Citation: Jan Kelkel, Christina Surulescu. On some models for cancer cell migration throughtissue networks[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 575-589. doi: 10.3934/mbe.2011.8.575
[1] | Jun Xu, Bei Wang, Zhengtao Liu, Mingchun Lai, Mangli Zhang, Shusen Zheng . miR-223-3p regulating the occurrence and development of liver cancer cells by targeting FAT1 gene. Mathematical Biosciences and Engineering, 2020, 17(2): 1534-1547. doi: 10.3934/mbe.2020079 |
[2] | Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson . A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521 |
[3] | Justin Gomez, Nathanael Holmes, Austin Hansen, Vikram Adhikarla, Margarita Gutova, Russell C. Rockne, Heyrim Cho . Mathematical modeling of therapeutic neural stem cell migration in mouse brain with and without brain tumors. Mathematical Biosciences and Engineering, 2022, 19(3): 2592-2615. doi: 10.3934/mbe.2022119 |
[4] | Xu Guo, Yuanming Jing, Haizhou Lou, Qiaonv Lou . Effect and mechanism of long non-coding RNA ZEB2-AS1 in the occurrence and development of colon cancer. Mathematical Biosciences and Engineering, 2019, 16(6): 8109-8120. doi: 10.3934/mbe.2019408 |
[5] | Christian Engwer, Markus Knappitsch, Christina Surulescu . A multiscale model for glioma spread including cell-tissue interactions and proliferation. Mathematical Biosciences and Engineering, 2016, 13(2): 443-460. doi: 10.3934/mbe.2015011 |
[6] | Avner Friedman, Yangjin Kim . Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences and Engineering, 2011, 8(2): 371-383. doi: 10.3934/mbe.2011.8.371 |
[7] | Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson . An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences and Engineering, 2015, 12(6): 1219-1235. doi: 10.3934/mbe.2015.12.1219 |
[8] | Jose E. Zamora Alvarado, Kara E. McCloskey, Ajay Gopinathan . Migration and proliferation drive the emergence of patterns in co-cultures of differentiating vascular progenitor cells. Mathematical Biosciences and Engineering, 2024, 21(8): 6731-6757. doi: 10.3934/mbe.2024295 |
[9] | Marco Scianna, Luigi Preziosi, Katarina Wolf . A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical Biosciences and Engineering, 2013, 10(1): 235-261. doi: 10.3934/mbe.2013.10.235 |
[10] | Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028 |
1. | Christian Engwer, Michael Wenske, Estimating the extent of glioblastoma invasion, 2021, 82, 0303-6812, 10.1007/s00285-021-01563-9 | |
2. | Christian Engwer, Thomas Hillen, Markus Knappitsch, Christina Surulescu, Glioma follow white matter tracts: a multiscale DTI-based model, 2015, 71, 0303-6812, 551, 10.1007/s00285-014-0822-7 | |
3. | Christian Engwer, Markus Knappitsch, Christina Surulescu, A multiscale model for glioma spread including cell-tissue interactions and proliferation, 2016, 13, 1551-0018, 443, 10.3934/mbe.2015011 | |
4. | Peter Romeo Nyarko, Martin Anokye, Mathematical modeling and numerical simulation of a multiscale cancer invasion of host tissue, 2020, 5, 2473-6988, 3111, 10.3934/math.2020200 | |
5. | Gülnihal Meral, Christian Stinner, Christina Surulescu, On a multiscale model involving cell contractivity and its effects on tumor invasion, 2015, 20, 1553-524X, 189, 10.3934/dcdsb.2015.20.189 | |
6. | Gülnihal Meral, Christina Surulescu, Mathematical modelling, analysis and numerical simulations for the influence of heat shock proteins on tumour invasion, 2013, 408, 0022247X, 597, 10.1016/j.jmaa.2013.06.017 | |
7. | Thomas Lorenz, Viability in a non-local population model structured by size and spatial position, 2020, 491, 0022247X, 124249, 10.1016/j.jmaa.2020.124249 | |
8. | Christian Märkl, Gülnihal Meral, Christina Surulescu, Mathematical Analysis and Numerical Simulations for a System Modeling Acid-Mediated Tumor Cell Invasion, 2013, 2013, 2314-498X, 1, 10.1155/2013/878051 | |
9. | Christina Surulescu, Nicolae Surulescu, 2013, Chapter 9, 978-3-319-03079-1, 269, 10.1007/978-3-319-03080-7_9 | |
10. | Gregor Corbin, Axel Klar, Christina Surulescu, Christian Engwer, Michael Wenske, Juanjo Nieto, Juan Soler, Modeling glioma invasion with anisotropy- and hypoxia-triggered motility enhancement: From subcellular dynamics to macroscopic PDEs with multiple taxis, 2021, 31, 0218-2025, 177, 10.1142/S0218202521500056 | |
11. | Thomas Lorenz, Christina Surulescu, On a class of multiscale cancer cell migration models: Well-posedness in less regular function spaces, 2014, 24, 0218-2025, 2383, 10.1142/S0218202514500249 | |
12. | Pawan Kumar, Jing Li, Christina Surulescu, Multiscale modeling of glioma pseudopalisades: contributions from the tumor microenvironment, 2021, 82, 0303-6812, 10.1007/s00285-021-01599-x | |
13. | Martina Conte, Christina Surulescu, Mathematical modeling of glioma invasion: acid- and vasculature mediated go-or-grow dichotomy and the influence of tissue anisotropy, 2021, 407, 00963003, 126305, 10.1016/j.amc.2021.126305 | |
14. | Lingling Li, Mengyao Shao, Xingshi He, Shanjing Ren, Tianhai Tian, Risk of lung cancer due to external environmental factor and epidemiological data analysis, 2021, 18, 1551-0018, 6079, 10.3934/mbe.2021304 | |
15. | Anna Zhigun, Mabel Lizzy Rajendran, Modelling non-local cell-cell adhesion: a multiscale approach, 2024, 88, 0303-6812, 10.1007/s00285-024-02079-8 |