
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2011.8.575
AND ENGINEERING
Volume 8, Number 2, April 2011 pp. 575–589

ON SOME MODELS FOR CANCER CELL MIGRATION

THROUGH TISSUE NETWORKS

Jan Kelkel

IANS, University of Stuttgart

Pfaffenwaldring 57

70569 Stuttgart, Germany

Christina Surulescu

INAM, University of Münster

Einsteinstrasse 62
48149 Münster, Germany

Abstract. We propose some models allowing to account for relevant processes

at the various scales of cancer cell migration through tissue, ranging from
the receptor dynamics on the cell surface over degradation of tissue fibers by

protease and soluble ligand production towards the behavior of the entire cell

population.
For a genuinely mesoscopic version of these models we also provide a result

on the local existence and uniqueness of a solution for all biologically relevant

space dimensions.

1. Introduction. The migration of tumour cells through the extracellular matrix
(ECM) plays an essential role in cancer progression.

The contact with the surrounding tissue enables the cells to move along tissue
fibers. However, very tight tissue impedes motion and the cells respond by dissolving
fibers of the tissue network. Cell motility is triggered by membrane bound receptors
which provide linkages to the tissue fibers and also bind to the ECM fragments
resulting by proteolytic degradation. The latter act in turn as a chemotactic signal
for the tumor cells.

Existing models for cancer invasion can be divided into three categories:
Microscopic models are concerned with the processes at the intracellular and/or

cell surface level which initiate (tumour) cell migration. These processes are usually
characterized with the aid of a system of ordinary differential equations for the
concentrations of the involved biochemical substances. Examples are [4] with a
focus on proteolysis and [20] for lamellipod protrusion, a crucial step in integrin-
mediated haptotactic motility.

In the mesoscopic framework, cell migration is characterized by way of a trans-
port equation for the cell population density, in which integral operators model
changes of the cell velocity. This approach has been introduced by Othmer, Dunbar
and Alt [21] in order to describe the dispersal of living organisms whose velocities
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either satisfy some stochastic differential equations or are given by a geometrical
description of motion (so-called velocity jump models).

The models have been extended by Hillen [14] to characterize the mesenchy-
mal motion of cancer cells and the subsequent tissue modification. The model by
Chauviere et al. [7] also accounts for chemotaxis and cell-cell interactions.

Macroscopic descriptions can be derived from the above mesoscopic models by
means of averaging processes leading to evolution equations for the moments of the
cell distribution function. For the mesoscopic models of the above type this has
been done at least formally, e.g., in [10] for hyperbolic models for chemosensitive
movement or in [14] in the context of mesenchymal motion of tumor cells. Rigor-
ous results on the hyperbolic, respectively parabolic limit of kinetic equations for
chemotaxis have been deduced e.g., in [5] and [22], respectively.

Apart from the kinetic setting, macroscopic models for cell migration have also
been derived using mass conservation and/or mechanical force balance or the theory
of mixtures. For the latter we refer e.g., to Maini [19] or Barocas and Tranquillo
[2]; see also Tosin and Preziosi [24] and the references therein. Models for cell
population migration only relying on mass balance equations have been proposed
e.g., by Anderson et al. [1] or Chaplain and Lolas [6].

The current aim is to interconnect these three modeling levels in a multiscale
setting. Thereby, more or less detailed subcellular information may be integrated
in a way which could allow for predictions at the level of a tumor. First attempts
toward setting up such multiscale models for E. Coli have been made by Firmani
et al. [11], followed among others by Erban and Othmer in [9]. A similar approach
to multicellular systems modeling the interaction of tumour cells and the immune
system or the growth of biological tissue has been proposed by Bellomo et al., see
e.g., [3] and the references therein.

We also refer to [18] for a review on multiscale models along with a careful linking
between the modeling levels in a related, but different context.

In this note we set up a multiscale model for cancer cell migration by coupling
the dynamics of cell surface receptors with a kinetic equation for the tumor cell
population density, thus integrating into a single model the various processes which
so far have been treated separately in one of the above three frameworks. For the
purely mesoscopic model (i.e. in the absence of cell surface dynamics) we prove the
local existence and uniqueness of a solution under some natural assumptions on the
data. We refer to [16] for the proof of local existence and uniqueness of the solution
to a full multiscale model.

2. Model for mesenchymal and chemosensitive movement.

2.1. Microscopic dynamics of migrating cells. Let Sn−1 denote the unit sphere
in Rn and let θ ∈ Sn−1 denote the fibre orientation. Then we denote the density of
ECM fibres oriented in the direction θ at time t and at location x ∈ Rn by Q(t,x, θ).
The total density of ECM fibres is then given by

Q̄(x, t) :=

∫
Sn−1

Q(t,x, θ)dθ. (1)

Let V denote the set of all possible velocities of moving cells. We assume that V is
radially symmetric and can be written as

V = [s1, s2]× Sn−1 , 0 ≤ s1 ≤ s2 ≤ ∞, (2)
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where [s1, s2] is the range of possible speeds. We consider the population of cells
as a system of N particles having positions xj ∈ Rn and velocities vj ∈ V for
j = 1, ..., N . In the absence of reorientations, the cells move along straight lines
obeying Newton’s law of motion

dtx
j = vj , dtv

j = 0. (3)

For the dynamics on the cell surface, we use a kinetic model for the binding of
ECM-proteins Q̄ and proteolytic product L (resulting from the cutting of fibres by
matrix degrading enzymes) to free integrins denoted by R. The reversible binding
of integrins to ECM-proteins leads to a complex RQ, according to the equation

Q̄+R
k1−⇀↽−
k−1

RQ.

The corresponding equation for the formation and dissociation of complexes RL of
integrin and proteolytic product writes

L+R
k2−⇀↽−
k−2

RL.

We denote the concentrations of integrins of cell j bound to ECM-molecules by yj1
and the concentration of integrins of the same cell bound to the proteolytic product
L by yj2. As in [4], we assume that the total concentration of integrins (bound or

unbound) of each cell is conserved and given by R0 ∈ R+. We then have R0−yj1−y
j
2

for the concentration of unbound integrins of cell j. Clearly, one has yj1, y
j
2 ∈ Y with

Y := {(y1, y2) ∈ (0, R0)2 : y1 + y2 < R0}.
The state equations for the cell surface dynamics now read

∂yj

∂t
= G(yj , Q̄(t,xj), L(t,xj)) (4)

for j = 1, ..., N and with the mapping G : Y × [0,∞)× [0,∞)→ R2 defined by

G(y, q, l) :=

(
k1(R0 − y1 − y2)q − k−1y1
k2(R0 − y1 − y2)l − k−2y2

)
. (5)

3. Mesoscopic model. Let f(t,x,v,y) be the density function of cells in the
(2n + d)-dimensional phase space (n = 1, 2, 3, d ≥ 1) with coordinates (x,v,y),
where x ∈ Rn is the position of a cell, v ∈ V ⊂ Rn its velocity, and y ∈ Y ⊂ Rd+
the vector v characterizing its internal state. The components yi, i = 1, . . . , d
are concentrations of chemical species involved in intracellular signaling pathways
controling the motion of the cell or -as in the previous section- in the receptor
dynamics on the cell surface. Thus f(t,x,v,y)dxdvdy is the number of cells at
time t with position between x and dx, velocity between v and dv, and internal
(respectively receptor binding) state between y and dy.

In the presence of external stimuli and accounting for the influence of the inter-
nal/surface dynamics, the density f of particles stisfies a Boltzmann like integro-
differential PDE:

∂f

∂t
+ v · ∇xf +∇y · (G(y, Q̄, L)f) = H(f,Q) + C(f, L), (6)

where the operator in the right hand side is an integral one and it describes the
velocity innovations due to haptotaxis and chemotaxis [14]. For a more detailed
formal deduction of this equation we refer to [16].
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In order to specify the right hand side in (6) let us observe that changes in the
velocity can occur due to one of the following two kinds of events:

• A cell may encounter a collagen fibre and align to the direction of this fibre.
We model this with a haptotaxis term H(f,Q).

• A cell may adjust its orientation to the gradient of the attracting chemical L,
leading to a chemotaxis term C(f, L).

Note that we make a concrete suggestion for the chemoattractant L, assuming that
it originates from the degradation of tissue fibers and connecting its evolution to
that of cells and tissue via an equation of reaction-diffusion type (equation (17)
below), whereas the chemotactic signal in [7] is merely a generic function of space
and time.

The biological motivation for the inclusion of L as a chemoattractant is detailed
in [23]. There, the authors show that the gradient of proteolytic fragments runs
counter to the direction of invasion (given by the direction of fibres), thereby im-
peding migration. This has important consequences for the use of so called matrix
metalloproteinases (MMP) inhibitors as therapeutic agents since by stopping fibre
cutting (and thereby the production of proteolytic fragments) they may actually
have the effect of enhancing invasion.

Assume the probability of a cell changing its orientation in the time interval
under consideration is proportional to dt and denote the corresponding rates by
ph(t,x,v,y) and pc(t,x,v,y). The haptotaxis operator H can be decomposed into
a gain term H+ and a loss term H− defined as

H+(f,Q) =

∫
V

∫
Sn−1

ph(t,x,v′,y)ψ(v; v′, θ′)f(v′)Q(θ′)dv′dθ′ (7)

H−(f,Q) = f(v)

∫
V

∫
Sn−1

ph(t,x,v,y)ψ(v′; v, θ′)Q(θ′)dv′dθ′, (8)

where ψ(v; v′, θ′) denotes the probability of a cell having the velocity v′ before the
encounter with a fiber of orientation θ′ to continue its motion with the velocity
v after the interaction. Since the cells are conserved during interactions with the
fibers, we have the condition ∫

V

ψ(v; v′, θ′)dv = 1. (9)

The decomposition of the cheotaxis operator C into a gain-term and a loss-term
writes

C+(f, L) =

∫
V

pc(t,x,v
′,y)K[L](v,v′,y)f(v′)dv′ (10)

C−(f, L) =

∫
V

pc(t,x,v,y)K[L](v′,v,y)f(v)dv′. (11)

