Typesetting math: 100%

Global stability for a class of discrete SIR epidemic models

  • Received: 01 July 2009 Accepted: 29 June 2018 Published: 01 April 2010
  • MSC : Primary: 34K20, 34K25; Secondary: 92D30.

  • In this paper, we propose a class of discrete SIR epidemic models which are derived from SIR epidemic models with distributed delays by using a variation of the backward Euler method. Applying a Lyapunov functional technique, it is shown that the global dynamics of each discrete SIR epidemic model are fully determined by a single threshold parameter and the effect of discrete time delays are harmless for the global stability of the endemic equilibrium of the model.

    Citation: Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models[J]. Mathematical Biosciences and Engineering, 2010, 7(2): 347-361. doi: 10.3934/mbe.2010.7.347

    Related Papers:

    [1] Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
    [2] Xia Wang, Shengqiang Liu . Global properties of a delayed SIR epidemic model with multiple parallel infectious stages. Mathematical Biosciences and Engineering, 2012, 9(3): 685-695. doi: 10.3934/mbe.2012.9.685
    [3] C. Connell McCluskey . Global stability of an SIR epidemic model with delay and general nonlinear incidence. Mathematical Biosciences and Engineering, 2010, 7(4): 837-850. doi: 10.3934/mbe.2010.7.837
    [4] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
    [5] Masaki Sekiguchi, Emiko Ishiwata, Yukihiko Nakata . Dynamics of an ultra-discrete SIR epidemic model with time delay. Mathematical Biosciences and Engineering, 2018, 15(3): 653-666. doi: 10.3934/mbe.2018029
    [6] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [7] Andrei Korobeinikov, Philip K. Maini . A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences and Engineering, 2004, 1(1): 57-60. doi: 10.3934/mbe.2004.1.57
    [8] Ke Guo, Wanbiao Ma . Global dynamics of an SI epidemic model with nonlinear incidence rate, feedback controls and time delays. Mathematical Biosciences and Engineering, 2021, 18(1): 643-672. doi: 10.3934/mbe.2021035
    [9] Haijun Hu, Xupu Yuan, Lihong Huang, Chuangxia Huang . Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Mathematical Biosciences and Engineering, 2019, 16(5): 5729-5749. doi: 10.3934/mbe.2019286
    [10] Yoichi Enatsu, Yukihiko Nakata . Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785
  • In this paper, we propose a class of discrete SIR epidemic models which are derived from SIR epidemic models with distributed delays by using a variation of the backward Euler method. Applying a Lyapunov functional technique, it is shown that the global dynamics of each discrete SIR epidemic model are fully determined by a single threshold parameter and the effect of discrete time delays are harmless for the global stability of the endemic equilibrium of the model.


  • This article has been cited by:

    1. Qiaoling Chen, Zhidong Teng, Lei Wang, Haijun Jiang, The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence, 2013, 71, 0924-090X, 55, 10.1007/s11071-012-0641-6
    2. Kei Fushimi, Yoichi Enatsu, Emiko Ishiwata, Global stability of an SIS epidemic model with delays, 2018, 41, 01704214, 5345, 10.1002/mma.5084
    3. Lei Wang, Zhidong Teng, Long Zhang, Global Behaviors of a Class of Discrete SIRS Epidemic Models with Nonlinear Incidence Rate, 2014, 2014, 1085-3375, 1, 10.1155/2014/249623
    4. A. Q. Khan, A. Sharif, Global Dynamics of Some 3 × 6 Systems of Exponential Difference Equations, 2018, 2018, 1026-0226, 1, 10.1155/2018/8362837
    5. Li Yingke, Chen Liang, Wang Kai, Permanence for a Delayed Nonautonomous SIR Epidemic Model with Density-Dependent Birth Rate, 2011, 2011, 1026-0226, 1, 10.1155/2011/350892
    6. Ying Wang, Zhidong Teng, Mehbuba Rehim, Lyapunov Functions for a Class of Discrete SIRS Epidemic Models with Nonlinear Incidence Rate and Varying Population Sizes, 2014, 2014, 1026-0226, 1, 10.1155/2014/472746
    7. Kaori Saito, 2017, Chapter 15, 978-981-10-6408-1, 231, 10.1007/978-981-10-6409-8_15
    8. Yu Yang, Jinling Zhou, Global stability of a discrete virus dynamics model with diffusion and general infection function, 2019, 96, 0020-7160, 1752, 10.1080/00207160.2018.1527028
    9. Zhidong Teng, Lei Wang, Linfei Nie, Global attractivity for a class of delayed discrete SIRS epidemic models with general nonlinear incidence, 2015, 38, 01704214, 4741, 10.1002/mma.3389
    10. Ming Liu, Wei Yu, 2017, A new perspective for scheduling the medical resource order and distribution, 978-988-15639-3-4, 2756, 10.23919/ChiCC.2017.8027782
    11. Aboudramane Guiro, Dramane Ouedraogo, Harouna Ouedraogo, Stability Analysis for a Discrete SIR Epidemic Model with Delay and General Nonlinear Incidence Function, 2018, 09, 2152-7385, 1039, 10.4236/am.2018.99070
    12. Omar Zakary, Mostafa Rachik, Ilias Elmouki, On the analysis of a multi-regions discrete SIR epidemic model: an optimal control approach, 2017, 5, 2195-268X, 917, 10.1007/s40435-016-0233-2
    13. Deqiong Ding, Xiaohua Ding, Dynamic consistent non-standard numerical scheme for a dengue disease transmission model, 2014, 20, 1023-6198, 492, 10.1080/10236198.2013.858715
    14. A. Q. Khan, M. S. M. Noorani, H. S. Alayachi, Global Dynamics of Higher-Order Exponential Systems of Difference Equations, 2019, 2019, 1026-0226, 1, 10.1155/2019/3825927
    15. A. Q. Khan, Global dynamics of a 3 × 6 exponential system of difference equations , 2019, 42, 0170-4214, 7243, 10.1002/mma.5833
    16. Deqiong Ding, Wendi Qin, Xiaohua Ding, Lyapunov functions and global stability for a discretized multigroup SIR epidemic model, 2015, 20, 1553-524X, 1971, 10.3934/dcdsb.2015.20.1971
    17. S. Alonso-Quesada, M. De la Sen, A. Ibeas, On the discretization and control of an SEIR epidemic model with a periodic impulsive vaccination, 2017, 42, 10075704, 247, 10.1016/j.cnsns.2016.05.027
    18. Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Giuseppe Izzo, Antonia Vecchio, Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates, 2012, 18, 1023-6198, 1163, 10.1080/10236198.2011.555405
    19. Yu Yang, Xinsheng Ma, Yahui Li, Global stability of a discrete virus dynamics model with Holling type-II infection function, 2016, 39, 01704214, 2078, 10.1002/mma.3624
    20. Yoshiaki Muroya, Yoichi Enatsu, A discrete-time analogue preserving the global stability of a continuous SEIS epidemic model, 2013, 19, 1023-6198, 1463, 10.1080/10236198.2012.757602
    21. Jinling Zhou, Yu Yang, Tonghua Zhang, Global stability of a discrete multigroup SIR model with nonlinear incidence rate, 2017, 40, 01704214, 5370, 10.1002/mma.4391
    22. Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Global stability for a discrete SIS epidemic model with immigration of infectives, 2012, 18, 1023-6198, 1913, 10.1080/10236198.2011.602973
    23. Yueli Luo, Shujing Gao, Dehui Xie, Yanfei Dai, A discrete plant disease model with roguing and replanting, 2015, 2015, 1687-1847, 10.1186/s13662-014-0332-3
    24. Deqiong Ding, Qiang Ma, Xiaohua Ding, A non-standard finite difference scheme for an epidemic model with vaccination, 2013, 19, 1023-6198, 179, 10.1080/10236198.2011.614606
    25. Brahim EL Boukari, Khalid Hattaf, Noura Yousfi, A Discrete Model for HIV Infection with Distributed Delay, 2014, 2014, 1687-9643, 1, 10.1155/2014/138094
    26. Aboudramane Guiro, Diène Ngom, Dramane Ouedraogo, Stability analysis for a class of discrete schistosomiasis models with general incidence, 2017, 2017, 1687-1847, 10.1186/s13662-017-1174-6
    27. Yoshiaki Muroya, Alfredo Bellen, Yoichi Enatsu, Yukihiko Nakata, Global stability for a discrete epidemic model for disease with immunity and latency spreading in a heterogeneous host population, 2012, 13, 14681218, 258, 10.1016/j.nonrwa.2011.07.031
    28. Hui Cao, Huan Wu, Xiaoqin Wang, Bifurcation analysis of a discrete SIR epidemic model with constant recovery, 2020, 2020, 1687-1847, 10.1186/s13662-020-2510-9
    29. Yoshiaki Muroya, Yukihiko Nakata, Giuseppe Izzo, Antonia Vecchio, Permanence and global stability of a class of discrete epidemic models, 2011, 12, 14681218, 2105, 10.1016/j.nonrwa.2010.12.025
    30. Abdul Qadeer Khan, Global dynamics of two systems of exponential difference equations by Lyapunov function, 2014, 2014, 1687-1847, 10.1186/1687-1847-2014-297
    31. Xiaolin Fan, Lei Wang, Zhidong Teng, Global dynamics for a class of discrete SEIRS epidemic models with general nonlinear incidence, 2016, 2016, 1687-1847, 10.1186/s13662-016-0846-y
    32. YOICHI ENATSU, YOSHIAKI MUROYA, A SIMPLE DISCRETE-TIME ANALOGUE PRESERVING THE GLOBAL STABILITY OF A CONTINUOUS SIRS EPIDEMIC MODEL, 2013, 06, 1793-5245, 1350001, 10.1142/S1793524513500010
    33. Yuhua Long, Lin Wang, Global dynamics of a delayed two-patch discrete SIR disease model, 2020, 83, 10075704, 105117, 10.1016/j.cnsns.2019.105117
    34. Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model, 2012, 13, 14681218, 2120, 10.1016/j.nonrwa.2012.01.007
    35. Alberto d’Onofrio, Piero Manfredi, Ernesto Salinelli, Dynamic behaviour of a discrete-time SIR model with information dependent vaccine uptake, 2016, 22, 1023-6198, 485, 10.1080/10236198.2015.1107549
    36. Wendi Qin, Lisha Wang, Xiaohua Ding, A non-standard finite difference method for a hepatitis B virus infection model with spatial diffusion, 2014, 20, 1023-6198, 1641, 10.1080/10236198.2014.968565
    37. Q. Din, K. A. Khan, A. Nosheen, Stability Analysis of a System of Exponential Difference Equations, 2014, 2014, 1026-0226, 1, 10.1155/2014/375890
    38. Lijun Zhang, Shujing Gao, Qin Zou, A Non-Standard Finite Difference Scheme of a Multiple Infected Compartments Model for Waterborne Disease, 2020, 28, 0971-3514, 59, 10.1007/s12591-016-0296-8
    39. Qamar Din, Qualitative behavior of a discrete SIR epidemic model, 2016, 09, 1793-5245, 1650092, 10.1142/S1793524516500923
    40. Abraham J. Arenas, Gilberto González-Parra, Jhon J. Naranjo, Myladis Cogollo, Nicolás De La Espriella, Mathematical Analysis and Numerical Solution of a Model of HIV with a Discrete Time Delay, 2021, 9, 2227-7390, 257, 10.3390/math9030257
    41. A. Gómez-Corral, M. López-García, M. T. Rodríguez-Bernal, On time-discretized versions of the stochastic SIS epidemic model: a comparative analysis, 2021, 82, 0303-6812, 10.1007/s00285-021-01598-y
    42. Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen, The threshold dynamics of a discrete-time echinococcosis transmission model, 2020, 0, 1553-524X, 0, 10.3934/dcdsb.2020339
    43. Lei Wang, Qianqian Cui, Zhidong Teng, Global dynamics in a class of discrete-time epidemic models with disease courses, 2013, 2013, 1687-1847, 10.1186/1687-1847-2013-57
    44. On Numerical Methods for Second-Order Nonlinear Ordinary Differential Equations (ODEs): A Reduction To A System Of First-Order ODEs, 2019, 1, 2637-1138, 1, 10.46754/umtjur.v1i4.86
    45. Shifan Luo, Dongshu Wang, Wenxiu Li, Dynamic analysis of a SIV Filippov system with media coverage and protective measures, 2022, 7, 2473-6988, 13469, 10.3934/math.2022745
    46. Eduardo V. M. dos Reis, Marcelo A. Savi, A dynamical map to describe COVID-19 epidemics, 2022, 231, 1951-6355, 893, 10.1140/epjs/s11734-021-00340-5
    47. Sebastian J. Schreiber, Shuo Huang, Jifa Jiang, Hao Wang, Extinction and Quasi-Stationarity for Discrete-Time, Endemic SIS and SIR Models, 2021, 81, 0036-1399, 2195, 10.1137/20M1339015
    48. Z. Eskandari, R. Khoshsiar Ghaziani, Z. Avazzadeh, Bifurcations of a discrete-time SIR epidemic model with logistic growth of the susceptible individuals, 2023, 16, 1793-5245, 10.1142/S1793524522501200
    49. Miao Ouyang, Qianhong Zhang, Zili Chen, Balanced harvesting of dynamical discrete Ricker & Beverton–Holt system, 2023, 170, 09600779, 113384, 10.1016/j.chaos.2023.113384
    50. Phong MAİ NAM, Global Behavior of a System of Second-Order Rational Difference Equations, 2021, 4, 2651-4001, 150, 10.33434/cams.938775
    51. Jiapu Zhang, 2023, Chapter 28, 978-3-031-36772-4, 897, 10.1007/978-3-031-36773-1_28
    52. Gülşah Yeni, Elvan Akın, Naveen K. Vaidya, Time scale theory on stability of explicit and implicit discrete epidemic models: applications to Swine flu outbreak, 2024, 88, 0303-6812, 10.1007/s00285-023-02015-2
    53. Xiaoqi Liu, Qingyuan Hu, Jie Wang, Xusheng Wu, Dehua Hu, Difference in Rumor Dissemination and Debunking Before and After the Relaxation of COVID-19 Prevention and Control Measures in China: Infodemiology Study, 2024, 26, 1438-8871, e48564, 10.2196/48564
    54. Yutao Yan, Shuzhen Yu, Zhiyong Yu, Haijun Jiang, Hui Wang, Global dynamics of delayed discrete-time SEIR negative information propagation model with multi-platform and cross-transmission mechanism, 2025, 10075704, 108591, 10.1016/j.cnsns.2025.108591
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3228) PDF downloads(619) Cited by(54)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog