Loading [Contrib]/a11y/accessibility-menu.js

On some models for cancer cell migration through tissue networks

  • Received: 01 February 2010 Accepted: 29 June 2018 Published: 01 April 2011
  • MSC : Primary: 35Q92 ; Secondary: 92B05.

  • We propose some models allowing to account for relevant processes at the various scales of cancer cell migration through tissue, ranging from the receptor dynamics on the cell surface over degradation of tissue fibers by protease and soluble ligand production towards the behavior of the entire cell population.
       For a genuinely mesoscopic version of these models we also provide a result on the local existence and uniqueness of a solution for all biologically relevant space dimensions.

    Citation: Jan Kelkel, Christina Surulescu. On some models for cancer cell migration throughtissue networks[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 575-589. doi: 10.3934/mbe.2011.8.575

    Related Papers:

    [1] Jun Xu, Bei Wang, Zhengtao Liu, Mingchun Lai, Mangli Zhang, Shusen Zheng . miR-223-3p regulating the occurrence and development of liver cancer cells by targeting FAT1 gene. Mathematical Biosciences and Engineering, 2020, 17(2): 1534-1547. doi: 10.3934/mbe.2020079
    [2] Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson . A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521
    [3] Justin Gomez, Nathanael Holmes, Austin Hansen, Vikram Adhikarla, Margarita Gutova, Russell C. Rockne, Heyrim Cho . Mathematical modeling of therapeutic neural stem cell migration in mouse brain with and without brain tumors. Mathematical Biosciences and Engineering, 2022, 19(3): 2592-2615. doi: 10.3934/mbe.2022119
    [4] Xu Guo, Yuanming Jing, Haizhou Lou, Qiaonv Lou . Effect and mechanism of long non-coding RNA ZEB2-AS1 in the occurrence and development of colon cancer. Mathematical Biosciences and Engineering, 2019, 16(6): 8109-8120. doi: 10.3934/mbe.2019408
    [5] Christian Engwer, Markus Knappitsch, Christina Surulescu . A multiscale model for glioma spread including cell-tissue interactions and proliferation. Mathematical Biosciences and Engineering, 2016, 13(2): 443-460. doi: 10.3934/mbe.2015011
    [6] Avner Friedman, Yangjin Kim . Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences and Engineering, 2011, 8(2): 371-383. doi: 10.3934/mbe.2011.8.371
    [7] Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson . An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences and Engineering, 2015, 12(6): 1219-1235. doi: 10.3934/mbe.2015.12.1219
    [8] Jose E. Zamora Alvarado, Kara E. McCloskey, Ajay Gopinathan . Migration and proliferation drive the emergence of patterns in co-cultures of differentiating vascular progenitor cells. Mathematical Biosciences and Engineering, 2024, 21(8): 6731-6757. doi: 10.3934/mbe.2024295
    [9] Marco Scianna, Luigi Preziosi, Katarina Wolf . A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical Biosciences and Engineering, 2013, 10(1): 235-261. doi: 10.3934/mbe.2013.10.235
    [10] Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028
  • We propose some models allowing to account for relevant processes at the various scales of cancer cell migration through tissue, ranging from the receptor dynamics on the cell surface over degradation of tissue fibers by protease and soluble ligand production towards the behavior of the entire cell population.
       For a genuinely mesoscopic version of these models we also provide a result on the local existence and uniqueness of a solution for all biologically relevant space dimensions.


  • This article has been cited by:

    1. Christian Engwer, Michael Wenske, Estimating the extent of glioblastoma invasion, 2021, 82, 0303-6812, 10.1007/s00285-021-01563-9
    2. Christian Engwer, Thomas Hillen, Markus Knappitsch, Christina Surulescu, Glioma follow white matter tracts: a multiscale DTI-based model, 2015, 71, 0303-6812, 551, 10.1007/s00285-014-0822-7
    3. Christian Engwer, Markus Knappitsch, Christina Surulescu, A multiscale model for glioma spread including cell-tissue interactions and proliferation, 2016, 13, 1551-0018, 443, 10.3934/mbe.2015011
    4. Peter Romeo Nyarko, Martin Anokye, Mathematical modeling and numerical simulation of a multiscale cancer invasion of host tissue, 2020, 5, 2473-6988, 3111, 10.3934/math.2020200
    5. Gülnihal Meral, Christian Stinner, Christina Surulescu, On a multiscale model involving cell contractivity and its effects on tumor invasion, 2015, 20, 1553-524X, 189, 10.3934/dcdsb.2015.20.189
    6. Gülnihal Meral, Christina Surulescu, Mathematical modelling, analysis and numerical simulations for the influence of heat shock proteins on tumour invasion, 2013, 408, 0022247X, 597, 10.1016/j.jmaa.2013.06.017
    7. Thomas Lorenz, Viability in a non-local population model structured by size and spatial position, 2020, 491, 0022247X, 124249, 10.1016/j.jmaa.2020.124249
    8. Christian Märkl, Gülnihal Meral, Christina Surulescu, Mathematical Analysis and Numerical Simulations for a System Modeling Acid-Mediated Tumor Cell Invasion, 2013, 2013, 2314-498X, 1, 10.1155/2013/878051
    9. Christina Surulescu, Nicolae Surulescu, 2013, Chapter 9, 978-3-319-03079-1, 269, 10.1007/978-3-319-03080-7_9
    10. Gregor Corbin, Axel Klar, Christina Surulescu, Christian Engwer, Michael Wenske, Juanjo Nieto, Juan Soler, Modeling glioma invasion with anisotropy- and hypoxia-triggered motility enhancement: From subcellular dynamics to macroscopic PDEs with multiple taxis, 2021, 31, 0218-2025, 177, 10.1142/S0218202521500056
    11. Thomas Lorenz, Christina Surulescu, On a class of multiscale cancer cell migration models: Well-posedness in less regular function spaces, 2014, 24, 0218-2025, 2383, 10.1142/S0218202514500249
    12. Pawan Kumar, Jing Li, Christina Surulescu, Multiscale modeling of glioma pseudopalisades: contributions from the tumor microenvironment, 2021, 82, 0303-6812, 10.1007/s00285-021-01599-x
    13. Martina Conte, Christina Surulescu, Mathematical modeling of glioma invasion: acid- and vasculature mediated go-or-grow dichotomy and the influence of tissue anisotropy, 2021, 407, 00963003, 126305, 10.1016/j.amc.2021.126305
    14. Lingling Li, Mengyao Shao, Xingshi He, Shanjing Ren, Tianhai Tian, Risk of lung cancer due to external environmental factor and epidemiological data analysis, 2021, 18, 1551-0018, 6079, 10.3934/mbe.2021304
    15. Anna Zhigun, Mabel Lizzy Rajendran, Modelling non-local cell-cell adhesion: a multiscale approach, 2024, 88, 0303-6812, 10.1007/s00285-024-02079-8
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2861) PDF downloads(464) Cited by(15)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog