionic channels through the membrane
and some concentrations in mmol/l as detailed in section 2.4. An isolated tissue
sample is modeled by the following boundary condition

G∇V ·n = 0, on ∂Ω (3)

where ∂Ω is the boundary of Ω and n is the unit normal to ∂Ω outward of Ω, see
figure 1(a). The problem is supplemented with an initial condition on V and w:

V (0, x) = V0(x), w(0, x) = w0(x) for x ∈ Ω. (4)
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Figure 1. Modeling framework.

A Surface of membrane per unit volume 103cm−1
C Capacity per unit of surface 10−3mF/cm2

G Average tissue conductivity 1mS/cm
V Transmembrane voltage −100 to 30mV
Iion Total membrane current per unit of surface up to 300µA/cm2

Table 1. Average values of the parameters and their units

2.2. The monodomain equations on a 1D network of excitable tissue. The
His bundle and Purkinje network is defined by a tree denoted by H = (V,E) where
V = {xi, i = 0 . . . n} ⊂ R

d (d = 2, 3) are its n+1 vertices and E ⊂ {(x, y) ∈ V ×V }
are its edges. This functional tree defines a subset of Rd still denoted by H and
defined as the collection of the straight lines (x, y) for x and y vertices in V :

H = ∪
e=(x,y)∈E

{tx+ (1− t)y, t ∈ (0, 1)}.

Note that straight lines were chosen for sake of simplicity. Any smooth path would
be appropriate too. The tree is supposed to have p + 1 endpoints numbered first
and organized as follows : the root node is x0 and the remaining endpoints are
∂H = {x1, . . . xp}, see figure 1(b). Note that 0 < p ≤ n.

Remark 1. The His-Purkinje network could be described more generally using a
graph and assuming that each of its vertices is able to be coupled to the muscle or
possibly excited by an external applied current (these conditions are not exclusive
one from another). The case of a tree coupled through its endpoints only is described
here for sake of simplicity.
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It is natural to suppose that the propagation of the action potential through
H follows the monodomain system of equations (1) and (2). But it needs to be
specified since H is not an open subset in R

d: equations (1) and (2) make sense
as usual on each 1D edge e = (x, y) in E, while the conservation of charges for an
isolated domain H implies that Kirchhoff’s law is written at each vertex of H . The
unknown on the tree H is denoted by (V H , wH). It is a sequence of 1D unknown
functions V H = (Ve)e∈E and wH = (we)e∈E . These functions are solutions to
eqs. (1) and (2) on each edge e ∈ E and to Kirchhoff’s law at all the vertices of H :

∀x ∈ V,
∑

e∈E(x)

Ge(x)∇Ve(x) ·ne = 0 (5)

where E(x) is the set of all edges e = (x, y) that share x as a common endpoint
and ne = (x − y)/|x − y| is the unit vector colinear to e outward of e at point x,
see figure 2(a). On the boundary ∂H = {x1, . . . xp} and the root node x0 of the
His-Purkinje tree, the set E(x) contains only one edge and condition (5) degenerates
into the Neumann boundary condition stated in eq. (3).
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Figure 2. The His-Purkinje tree.

Similarly, the conductivity coefficient GH = (Ge)e∈E is a sequence of 1D func-
tions defined on the edges e ∈ E. It can be discontinuous across edges and the other
parameters and functions are sequences of parameters and functions defined on the
edges e ∈ E: AH = (Ae)e, C

H = (Ce), I
H
ion = (Iion,e), g

H = (ge).
The theoretical existence and nature of solutions V H = (Ve)e∈E and wH =

(we)e∈E is not investigated here. But it is assumed that such solutions are con-
tinuous on each vertex x ∈ V so that it can be defined nodal values V H(x) for all
x ∈ V .

2.3. The Purkinje-Muscle Junctions. It is important to note that the two
electrophysiological problems modeled by the monodomain equations in the my-
ocardium (from sec. 2.1) and the His-Purkinje network (from sec. 2.2) are uncou-
pled. One can solve for the action potential both in myocardium (either in 2D or
3D) and in the His-Purkinje network separately by solving the monodomain equa-
tion in both domains. The question of modeling the Purkinje-Muscle Junctions
(PMJ) is now closely related to the question of coupling the 2D or 3D equations in
the myocardium to the 1D monodomain equation in the His-Purkinje network.

