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Abstract. In this paper, we propose a class of discrete SIR epidemic models
which are derived from SIR epidemic models with distributed delays by using
a variation of the backward Euler method. Applying a Lyapunov functional
technique, it is shown that the global dynamics of each discrete SIR epidemic
model are fully determined by a single threshold parameter and the effect
of discrete time delays are harmless for the global stability of the endemic
equilibrium of the model.

1. Introduction. The application of theories of functional differential/difference
equations in mathematical biology has been developed rapidly. Various mathemat-
ical models have been proposed in the literature of population dynamics, ecology
and epidemiology. Many authors have studied the epidemic models, which displays
the dynamical behavior of the transmission of infectious disease (see also [1]-[18]
and references therein).

Cooke [5] formulated an SIR epidemic model with bilinear incidence rate and
a discrete time delay which takes the form βSI to investigate the spread of an
infectious disease transmitted by a vector (e.g. mosquitoes, rats, etc.) after an
incubation time denoting the time during which the infectious agents develop in the
vector. This is called the phenomena of time delay effect which now has important
biological meanings in epidemic models (see [1, 5]).

Based on their ideas, Ma et al. [13] considered a continuous SIR model with a
discrete delay and investigated the global asymptotic stability of the equilibrium,
while a continuous SIR model with distributed delays has been also studied in
[1, 2, 12, 14, 17]. The distributed delays is more appropriate form than the discrete
one because it is considered more realistic to assume that the time delay is not a
fixed time but a distributed parameter which is upper bounded by some positive
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finite time. Beretta and Takeuchi [1] have studied the following continuous SIR
model with distributed delays:































ds(t)

dt
= b− βs(t)

∫ h

0

f(τ)i(t − τ)dτ − µ1s(t),

di(t)

dt
= βs(t)

∫ h

0

f(τ)i(t− τ)dτ − (µ2 + λ)i(t),

dr(t)

dt
= λi(t) − µ3r(t),

(1.1)

where s(t), i(t) and r(t) denote the proportions of the population susceptible to
the disease, of infective members and of members who have been removed from
the possibility of infection at time t, respectively. It is assumed that all newborns
are susceptible and all recruitment is into the susceptible class at a constant rate
b > 0. The positive constants µ1, µ2 and µ3 represent the death rates of susceptible,
infectious and recovered classes, respectively. Infectiousness is assumed to vary over
time from the initial time of infection until a duration h has passed and the function
f(τ) denotes the fraction of vector population in which the time taken to become
infectious is τ . The mass action coefficient is β and f(τ) is chosen so that it is

nonnegative and continuous on [0, h] and assume that, for simplicity,
∫ h

0
f(τ)dτ = 1.

System (1.1) always has a disease-free equilibrium E0 = (b/µ1, 0, 0). Further-
more, ifR0 > 1, then system (1.1) has a unique endemic equilibriumE∗ = (s∗, i∗, r∗),
where

0 < s∗ =
µ2 + λ

β
<

b

µ1
, 0 < i∗ =

b− µ1s
∗

βs∗
<

b

µ1
, 0 < r∗ =

λi∗

µ3
<

b

µ1
, (1.2)

and

R0 =
bβ

µ1(µ2 + λ)
. (1.3)

For the case R0 ≤ 1, it is known that disease dies out for (1.1) (see also [1, 2, 17]).
For the case R0 > 1, it is shown that system (1.1) is permanent by Ma et al. [12].
Later, by using a Lyapunov functional for R0 > 1, complete analysis of system (1.1)
has been established by McCluskey [14]. Thereafter, using the similar techniques,
McCluskey [15] also established a complete analysis of an SIR epidemic models with
a saturated incidence rate and a discrete delay.

Summarizing the above discussion, the following result holds (see [1, 2, 12, 17]
and [14, Theorem 4.1]).

Theorem A For system (1.1), if R0 ≤ 1, then the disease-free equilibrium E0 is
globally attractive, and locally asymptotically stable if the inequality is strict, and if
R0 > 1, then the endemic equilibrium E∗ is globally asymptotically stable.