The turning kernel is given by

K[L](v,v′,y) = α1(y)K(v,v′) + α2(y)K(v,∇L)

with α1, α2 : Y → [0, 1] such that α1 +α2 = 1 on Y and K satisfies the conservation
condition ∫

V

K(v,v′)dv = 1. (12)
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Observe that the turning kernel above does not satisfy the more restrictive supple-
mentary condition ∫

V

K(v,v′)dv′ = 1.

which was requested in [13], [14], [22].
The macroscopic population density at time t and position x is obtained by

integrating over all possible velocities and internal states

f̄(t,x) :=

∫
Y

∫
V

f(t,x,v,y)dvdy. (13)

The mean projection of movement direction on the fibre orientation has been pro-
posed e.g., in [14]:

Π[f ](t,x, θ) =
1

f̄(t,x)

∫
Y

∫
V

|θ · v̂|f(t,x,v,y)dvdy. (14)

In order to account for the dependency of proteolytic cutting upon the fibre density
in the direction of movement we propose instead of (14)

Π[f ](t,x, θ) =
1

f̄(t,x)

∫
Y

∫
V

|θ · v̂|
1 +Q(t,x, v̂)

f(t,x,v,y)dvdy. (15)

Our tissue modification model is given by the following evolution equation for the
fibre density Q(t,x, θ):

∂Q

∂t
= κ(Π[f ](t,x, θ)− 1)f̄(t,x)Q(t,x, θ). (16)

The reaction-diffusion equation for the product L of proteolysis reads

∂L

∂t
= DL4L+

∫
Sn−1

κ(1−Π[f ](t,x, θ))f̄(t,x)Q(t,x, θ)dθ − rLL (17)

where the integral term on the right hand side models the production of L and rL
is the decay rate of L.

4. Existence and uniqueness. We assume in the following that the dimension
of the physical space is n = 2 or n = 3. As in the previous chapter we assume that
V is radially symmetric and can be written as

V = [s1, s2]× Sn−1 , 0 ≤ s1 ≤ s2 ≤ ∞. (18)

The PDE system modeling the dynamics of cell density, fibres and concentration of
chemoattractant (proteolytic rests of fibres) etc. writes

∂f

∂t
+ v · ∇xf = H(f,Q) + C(f, L). (19)

∂Q

∂t
= κ(Π[f ](t,x, θ)− 1)f̄(t,x)Q(t,x, θ). (20)

∂L

∂t
= DL4L+

∫
Sn−1

κ(1−Π[f ](t,x, θ))f̄(t,x)Q(t,x, θ)dθ − rLL, (21)

where Π has been defined in (14). The proof carries over easily to the choice
(15) of Π. The system has to be supplemented by initial conditions f(0, ·) = f0,
Q(0, ·) = Q0 and L(0, ·) = L0.
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4.1. Properties of the turning operators.

Lemma 4.1. Let ph(t) ∈ L∞(Rn × V ) and ψ(v; v′, θ′) be given real nonnegative
functions. We assume that ψ satisfies condition (9) and that there exists a positive
constant Mh ≥ 1 such that∫

V

ψ(v; v′, θ′)dv′ ≤Mh , ∀(v, θ′) ∈ Rn × Sn−1. (22)

Then the operator H = H+−H− defined by (7) and (8) is a bilinear and continuous
mapping from Lp(Rn × V )× L∞(Rn × Sn−1) into Lp(Rn × V ) for (p = 1,∞) and
we have for t ∈ (0, T )

||H(f(t), Q(t))||Lp(Rn×V ) ≤ 2Mh||ph(t)||L∞(Rn×V )||Q̄(t)||L∞(Rn)||f(t)||Lp(Rn×V ).
(23)

Moreover with M̃h := Mh|V |2,

||H(f(t), Q(t))||L1(Rn×V ) ≤ 2M̃h||ph(t)||L∞(Rn×V )||Q̄(t)||L1(Rn)||f(t)||L∞(Rn×V ),
(24)

provided that additionally Q(t) ∈ L1(Rn × Sn−1).

Proof. The bilinearity of H is obvious. From condition (9) follows

||H+(f,Q)||L1(Rn×V )

=

∫
Rn×V

∣∣∣∣∫
V

∫
Sn−1

ph(t,x,v′)ψ(v; v′, θ′)f(v′)Q(θ′)dv′dθ′
∣∣∣∣ dxdv

≤
∫
Rn

∫
V

∫
Sn−1

|ph(t,x,v′)||f(v′)||Q(θ′)|dv′dθ′dx

≤ ||ph(t)||L∞(Rn×V )||Q̄(t)||L∞(Rn)||f(t)||L1(Rn×V )

≤ Mh||ph(t)||L∞(Rn×V )||Q̄(t)||L∞(Rn)||f(t)||L1(Rn×V )

and from (22)

||H+(f(t), Q(t))||L∞(Rn×V )

= sup
(x,v)∈Rn×V

∣∣∣∣∫
V

∫
Sn−1

ph(t,x,v′)ψ(v; v′, θ′)f(v′)Q(θ′)dv′dθ′
∣∣∣∣

≤ Mh||ph(t)||L∞(Rn×V )||Q̄(t)||L∞(Rn)||f(t)||L∞(Rn×V ).

The estimates forH− can be derived along the same lines. The proof of (24) involves
only slight modifications.

Lemma 4.2. Let pc(t) ∈ L∞(Rn × V ), α1, α2 and K(v,v′) (all nonnegative) be
given. We assume that K satisfies condition (12) and that there exist positive
constants Mcl,Mcb > 0 such that for all v,w ∈ Rn

|K(·,v)| ≤ Mcb|χ(v)| on V (25)

|K(·,v)−K(·,w)| ≤ Mcl|χ(v)− χ(w)| on V (26)

with χ : Rn → V defined by χ(ξ) := ξ for ||ξ|| ≤ s2 and χ(ξ) := s2ξ̂ for ||ξ|| > s2.
Then the operator C defined by (10) and (11) is a linear and continuous mapping
from Lp(Rn×V ) into Lp(Rn×V ) for (p = 1,∞) and there exists a constant MC > 0
such that for t ∈ (0, T )

||C(f(t), L(t))||Lp(Rn×V ) ≤ 2MC ||pc(t)||L∞(Rn×V )||f(t)||Lp(Rn×V ). (27)
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Proof. Again, the linearity of C is straightforward. From (25) it follows that∫
V

K[L](v,v′)dv′ ≤MC , ∀v ∈ V

with MC := max{1,Mcbs2|V |}. Now the proof of (27) for p = 1,∞ is essentially
the same as the one of Lemma 4.1.

4.2. Linear theorem. We linearize the equation for cell movement by decoupling
equation (19) from (20) and (21). For given functions Q∗ : [0, T ]×Rn×Sn−1 → R+

and L∗ : [0, T ]× Rn → R+ we consider

∂f

∂t
+ v · ∇xf = H(f,Q∗) + C(f, L∗) + g(t,x,v), (28)

where we have included an additional source term g(t,x,v) so that the difference of
solutions to (28) with g 6= 0 resp. with g ≡ 0 for different choices of Q∗ and L∗ still
satisfies (28) with g chosen appropriately. This will later (beginning with equation
(56) in the next section) allow us to use the estimates obtained in this chapter for
the difference of such solutions.

Definition 4.3. A weak solution of equation (28) is a function f satisfying

−
∫ T

0

∫
Rn×V

f
∂φ

∂t
dxdvdt−

∫
Rn×V

f0φ(0, ·)dxdv −
∫ T

0

∫
Rn×V

fv · ∇xφdxdvdt

−
∫ T

0

∫
Rn×V

[H(f,Q∗) + C(f, L∗) + g(t,x,v)]φdxdvdt = 0

for all test functions φ ∈ C∞0 ([0, T ]× Rn × V ).

Concerning the existence and uniqueness of a solution to (28) we have the fol-
lowing

Theorem 4.4. Let f0 ∈ L∞(Rn×V )∩L1(Rn×V ) and g ∈ L1(0, T ;L∞(Rn×V )∩
L1(Rn × V )). Suppose further that:

• Q∗ and L∗ satisfy

||Q̄∗||L∞(0,T ;L∞(Rn)) ≤ KQ , ||L∗||L∞(0,T ;L∞(Rn)) ≤ KL

and

Q∗(t,x, θ) ≥ 0 a.e. on (0, T )× Rn × Sn−1 (29)

L∗(t,x) ≥ 0 a.e. on (0, T )× Rn; (30)

• f0 satisfies

f0 ≥ 0 a.e. on Rn × V ; (31)

• pc and ph satisfy

||ph||L∞(0,T ;L∞(Rn×V )) ≤ Kh, ||pc||L∞(0,T ;L∞(Rn×V )) ≤ Kc.

Then there exists a unique weak solution f of (28) in L1(Rn × V ) ∩ L∞(Rn × V )
corresponding to the initial condition f0. Additionally, we have the estimates

||f(t)||L1(Rn×V ) ≤

(
||f0||L1(Rn×V ) +

∫ T

0

||g(τ)||L1(Rn×V )dτ

)
(1 + CteCt) (32)

||f(t)||L∞(Rn×V ) ≤

(
||f0||L∞(Rn×V ) +

∫ T

0

||g||L∞(Rn×V ))dt

)
(1 + CteCt), (33)
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where C = C(KQ,KL) denotes generical constants depending on KQ, KL and the
parameters of the problem.

Proof. We are now going to show that there exists a unique solution
f ∈ C(0, T ;C1(Rn × V )) of

∂f

∂t
+ v · ∇xf = H(f,Q∗) + C(f, L∗) + g(t,x,v) (34)

in (0, T )×Rn × V satisfying f |t=0 = f0 in Rn × V . Our approach is similar to the
one employed in Chapter XI of [12].

The characteristics of equation (34) are given as

dX

ds
= V,

dV

ds
= 0 (35)

Along backward characteristics starting at (x,v, t), we have for 0 ≤ s ≤ t,

X(s; x,v, t) = x− v(t− s). (36)

Integrating the second equation of (35) for initial points in the support of the initial
data f0 we have that |V(s)| = |V(0)| ≤ s2 for all s ∈ [0, T ]. We transform equation
(34) by multiplication with e−λt (λ > 0) into the equivalent problem

∂fλ
∂t

+ v · ∇xfλ + λfλ −H(fλ, Q∗)− C(fλ, L∗) = gλ(t,x,v) (37)

with fλ = e−λtf and gλ = e−λtg.
The unique solution to equation (37) with H, C ≡ 0 is given by

fλ(t,x,v) = e−λtf0(X(0),v) +

∫ t

0

e−λ(t−τ)gλ(τ,X(τ),v)dτ. (38)

We denote by Sλ(gλ, f0) the solution of (37) with H, C ≡ 0, right hand side gλ and
initial condition f0.

Using ∇xX = In, we have

||Sλ(gλ, 0)||L1(0,T ;L1(Rn×V )) =

∫ T

0

∫ t

0

∫
Rn×V

|e−λ(t−τ)gλ(τ,X(τ),v)|dxdvdτdt

=

∫ T

0

∫ t

0

∫
Rn×V

|e−λ(t−τ)gλ(τ,X(τ),v)|(det∇xX)−1dXdvdτdt

=

∫ T

0

e−λt
∫ t

0

∫
Rn×V

|eλτgλ(τ,X(τ),v)|dXdvdτdt

≤ 1

λ

∫ T

0

∫
Rn×V

|gλ(t,X(t),v, )|dXdvdt =
1

λ
||gλ||L1(0,T ;L1(Rn×V )),

where in the last step we used integration by parts w.r.t. t.
We move on to the case with general H and C. We choose λ > ||H(·, Q̄∗) +

C(·, L∗)|| (the operator norm from L1(Rn × V ) into itself). We look for a solution
to (37) having the form fλ = Sλ(g̃λ, f0) with g̃λ ∈ L1(0, T ;L1(Rn × V )) to be
determined. Then fλ solves (37) if and only if

g̃λ −H(Sλ(g̃λ, f0), Q̄∗)− C(Sλ(g̃λ, f0), L∗) = gλ. (39)
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Since we can write fλ as the sum of the solution to (37) with zero initial data and
right hand side g̃λ and the solution to (37) with initial data f0 and zero right hand
side, (39) becomes

(I + Zλ)g̃λ = gλ +H(Sλ(0, f0), Q̄∗) + C(Sλ(0, f0), L∗) (40)

with

Zλg̃λ = −H(Sλ(g̃λ, 0), Q̄∗)− C(Sλ(g̃λ, 0), L∗). (41)

From the estimate on the norm of the solution operator Sλ, we have that ||Zλ|| ≤
λ−1||H(·, Q̄∗) + C(·, L∗)|| < 1 (the operator norms are again from L1(Rn × V ) into
itself). Thus (39) has the unique solution

g̃λ =

∞∑
m=0

(−Zλ)m[gλ +H(Sλ(0, f0), Q̄∗) + C(Sλ(0, f0), L∗)].

From fλ we get the unique solution f to (34) by multiplication with eλt. That f
has the stated regularity follows from the explicit construction of the solution and
the regularity of the data.

Integrating (34) along the backward characteristic (36) from 0 to t, we get

f(x,v, t) = f0(X(0),v) +

∫ t

0

H(X(τ), f(X(τ),v, τ), Q∗(X(τ), θ, τ))dτ (42)

+

∫ t

0

C(X(τ), f(X(τ),v, τ), L∗(X(τ), τ)) + g(τ,X(τ),v)dτ.

With the estimates for H (Lemma 4.1) and C (Lemma 4.2), we arrive at

||f(t)||L∞(Rn×V ) ≤ ||f0||L∞(Rn×V )

+ 2Mh||ph||L∞(0,T ;L∞(Rn×V ))||Q̄∗(t)||L∞(Rn)

∫ t

0

||f(τ)||L∞(Rn×V )dτ

+ 2Mc||pc||L∞(0,T ;L∞(Rn×V ))

∫ t

0

||f(τ)||L∞(Rn×V )dτ +

∫ t

0

||g(τ)||L∞(Rn×V )dτ

a.e. on (0, T ). Application of Gronwall’s inequality yields

||f(t)||L∞(Rn×V ) ≤

(
||f0||L∞(Rn×V ) +

∫ T

0

||g(t)||L∞(Rn×V ))dt

)
(1 + CteCt) (43)

with

C = 2MhKhKQ + 2McKc.

Using ∇xX = In, we have∫
Rn×V

|f(X(τ),v, τ)|dxdv ≤
∫
Rn×V

|f(X(τ),v, τ)|dXdv.
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Obviously, the same result also holds for g. Integrating (42) w.r.t. x,v yields

||f(t)||L1(Rn×V ) ≤ ||f0||L1(Rn×V )

+ 2Mh||ph||L∞(0,T ;L∞(Rn×V ))||Q̄∗||L∞(0,T ;L∞(Rn))

∫ t

0

||f(τ)||L1(Rn×V )dτ

+ 2Mc||pc||L∞(0,T ;L∞(Rn×V ))

∫ t

0

||f(τ)||L1(Rn×V )dτ

+

∫ t

0

||g(τ)||L1(Rn×V )dτ.

Applying the Gronwall inequality, we obtain

||f(t)||L1(Rn×V ) ≤

(
||f0||L1(Rn×V ) +

∫ T

0

||g(τ)||L1(Rn×V )dτ

)
(1 + CteCt), (44)

with

C = 2MhKhKQ + 2McKc. (45)

It is easy to see that f is a weak solution of (28).

We next turn our attention to the equation for tissue modification and linearize
it by decoupling equation (20) from the rest of the system (19)-(21). For a given
function f∗ : [0, T ]× Rn × V → R we consider

∂Q

∂t
= κ(Π[f∗](t,x, θ)− 1)f̄∗(t,x)Q(t,x, θ) + h(t,x, θ). (46)

The additional source term h in (46) has been included for the same reason as g in
equation (28) above.

Theorem 4.5. Let Q0 ∈ L1(Rn × Sn−1) ∩ L∞(Rn × Sn−1) be a positive function
and h ∈ L1(Rn × Sn−1) ∩ L∞(Rn × Sn−1). Then there exists a unique solution
Q(t) ∈ L1(Rn × Sn−1) ∩ L∞(Rn × Sn−1) to equation (46) with initial condition
Q(0) = Q0 and we have the estimates (p = 1,∞)

||Q(t)||Lp(Rn×Sn−1) ≤ ||Q0||L1(Rn×Sn−1) +

∫ T

0

||h(τ)||Lp(Rn×Sn−1)dτ (47)

Moreover, if h ≡ 0, then Q(t) ≥ 0 a.e.

Proof. The estimate (47) can be obtained for p = 1 by integrating (46) w.r.t. time
and then w.r.t. x, θ, respectively for p = ∞ upon taking the supremum w.r.t. x
and θ.

We finally linearize the equation for the soluble ligand by decoupling equation
(21) from the rest of the system (19)-(21). For given functions
f∗ : [0, T ]× Rn × V → R and Q∗ : [0, T ]× Rn × Sn−1 → R we consider

∂L

∂t
= DL4L+

∫
Sn−1

κ(1−Π[f∗](t,x, θ))f̄∗(t,x)Q∗(t,x, θ)dθ − rLL. (48)

For simplicity, we only consider the case L(0, ·) = L0 = 0. The generalization to
the case L0 6= 0 is straightforward. A direct application of a standard result for the
heat equation proves the following
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Theorem 4.6. Let f∗ ∈ L∞(0, T ;L∞(Rn×V )) and Q∗ ∈ L∞(0, T ;L∞(Rn×Sn−1))
be nonnegative functions. Then there is a unique nonnegative solution L to equation
(48) with initial condition L(0, ·) = 0. Moreover, we have the estimate

||L(t)||L∞(Rn×Sn−1) ≤
κ

DLrL
|V ||Sn−1|||f∗(t)||L∞(Rn×V )||Q∗(t)||L∞(Rn×Sn−1). (49)

4.3. The non-linear problem. We are now going to show the existence-uniqueness
result for our primal (nonlinear) system (19)-(21).

Theorem 4.7. Suppose that f0 and Q0 satisfy the conditions in Theorems 4.4
and 4.5. Then the system of partial differential equations (19)-(21) with initial
conditions f(0, ·) = f0, Q(0, ·) = Q0 and L(0, ·) = L0 ≡ 0 has locally in time a
unique solution (f,Q,L) with

f ∈ L∞(0, T ;L1(Rn × V ) ∩ L∞(Rn × V ))

Q ∈ L∞(0, T ;L∞(Rn × Sn−1) ∩ L1(Rn × Sn−1))

L ∈ L∞(0, T ;W 1,1(Rn)).

Here the solution f to (19) is to be understood in the weak sense (see Definition
4.3).

Proof. We construct a sequence of functions (fm, Qm, Lm)m∈N and show that it
converges to the solution of the nonlinear system (19)-(21).

Let (f1, Q1, L1) be the solution of

∂f1
∂t

+ v · ∇xf1 = H(f1, Q0) + C(f1, L0) (50)

∂Q1

∂t
= κ(Π[f0](t,x, θ)− 1)f̄0(x)Q1(t,x, θ) (51)

∂L1

∂t
= DL4L1 +

∫
Sn−1

κ(1−Π[f0](t,x, θ))f̄0(x)Q0(x, θ)dθ − rLL1 (52)

with initial conditions f1(0, ·) = f0(·), Q1(0, ·) = Q0(·) and L1(0, ·) = L0(·) = 0.
The existence and uniqueness of f1 follows from Theorem 4.4. The existence and
uniqueness of Q1 and L1 is a consequence of Theorems 4.5 and 4.6.
Moreover, we have that f1(t) ∈ L∞(Rn × V ), Q1(t) ∈ L∞(Rn × Sn−1) and L1(t) ∈
L∞(Rn) are a.e. nonnegative functions with

||Q1(t)||L∞(Rn×Sn−1) ≤ ||Q0||L∞(Rn×Sn−1)

||L1(t)||L∞(Rn×Sn−1) ≤ κ

DLrL
|V | · |Sn−1|||f0||L∞(Rn×V ) · ||Q0||L∞(Rn×Sn−1)

||f1(t)||L∞(Rn×V ) ≤ (1 + e)||f0||L∞(Rn×V ),

provided that (WLOG assume ||Q0||L∞(Rn×Sn−1) > 0.)

T ≤ 1

C(||Q0||L∞(Rn×Sn−1), 0)
,

where C is the constant from estimate (33). In fact, to get uniform bounds on the
iterates, we will assume in the following that

T ≤ 1

C(2||Q0||L∞(Rn×Sn−1), 2(1 + e)|V ||Sn−1|||Q0||L∞(Rn×Sn−1)||f0||L∞(Rn×V ))
.
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Suppose we constructed the sequence (fm, Qm, Lm) up to a certain m ∈ N with
fm(t) ∈ L∞(Rn×V ), Qm ∈ L∞(Rn×Sn−1) and Lm(t) ∈ L∞(Rn) a.e. nonnegative
functions satisfying

||fm(t)||L∞(Rn×V×Y ) ≤ (1 + e)||f0||L∞(Rn×V ),

||Qm(t)||L∞(Rn×Sn−1) ≤ ||Q0||L∞(Rn×Sn−1),

||Lm(t)||L∞(Rn×Sn−1)

≤ κ

DLrL
(1 + e)|V ||Sn−1|||f0||L∞(Rn×V )||Q0||L∞(Rn×Sn−1).

Then, for this m ∈ N, there is a solution (fm+1, Qm+1, Lm+1) to

∂fm+1

∂t
+ v · ∇xfm+1 = H(fm+1, Qm) + C(fm+1, Lm),

∂Qm+1

∂t
= κ(Π[fm](t,x, θ)− 1)f̄m(t,x)Qm+1(t,x, θ),

∂Lm+1

∂t
= DL4Lm+1 +

∫
Sn−1

κ(1−Π[fm](t,x, θ))f̄m(t,x)Qm(t,x, θ)dθ − rLLm+1,

with initial conditions fm+1(0, ·) = f0(·), Qm+1(0, ·) = Q0(·) and Lm+1(0, ·) =
L0(·) = 0. The existence and uniqueness of fm+1 follows from Theorem 4.4. The
existence and uniqueness of Qm+1 and Lm+1 is a result of Theorems 4.5, 4.6.
Moreover, the functions fm+1(t) ∈ L∞(Rn × V ), Qm+1(t) ∈ L∞(Rn × Sn−1) and
Lm+1(t) ∈ L∞(Rn) are nonnegative a.e. and satisfy

||fm+1(t)||L∞(Rn×V×Y ) ≤ (1 + e)||f0||L∞(Rn×V ),

||Qm+1(t)||L∞(Rn×Sn−1) ≤ ||Q0||L∞(Rn×Sn−1),

||Lm+1(t)||L∞(Rn×Sn−1)

≤ κ

DLrL
(1 + e)|V ||Sn−1|||f0||L∞(Rn×V )||Q0||L∞(Rn×Sn−1)

which yields the existence of the next iterates (fm+2, Qm+2, Lm+2) and so on.
Now Qm+1 −Qm satisfies the equation

∂

∂t
(Qm+1 −Qm) = κ(Π[fm](t,x, θ)− 1)f̄m(t,x)(Qm+1 −Qm)(t,x, θ) + h(t,x, θ)

with h defined by

h := κ

[∫
V

|θ · v̂|(fm − fm−1)dv + f̄m−1 − f̄m
]
Qm.

Then from (47) we have the estimate

||Qm+1 −Qm||L∞(0,T ;L1(Rn×Sn−1))

≤ 2Tκ|Sn−1|||Q0||L∞(Rn×Sn−1)||(fm − fm−1)||L∞(0,T ;L1(Rn×V )).
(53)

Similarly, Lm+1 − Lm satisfies

∂

∂t
(Lm+1 − Lm)−DL4(Lm+1 − Lm) = ρ− rL(Lm+1 − Lm)

with ρ defined by

ρ :=

∫
Sn−1

κ(1−Π[fm])f̄mQmdθ −
∫
Sn−1

κ(1−Π[fm−1])f̄m−1Qm−1dθ.
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For ρ we then have the estimate

||ρ||L∞(0,T ;L1(Rn))

≤ 2κ|Sn−1|2||(fm − fm−1)||L∞(0,T ;L1(Rn×V ))||Q0||L∞(Rn×Sn−1)

+ 2κ|V |||fm−1||L∞(0,T ;L∞(Rn×V ))||Qm −Qm−1||L∞(0,T ;L1(Rn×Sn−1)),

so that we can deduce using a standard result for the heat equation

||Lm+1 − Lm||L∞(0,T ;L1(Rn))

≤ 2C(rL, DL)κ|Sn−1|2||(fm − fm−1)||L∞(0,T ;L1(Rn×V ))||Q0||L∞(Rn×Sn−1)

+ 2κC(rL, DL)|V |||fm−1||L∞(0,T ;L∞(Rn×V ))||Qm −Qm−1||L∞(0,T ;L1(Rn×Sn−1))

(54)

and

||∇Lm+1 −∇Lm||L∞(0,T ;L1(Rn))

≤ 4C(rL, DL)κ|Sn−1|2||(fm − fm−1)||L∞(0,T ;L1(Rn×V ))||Q0||L∞(Rn×Sn−1)

+ 4κC(rL, DL)|V |||fm−1||L∞(0,T ;L∞(Rn×V ))||Qm −Qm−1||L∞(0,T ;L1(Rn×Sn−1)).

(55)

Now fm+1 − fm satisfies the equation

∂

∂t
(fm+1−fm)+v·∇x(fm+1−fm) = H(fm+1−fm, Qm)+C(fm+1−fm, Lm)+g (56)

with g defined by

g(x,v, t) := H(fm, Qm −Qm−1) + C(fm, Lm)− C(fm, Lm−1).

Since g satisfies (due to (33) and (24))∫ T

0

||g(τ)||L1(Rn×V )

≤
∫ T

0

||H(fm, δQm)(τ)||L1(Rn×V ) + ||C(fm, Lm)− C(fm, Lm−1)||L1(Rn×V )dτ

≤
∫ T

0

2Mh||ph(τ)||L∞(Rn×V )|V |2||δQm(τ)||L1(Rn×Sn−1)||fm(τ)||L∞(Rn×V )dτ

+

∫ T

0

2Mcl||pc(τ)||L∞(Rn×V )|V |2||∇Lm −∇Lm−1||L1(Rn)||fm(τ)||L∞(Rn×V )dτ

(where δQm := Qm −Qm−1 ) and further∫ T

0

||g||L1(Rn×V )dτ

≤ T (2MhKh|V |2||fm||)||δQm||L∞(0,T ;L1(Rn×Sn−1))

+ T (2MclKc|V |2||fm||)||∇Lm −∇Lm−1||L∞(0,T ;L1(Rn)).

From the estimate on g, using (32), we can derive the following estimate:

||fm+1 − fm||L∞(0,T ;L1(Rn×V ))

≤ T (1 + e)(2MhKh|V |2||fm||L∞(0,T ;L∞(Rn×V )))||Qm −Qm−1||L∞(0,T ;L1(Rn×Sn−1))

+ T (1 + e)(2MclKc|V |2||fm||)L∞(0,T ;L∞(Rn×V ))||∇Lm −∇Lm−1||L∞(0,T ;L1(Rn))

(57)



588 JAN KELKEL AND CHRISTINA SURULESCU

Let X denote the space

L∞(0, T ;L1(Rn × V ))× L∞(0, T ;L1(Rn × Sn−1))× L∞(0, T ;W 1,1(Rn))

equipped with the norm given by the sum of the norms of the components. With
the abbreviations δfm := fm−fm−1, δLm := Lm−Lm−1 and δQm := Qm−Qm−1,
combining (53), (54), (55) and (57) we have the following estimate (for T sufficiently
small) in X :

||(δfm+1, δQm+1, δLm+1)||X ≤ λ(||(δfm, δQm, δLm)||X (58)

with a λ < 1, i.e. (fm, Qm, Lm) is a Cauchy sequence in X and therefore converges
to a limit (f,Q,L) in this space. Next, Q−Qm satisfies the equation

∂

∂t
(Q−Qm) = κ(Π[f ](t,x, θ)− 1)f̄(t,x)(Q−Qm)(t,x, θ) + h(t,x, θ)

with h defined by

h := κ

[∫
V

|θ · v̂|(f − fm−1)dv + f̄m−1 − f̄
]
Qm.

Using (47), we have

||(Q−Qm)(t)||L∞(Rn×Sn−1)

≤ 2κ|V |
∫ T

0

||(fm−1 − f)(τ)||L∞(Rn×V )||Qm(τ)||L∞(Rn×Sn−1)dτ

and taking the supremum

||Q−Qm||L∞(0,T ;L∞(Rn×Sn−1))

≤ 2κ|V |T ||fm−1 − f ||L∞(0,T ;L∞(Rn×V ))||Q0||L∞(Rn×Sn−1).

Since fm → f in L∞(0, T ;L1(Rn × V )), there exists a subsequence (which we
again denote by (fm)) that converges to f in L∞(0, T ;L∞(Rn × V )). Therefore we
have that a subsequence of (Qm) converges to a limit functionQ in L∞(0, T ;L∞(Rn×
Sn−1)). It is easy to see that (f,Q,L) is a solution to (19)-(21). The uniqueness
follows from the fact that any solution to (19)-(21) is a fixed point of the mapping
(f∗, Q∗, L∗) 7→ (f,Q,L).

5. Conclusions. In this paper we proposed a multiscale modeling framework for
cancer cell dispersal through a tissue network. Our models allow to explicitly in-
clude more realistic features like the influence of a chemoattractant and of the cell
surface dynamics on cell motility, along with new features for the interaction be-
tween cells and tissue fibres. Thereby, we used quite general probability kernels
for describing the velocity change. In particular, they do not satisfy an essential
assumption allowing to apply the usual techniques of passing to macroscopic limits,
as it was required e.g., in [13], [22], in a slightly different context. For the genuinely
mesoscopic model (in the absence of surface dynamics) we relied on an iterative
method to prove the local existence of a unique solution. A similar technique has
been employed in [17] to prove existence and uniqueness of a solution to a stochastic
PDE system modeling pattern formation.

We refer to [16] for the proof of local existence and uniqueness of the solution to
a full multiscale model of the type presented in Section 2.
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