It is a main objective of this paper to write such a 2D/1D or 3D/1D coupling
condition. We assume that the coupling occurs through some Purkinje-Muscle
Junctions (PMJ) localized at the endpoints x1, . . . xp ∈ ∂H of the His-Purkinje tree
H , while the root node x0 is an excitation node (AV node for instance).
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Figure 3. Example computation in a His-Purkinje tree coupled
to a 2D slab of tissue.

The complex microstructure of the end of the Purkinje system and its actual cou-
pling with the myocardium is hard to describe accurately [6, 1, 18]. The endpoints
of the His-Purkinje tree are usually supposed to represent Purkinje cells and to be
connected to several ventricular cells through some junctions, like in [6]. Here, a
different interpretation is proposed. The tree equations from section 2.2 only model
the His bundle and proximal Purkinje fibers, but not the extremal Purkinje fibers.
Instead, the latter are supposed to spread out homogeneously into some volumetric
regions around each endpoint xi ∈ ∂H of the His-Purkinje tree. Hence the junctions
are not modeled individually but as a whole in these small regions. Therefore, it
is associated to each endpoint xi in ∂H a PMJ region denoted by Ωi ⊂ Ω with
positive volume, |Ωi| > 0, see figure 1(c), that represents the volume into which
the last Purkinje cells spread out from point xi into the muscle. Let Si denotes
the surface of Purkinje fibers involved in such a junction and e ∈ E denotes the
edge to which xi is an endpoint ({e} = E(xi)), then the total current out of the
His-Purkinje fiber at xi is exactly

Ji = Si (Ge(xi)∇Ve(xi) ·ni) . (6)

The average transmembrane potential of the Purkinje cells in the region Ωi is Ve(xi).
On the other hand, the average transmembrane potential of the cardiomyocytes

in the region Ωi is

〈V 〉i =
1

|Ωi|

∫

Ωi

V (x)dx. (7)

Following the idea that the PMJ acts as a conductance [6, 18], the coupling relation
in region Ωi reads

Ji = gi (〈V 〉i − Ve(xi)) (8)

where the coefficient gi is the conductance of the Purkinje-Muscle junction number
i (table 2). Given the transmembrane potential V in the muscle, this equation is a
boundary condition for the monodomain system of equations in the Purkinje tree
H . It replaces the Kirchhoff’s law (3) on the endpoints xi ∈ ∂H . On the other
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Si surface of membrane of the Purkinje cells in Ωi cm2

Ji current from the Purkinje to the muscle in Ωi µA
si volumetric source term function in Ωi µA/cm3

Ge(xi) conductivity of the Purkinje fiber at endpoint xi mS/cm
gi conductance of the Purkinje-muscle junction in Ωi mS

Table 2. Units in the PMJ condition (8).

hand, the conservation of charges implies that a volumetric source term si is added
to the monodomain equation in the muscle Ω. For the coupling region Ωi, it reads

si(x) =

{

si :=
Si

|Ωi|
Ge(xi)∇Ve(xi) ·ni for x ∈ Ωi,

0 otherwise.
(9)

Remark 2. Note that Si

|Ωi|
is a surface to volume ratio, similar to the coefficient A

in eq. (1). But it refers to the surface of PMJ per unit of muscle volume.

The system of equation that models a 2D/3D muscle Ω coupled to a 1D His-
Purkinje tree H = (V,E) finally reads:

A (C∂tV + Iion(V,w)) +

p
∑

i=1

si = div (G∇V ) in Ω, (10)

∂tw + g(V,w) = 0 in Ω, (11)

G∇V ·n = 0 on ∂Ω, (12)

Ae (Ce∂tVe + Iion,e(Ve, we)) = div (Ge∇Ve) on e, ∀e ∈ E, (13)

∂twe + ge(Ve, we) = 0 on e, ∀e ∈ E, (14)
∑

e∈E(x)

Ge(x)∇Ve(x) ·ne = 0 ∀x ∈ V \∂H, (15)

Ge(xi)Ve(xi) ·ni =
gi
Si

(〈V 〉i − Ve(xi)) i ∈ {1, . . . p} (16)

where the source terms si are given by eq. (9). It is recalled that the parame-
ters A,C,G are respectively the ratio of membrane of surface per unit volume,
the capacitance and the conductivity coefficient in the media considered (table 1),
while Iion(V,w) ∈ R and g(V,w) ∈ R

m are nonlinear functions that describe the
electrophysiology of the media.

For sake of simplicity, in the following applications, the values of the parameters
AH and CH are assumed constant in space and the ionic model (the nonlinear
functions IHion and gH) is the same all along the His-Purkinje tree, accounting for a
tissue made of one singular cell type,

∀e ∈ E, Ae = AH , Ce = CH , Iion,e = IHion, ge = gH .

Only the conductivity coefficient GH = (Ge)e∈E is assumed to vary along the His-
Purkinje tree H .

Remark 3. The coupling is described by the data of the regions Ωi (i = 1 . . . p)
and by two numerical parameters, namely the junction’s conductance per unit of
surface, gi

Si
and the ratio of surface of Purkinje cells’ membrane per unit volume of

myocardium, Si

Ωi
.
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2.4. Physiological description of the ionic currents. The equations from the
Beeler & Reuter model [2] are used to compute the ionic currents Iion(V,w) in the
muscle cells (so called BR model), while the equations from the DiFransesco & Noble
model [8] are used to compute the ionic current (IHion(V

H , wH)) in the Purkinje cells
(so called DFN model). Although there exists more up-to-date models for both
Purkinje cells and ventricular cardiomyocytes [18], these simple representations are
sufficient to model accurately enough and on a generic basis the spread of the action
potential through the PMJ and its consequence on the sequence of activation of the
muscle.

Hence, using the notations from the original paper [2] the unknowns w in the
muscle Ω is specifically

w = (m,h, j, d, f, ξ1, [Ca], isi) ∈ R
8

and the unknown we on each e ∈ E is [8]

wH = (y, x, r,m, h, d, f, f2, p, [Ca]i, [Ca]up, [Ca]rel, [K]c, [K]i, [Na]i) ∈ R
15.

The general structure of such a model is as follows:

• The variables w are split into k > 0 “gating variables” (m,h, j, d, f, ξ1 for
the BR model and y, x, r,m, h, d, f, f2, p for the DFN one) and m − k ≥ 0
remaining ones, denoted respectively by wg ∈ R

k and wr ∈ R
m−k;

• Each gating variable is solution of a quasilinear equation (see eq. (18));
• The remaining ones are given by a system of nonlinear equations;
• The current Iion is computed as a function of the transmembrane potential V
and w = (wg, wr).

for the BR model, it reads:

C
dV

dt
= −Iion(V,w) (17)

dwg

dt
= α(V,wr)(1 − wg)− β(V,wr) (18)

dwr

dt
= −gr(V,wg, wr). (19)

In these equations, α and β are diagonal matrices that does not depend on wg.
The model for the His-Purkinje is similar, replacing C, V , w, wg, wr, α, β, Iion,

gr by their counterparts CH , V H , wH , wH
g , wH

r αH , βH , IHion, g
H
r .

3. Numerical method. A finite element method will be used in the muscle do-
main Ω because it is well suited to parabolic type problems and a finite volume
technique will be used in the His-Purkinje network H for its simplicity and ability
to ensure Kirchhoff’s law at each vertex x ∈ V of the tree and the Robin boundary
condition at its endpoints.

3.1. Equations of the ventricular tissue. Subsequently, the discretization in Ω
requires a simplicial mesh T (triangles in 2D, tetrahedra in 3D) with N vertices,
which is compatible with the geometry of the p coupling regions Ωi, that is

∀i = 1 . . . p, ∃Ti ⊂ T , such that Ti is a simplicial mesh of Ωi.

Lagrange Finite Elements of first order (see [7]) are used with a standard first order
numerical quadrature. The discrete space is spanned by the N functions (φ1, . . . φN )
and the nodal values of V and w are their coordinates with respect to this basis.
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They are stored in vectors still denoted by V = (V1, . . . VN ) and w = (w1, . . . wN ).
Hence eqs. (10) - (12) have the following semi-discrete discrete counterpart:

A

(

CM
dV

dt
+MIion(V,w)

)

+Cs = −KV, (20)

dw

dt
+ g(V,w) = 0. (21)

In this system of equations, the vector s = (s1, . . . sp) contains the value of the
source terms in the p coupling regions as defined in equation (9) and the matrices
M and K are the mass and stiffness matrices defined by

Mij =
∑

T∈T

|T |

d+ 1

d+1∑

k=1

φi(xik )φj(xik) '

∫

Ω

φi(x)φj(x)dx,

Kij =

∫

Ω

G(x)∇φj(x) · ∇φi(x)dx.

The mass matrix is diagonal due to the lumping arising from the quadrature formula
and the stiffness matrix accounts for the boundary condition (12). Due to the
numerical quadrature, the vectors Iion(V,w) = (Iion(Vi, wi))i=1...N and g(V,w) =
(g(Vi, wi))i=1...N contain the nodal values of the nonlinear reaction terms Iion and
g. The approximation of the coupling source terms on line i of the system above
reads

p
∑

j=1

∫

Ω

sj(x)φi(x)dx =

p
∑

j=1

sj

∫

Ωj

φi(x)dx '

p
∑

j=1

Cijsj

with Cij '

∫

Ωj

φi(x)dx =
∑

T∈Tj

|T |

d+ 1

d+1∑

k=1

φi(xik ) (22)

using again the numerical quadrature. The coefficients Cji are the entries of the
N × p coupling matrix C.

3.2. Computing the coupling terms. The computation of the source term si
involves the average values of the transmembrane potential V in the regions Ωi

which read

〈V 〉i =

N∑

j=1

Vj

1

|Ωi|

∫

Ωi

φj(x)dx =
1

|Ωi|

N∑

j=1

VjCji =
1

|Ωi|

{
CTV

}

i
.

where C is the N × p matrix defined in eq. (22).Hence, the source term si in region
Ωi reads

si =
gi
Si

Si

|Ωi|

(
1

|Ωi|

{
CTV

}

i
− Ve(xi)

)

. (23)

3.3. Equations of the His-Purkinje tree. Consider a set VN = {x1, . . . xNH
}

of points in H that contains in particular all the vertices of H : V ⊂ VN . Since H
is a tree, the nodes from VN define a set of M edges EM = {ej, j = 1 . . .M} that
are subsets of the original edges e ∈ E as shown on fig. 2(b). This defines the tree
(VN , EM ) that is used to find a discrete solution for eqs. (13)-(16).

Therefore, consider the set VN (i) = (xj)j of the nodes in VN that are connected
to xi ∈ VN . In general, #V (i) = 2 but the endpoints of H have #V (i) = 1 and the
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bifurcation nodes have #V (i) > 2. It is associated to the node xi a control volume

Ki defined as

Ki = ∪j∈VN (i)[xi, yij ], where yij =
1

2
(xi + xj) is the midpoint of (xi, xj).

This control volume is a simple edge if #V (i) ≤ 2 and a star-shaped set (around
xi) if #V (i) > 2, where Kirchhoff’s law must be written. Note that xi is not the
midpoint of Ki in general.

Remark 4. The numbering of the nodes in the discrete graph (VN , EM ) is supposed
to be such that x0 is the root node and {x1, . . . xp} are still the endpoints of H ,
namely ∂H . Naturally, the numbering can always be changed to to follow this
assumption.

The unknowns are functions piecewise constant V H and wH defined by their
values V H = (V H

i )i=1...NH
and we = (wH

i )i=1...NH
at the vertices xi ∈ VN . They

are interpreted as average values of V H and wH on the control volumes Ki and
the discretization is based on the integral formulation of eqs. (13)-(14) on the Ki.
In view of Kirchhoff’s law, the exact solution verifies, for the root node and any
interior vertex xi ∈ VN\∂H ,

∫

Ki

AH
(
CH∂tV

H + IHion(V
H , wH)

)
dx =

∑

j∈VN (i)

Ge(yij)∇V H(yij) ·nij .

Here the index ij refers to the edge (xi, xj) that is a subset of edges e ∈ EM ⊂
E. Assuming that V H and wH are functions piecewise constant on the Ki, the
discretization reads, for i = 1 . . .NH (except for xi ∈ ∂H):

AH

(

CH dV H
i

dt
+ IHion(V

H
i , wH

i )

)

|Ki| =
∑

j∈VN (i)

Fij ,

dwH
i

dt
+ gH(V H

i , wH
i ) = 0

where |Ki| =
∑

j∈VN (i) |xi−xij | is the measure ofKi and Fij ' {Ge∇V H ·nij}x=yij

approximates the flux of current out of Ki through the interface yij between Ki

and Kj . The usual consistent finite difference approximation is used to compute
this flux:

Fij = Ge(yij)
V H
j − V H

i

dij
with dij = |xi − xj |. (24)

The numbers dij are the distances between the centers of Ki and Kj. Since the
yij are the midpoints of the edges (xi, xj), the approximation of the flux is second
order accurate and the measure of Ki reads |Ki| =

1
2

∑

j∈VN (i) dij .

For a boundary node xi ∈ ∂H , the exact solution verifies

∫

Ki

AH
(
CH∂tV

H + IHion(V
H , wH)

)
dx =

∑

j∈VN (i)

Ge(yij)∇V H(yij) ·nij

+Ge(xi)∇V H(xi) ·ni.

The last, additional, term is the flux of current outward of H . It has been replaced
by its value according to the coupling relation from eq. (16).
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At last, the approximation on the His-Purkinje tree reads, for all i = 1 . . .NH ,

AH

(

CH dV H
i

dt
+ IHion(V

H
i , wH

i )

)

|Ki| =
∑

j∈VN (i)

Fij +
gi
Si

(
〈V 〉i − V H

i

)

︸ ︷︷ ︸

only if xi ∈ ∂H

,

dwH
i

dt
+ gH(V H

i , wH
i ) = 0,

where the discrete flux Fij are computed according to eq. (24).
At last, the approximation in the His-Purkinje tree can be written in matrix form

as follows:

AH

(

CHMH

dV H

dt
+MHIHion(V

H , wH)

)

(25)

= −(KH +GH)V H +GH diag(|Ωi|
−1, 0)CTV,

dwH

dt
+ gH(V H , wH) = 0 (26)

where MH is a diagonal mass matrix, KH is a stiffness matrix that discretizes the
Homogeneous Neuman diffusion problem (both are NH × NH matrices); GH is a
NH ×NH diagonal matrix of conductivities per unit of surface and diag(|Ωi|

−1, 0)
is a NH × p diagonal matrix:

MHij = |Ki|δij , KHij =







−
Ge(yij)

dij
if j ∈ VN (i),

∑

j∈VN (i)
Ge(yij)

dij
if i = j,

0 otherwise

and

GH =








g1
S1

. . .
gp
Sp

0








, diag(|Ωi|
−1, 0) =








1
|Ω1|

. . .
1

|Ωp|

0 . . . 0








.

3.4. Time discretization. The semi-discrete problem is the nonlinear system of
ordinary differential equations (20) and (21) with source term defined by eq. (23)
together with equations (25) and (26).

For sake of numerical stability, the system should be discretized implicitly. Any-
way, because of the complexity of the ionic models (functions Iion, g and IHion, g

H)
an implicit-explicit strategy is used:

• the semilinear equations (18) on the gating variables are solved implicitly
while the equations (19) are solved explicitly;

• the linear diffusion terms are solved implicitly.
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Our first order discrete scheme is as follows:

A

(

CM
V n+1 − V n

∆t
+MIion(V

n, wn+1)

)

+Csn = −KV n+1, (27)

wn+1
g − wn

g

∆t
= α(V n, wn

r )(1 − wn+1
g )− β(V n, wn

r )w
n+1
g , (28)

wn+1
r − wn

r

∆t
= −gr(V

n, wn+1
g , wn

r ), (29)

AH

(

CHMH

V H,n+1 − V H,n

∆t
+MHIHion(V

H,n, wH,n+1)

)

(30)

= −(KH +GH)V H,n+1 +GH diag(|Ωi|
−1, 0)CTV n,

wH,n+1
g − wH,n

g

∆t
= αH(V H,n, wH,n

r )(1 − wH,n+1
g )− β(V H,n, wH,n

r )wH,n+1
g , (31)

wH,n+1
r − wH,n

r

∆t
= −gr(V

H,n, wH,n+1
g , wH,n

r ), (32)

sni =
gi
Si

Si

|Ωi|

(
1

|Ωi|

{
CTV n

}

i
− V H,n

i

)

, i = 1 . . . p. (33)

The numerical algorithm at each time step is:

1. update the gating variables by solving the implicit linear equations (28) and
(31);

2. update the ionic concentrations using equations (29) and (32);
3. Compute Iion(V

n, wn+1), IHion(V
H,n, wH,n+1) and the coupling variables sni

according to equation (33);
4. Update both transmembrane potentials using equations (27) and (30).

4. Numerical experiment.

4.1. Direct coupled problem. In this paragraph we provide simulations of the
Purkinje-muscle junctions in a normal case. In fact, by simplifying the problem,
we suppose that the myocardium is coupled to the His bundle only in two different
regions. Figure 4 shows the propagation of the action potential after it starts by
external stimulation on the top of the His bundle: the wave starts at point x0, the
depolarization wavefront propagates along the His network towards the coupling
regions. The left region is activated slightly earlier than the right one because the
length of the right His bundle branch is slightly shorter than the left one. Once the
coupling regions are activated, the action potential wave front propagates further
in the myocardium. The model parameters are reported in table 3.

Parameter His/Purkinje Ventricle
A(cm−1) 500 500

C(mF/cm2) 0.001 0.001
G(mS/cm) 300 3

Coupling parameter Value
Si

|Ωi|
(cm−1) 500

gi
Si
(mS/cm2) 300

Table 3. Monodomain parameters

In order to simulate a pathological case like a right bundle branch block (RBBB),
the conductivity of the right branch of the His bundle is set to zero. Therefore the
myocardium is only activated in the left coupling region, as shown on figure 5:
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(a) 1.6ms (b) 2.0ms (c) 7.0ms

Figure 4. A normal activation of the His bundle brunches: snap-
shots of the action potential in the His bundle and the myocardium.

compared to the normal condition simulation, the activation of the right side of the
muscle is delayed.

(a) 1.6ms (b) 2.0ms (c) 7.0ms

Figure 5. A Right bundle brunch block: snapshots of the action
potential in the His bundle and the myocardium.

In the next paragraph we present the pacing technique as a tool to improve the
depolarization time of the whole muscle.

4.2. Optimized sites of stimulation for a RBBB. The pacemaker is an elec-
trical device which provides small electrical shocks to the heart muscle in order to
regulate its beating. Many of today’s pacemakers have two main components which
are the electrodes and the transducer. The electrodes are implanted in the heart and
allow to conduct the current from the medical device to the heart wall. The trans-
ducer is a small battery that generates the electrical discharge at a pre-determined
frequency. Transducers deliver an electrical shock only when the heart is pacing
too slow: it can therefore adapt the frequency of the electrical stimulation to the
patient situation. On the contrary, the position of the pacemaker electrode is fixed
once for all during the surgical intervention. Hence, the choice of the pacemaker
position is crucial and have to be carefully determined before starting the surgical
operation. A wrong placement can introduce serious problems [16, 17] and a second
operation could be necessary to change the position of the pacemaker or to remove
it.

The coupled model described in previous sections is now used on an simple
academic test case to investigate how to optimize the position of the electrode. The
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model of the electrode, the cost function and optimization algorithm are introduced
in the next paragraph. Numerical results are then shown.

4.2.1. pacemaker model. The main role of heart electrical pacing in a RBBB con-
dition is to minimize the delay of activation between the two ventricles. In our
study the pacemaker is modeled using three parameters: the geometry of the
probe, the amplitude of the stimulation current and its frequency. The contact
between the pacemaker electrode and the myocardium is supposed to occur in a
ball B(xp, rp) = {y ∈ Ω, |y − xp| < rp}, where xp defines the position of the pace-
maker center and rp is the radius of the contact ball. The pacemaker is assumed
to stimulate the myocardium once per cardiac cycle. Let Tp denotes the duration
of each stimulation. The pacemaker is represented by a time-dependent external
applied current, so that equation (10) is replaced by

A (C∂tV + Iion(V,w)) +

p
∑

i=1

si + Ip(xp, Tp) = div (G∇V ) in Ω. (34)

The function Ip(xp, Tp) is given by

Ip(xp, Tp)x,t =

{

I0 if x ∈ B(xp, rp) and cos
(

πTp

T

)

≤ cos
(

π(2t−Tp)
T

)

≤ 1,

0 otherwise.

where I0 is the amplitude of the stimulation and T denotes the duration of the
cardiac cycle. Since they are related to the transducer modeling, the amplitude I0
and the period Tp of the pacemaker are supposed to be fixed and positive constant.
The different parameters used to define the pacemaker stimulation are given in table
4.

Tp Pacing duration 2.0 ms
rp Radius of the pacemaker 1.5 mm
I0 Value of the pacing current 7.1µA/cm3

T Cardiac cycle 700.0 ms
Table 4. Values of the parameters defining the pacemaker current.

In order to optimize the position of the electrode, we choose to maximize the
number of depolarized cells at time Td when the whole heart would be depolarized
in normal conditions. Hence, Td basically represents the length of the QRS complex.
The depolarization threshold is set to Vth = 0mV. Given x ∈ Ω the position of the
electrode, the region of interest is then defined by its measure:

M(x) = |{y ∈ Ω, V (Td, y) > Vth}| .

The minimization problem

find xp ∈ Ω, J(xp) = min
x∈Ω

J(x), J(x) = 1−
M(x)

|Ω|
(35)

is a natural candidate to solve our problem.
Any solution of this problem involves the lagrangian defined by:

L(x,Λ) = J(x) − Λ · g(x)
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where Λ = (λi)i is the vector of the Lagrangemultipliers and g = (gi)i is the function
of the inequality constraints gi(x) ≤ 0. If x? is a solution of the problem (35) then
there exists Λ? such that the Kuhn-Tucker conditions are satisfied, namely:

∇J(x?) +
∑

i

λ?
i∇gi(x

?) = 0

∀i, gi(x
?) ≤ 0, λ?

i ≥ 0, gi(x
?)λ?

i = 0.

Generally a gradient descent method is used to find x?. In order to avoid the compu-
tation of the gradient ∇J and since our constraints are linear (see next paragraph),
the algorithm active set will be used. It relies on a finite difference approxima-
tion of this gradient [9]. For practical reasons we used the fmincon function from
Matlab’s optimisation toolbox. Additionally this function is also able to handle
nonlinear constraints.

4.2.2. Results. In this paragraph we report an example showing how cardiac pacing
could resynchronize the electrical activity of the heart. In order to emphasize the
role of the pacing technique on the cardiac resynchronization, we have performed
a RBBB pathological case by considering zero conductivity in the right branch
of the His bundle as described in section §4.1. Our goal is to find the optimal
position of the pacemaker probe allowing to maximize the volume of tissue that
is depolarized at time Td. To reach this aim we use the function cost and the
algorithm described in section §4.2. The results are reported in Figure 6: in the
first (respectively second, respectively third) column we present snapshots of RBBB
(respectively normal, respectively pacing) case at different times. Comparing the
RBBB simulation (first column) to the normal simulation (second column), we
remark a clear asynchrony between the left and the right parts in the RBBB case.
In particular at time Td (11.8 ms), the entire myocardium is depolarized in the
normal case whereas in the pathological case, an important region in the right part
is not yet depolarized. That is responsible of an increasing of the QRS-complex
duration in case of ECGs simulations [5, 4]. This delay between the right and the
lefts parts of the myocardium depolarization has been significantly reduced when
using the pacing technique. In particular at time Td, one can see that the whole
ventricle is almost depolarized. In this simulation, the initial placement of the probe
was in the left bottom corner of the square. The same result was obtained when
taking as initial position the right bottom corner.

5. Discussion. Up to now, existing models of the PMJ were not fully satisfactory
from a mathematical point of view. The main objective of this paper is to give a well-
posed mathematical framework to model the PMJ which can easily be discretized in
order to simulate the interaction between the His-Purkinje network and the muscle.
Our model given by eqs. (10)-(16) fulfills this objective. Since it is completely
written from the continuous level, it is fully independent of the mesh. Furthermore,
only two physical parameters are required to describe it, namely the surface of
Purkinje cells per unit volume ratio Si

|Ωi|
and the conductance per unit surface of

the PMJ gi
Si
. A natural and standard numerical scheme has proved to be efficient

enough to perform some simple experiments.
For sake of simplicity, we present only 2D numerical examples although the

model is developed for 3D applications. The only additional difficulty arising in
3D is purely technical. The objective was not to present realistic simulations but
simple tests to illustrate the robustness of the model. Performing more realistic
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RBBB Normal Pacing

Figure 6. Comparison of the action potential propagation be-
tween RBBB, normal and a paced RBBB condition: Snapshots
at times (from top to bottom) 1.0 ms, 2.0 ms, 6.0 ms and 11.8 ms.

simulations would require to take into account the geometry of the ventricle and
to integrate the fast conduction network into it. Moreover, our first choice of the
coupling parameters gives irrealistic PMJ delays in the anterograde and retrograde
propagation. Therefore they need to be improved. These two points are beyond
the scope of this work.

An additional improvement of the model would be to consider surfacic PMJ
instead of volumic ones in order to better represent the behavior of the human
heart.
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