On the other hand, there occur situations such that constructing discrete epi-
demic models is more appropriate approach to understand disease transmission
dynamics and to evaluate eradication policies because they permit arbitrary time-
step units, preserving the basic features of corresponding continuous-time models.
Furthermore, this allows better use of statistical data for numerical simulations
due to the reason that the infection data are compiled at discrete given time in-
tervals. For a discrete epidemic model with immigration of infectives, Jang and
Elaydi [10] showed the global asymptotic stability of the disease-free equilibrium,
the local asymptotic stability of the endemic equilibrium and the strong persistence
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of susceptible class by means of the nonstandard discretization method. Recently,
using a discretization called “mixed type” formula in Izzo and Vecchio [8] and Izzo
et al. [9], Sekiguchi [16] obtained the permanence of a class of SIR discrete epidemic
models with one delay and SEIRS discrete epidemic models with two delays if an
endemic equilibrium of each model exists. For the detailed property for a class of
discrete epidemic models, we refer to [3, 4, 8, 9, 10, 11, 16, 18].

However, in those cases, how to choose the discrete schemes which guarantee the
global asymptotic stability for the endemic equilibrium of the models, was still an
open problem.

In this paper, motivated by the above facts, we propose the following discrete
SIR epidemic model which is derived from system (1.1) by applying a variation of
backward Euler method.































s(p+ 1) − s(p) = b− βs(p+ 1)

m
∑

j=0

f(j)i(p− j) − µ1s(p+ 1),

i(p+ 1) − i(p) = βs(p+ 1)

m
∑

j=0

f(j)i(p− j) − (µ2 + λ)i(p+ 1),

r(p+ 1) − r(p) = λi(p+ 1) − µ3r(p+ 1),

(1.4)

where b, β, µi (i = 1, 2, 3), λ and m are positive constants and f(j) ≥ 0, j =
0, 1, · · · ,m. For simplicity, we may assume that

∑m

j=0 f(j) = 1.

Similar to the case of continuous system (1.1), system (1.4) always has a disease-
free equilibrium E0 = (b/µ1, 0, 0). Furthermore, if R0 > 1, then system (1.4) has a
unique endemic equilibrium E∗ = (s∗, i∗, r∗) defined by (1.2).

The initial condition of system (1.4) is






s(p) = φ(p) ≥ 0, i(p) = ψ(p) ≥ 0, r(p) = σ(p) ≥ 0,
p = −m,−(m− 1), · · · ,−1,
and s(0) > 0, i(0) > 0, r(0) > 0.

(1.5)

Remark 1.1. To prove the positivity of s(p), i(p) and r(p) for any p ≥ 0, we need
to use the backward Euler discretization instead of the forward Euler discretization
(see, e.g., [8, 9]). Moreover, to apply a discrete time analogue of the Lyapunov
function proposed by McCluskey [14, 15], we adopt a variation of the backward
Euler method which is different from that of Sekiguchi [16].

Using the same threshold R0 = bβ
µ1(µ2+γ) and applying the both techniques in

Izzo and Vecchio [8] and Izzo et al. [9] for the case R0 ≤ 1 and McCluskey [14,
Theorem 4.1] for the case R0 > 1 to system (1.4), we establish a complete analysis of
the global asymptotic stability for system (1.4). In particular, by applying Lemma
4.1, we offer a simplified proof for the permanence of system (1.4) for R0 > 1 (cf.
Sekiguchi [16]).

Our main result in this paper is as follows.

Theorem 1.1. For system (1.4), there exists a unique disease-free equilibrium E0 =
(b/µ1, 0, 0) which is globally asymptotically stable, if and only if, R0 ≤ 1, and there
exists a unique endemic equilibrium E∗ = (s∗, i∗, r∗) which is globally asymptotically
stable, if and only if, R0 > 1.

Remark 1.2. Theorem 1.1 for system (1.4) is just a discrete analogue of Theorem
A for system (1.1).
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The organization of this paper is as follows. In Section 2, we offer some basic
results for system (1.4) and some asymptotic properties are investigated. The first
part of Theorem 1.1 concerning the global asymptotic stability for R0 ≤ 1 is given
in Section 3, and the second part of Theorem 1.1 concerning the permanence and
the global stability for R0 > 1 is given in Section 4. Finally, we offer concluding
remarks in Section 5.

2. Basic properties. For system (1.4), since the variable r does not appear in the
first and the second equations, it is sufficient to consider the following 2-dimensional
system.























s(p+ 1) − s(p) = b− βs(p+ 1)
m

∑

j=0

f(j)i(p− j) − µ1s(p+ 1),

i(p+ 1) − i(p) = βs(p+ 1)

m
∑

j=0

f(j)i(p− j) − (µ2 + λ)i(p+ 1),

(2.1)

with the initial condition
{

s(p) = φ(p) ≥ 0, i(p) = ψ(p) ≥ 0, p = −m,−(m− 1), · · · ,−1,
and s(0) > 0, i(0) > 0.

(2.2)

The following results in Sections 2 and 3 are obtained by applying techniques in
Izzo and Vecchio [8] and Izzo et al. [9] to system (2.1).

Lemma 2.1. Let (s(p), i(p)) be the solutions of system (2.1) with the initial con-
dition (2.2). Then s(p) > 0, i(p) > 0 for any p > 0.

Proof. Assume that s(p − j), i(p − j) > 0, j = 0, 1, · · · ,m. Then, system (2.1)
becomes























s(p+ 1){1 + µ1 + β

m
∑

j=0

f(j)i(p− j)} = b+ s(p) > 0,

i(p+ 1){1 + (µ2 + λ)} = i(p) + βs(p+ 1)

m
∑

j=0

f(j)i(p− j) > 0.

(2.3)

Then, by the first equation of (2.3), we have s(p+1) > 0, and by the second equation
of (2.3), we have i(p+ 1) > 0. Hence, by induction, we prove this lemma.

Lemma 2.2. Any solution (s(p), i(p)) of system (2.1) with the initial condition
(2.2) satisfies lim supp→+∞(s(p) + i(p)) ≤ b/µ, where

µ = min{µ1, µ2 + λ}.

Proof. Let V (p) = s(p) + i(p). From system (2.1), we have that

V (p+ 1) − V (p) = b − µ1s(p+ 1) − (µ2 + λ)i(p+ 1)

≤ b − µV (p+ 1),

from which we have that

lim sup
p→+∞

V (p) ≤
b

µ
.

Hence, the proof is complete.
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Now, put






s = lim inf
p→+∞

s(p), and s = lim sup
p→+∞

s(p),

i = lim inf
p→+∞

i(p), and i = lim sup
p→+∞

i(p).
(2.4)

Then by
∑m

j=0 f(j) = 1, similar to the Izzo et al. [9, Proof of Lemma 3.3], we
obtain the following basic lemma.

Lemma 2.3. For any solution (s(p), i(p)) of system (2.1) with the initial condition
(2.2), we have that































0 <
b

µ1 + βi
≤ s ≤ s ≤

b

µ1 + βi
≤

b

µ1
, 0 ≤ i ≤ i,

βs

µ2 + λ
≤ 1, if i > 0,

βs

µ2 + λ
≥ 1, if i > 0.

(2.5)

Further, we put

P (s) ≡
βs

µ2 + λ
, (2.6)

then we easily obtain the following lemma.

Lemma 2.4. P (s) is a strictly increasing positive continuous function of s on
[0,+∞) and

P (0) = 0, and R0 = P

(

b

µ1

)

, (2.7)

and
{

P (s) ≤ 1, if i > 0,
P (s) ≥ 1, if i > 0.

(2.8)

If R0 > 1, then there exists a unique solution s = s∗ of P (s) = 1 such that

0 < s∗ =
µ2 + λ

β
<

b

µ1
. (2.9)

Proof. By the definition of P (s), (1.3) and (2.5), we see that P (s) is a strictly
increasing positive continuous function of s on (0,+∞), and (2.7) and (2.8) hold.
If R0 > 1, then P (0) = 0 < 1 < R0 = P ( b

µ1

). Since P (s) is a strictly increasing

positive continuous function of s, there exists a unique solution 0 < s = s∗ =
µ2+λ

β
< b

µ1

of P (s) = 1.

3. Global stability of the disease-free equilibrium E0 = (b/µ1, 0) for R0 ≤ 1.
In this section, we prove the first part of Theorem 1.1 for system (1.4). By applying
techniques in Izzo et al. [9], we obtain the global asymptotic stability of the disease-
free equilibrium E0 of system (2.1) for R0 ≤ 1.

Lemma 3.1. If R0 ≤ 1, then

lim
p→+∞

s(p) =
b

µ1
, and lim

p→+∞
i(p) = 0, (3.1)

and E0 = ( b
µ1

, 0) is globally asymptotically stable.
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Proof. From (2.5) in Lemma 2.3, for any ǫ > 0, there is an integer p0 ≥ 0 such that

s(p+ 1) ≤
b

µ1
+ ǫ for p ≥ p0.

Consider the following sequence {w(p)}+∞
p=p0

defined by

w(p) = i(p) + u(p), p ≥ p0, (3.2)

where

u(p) = β

m
∑

j=0

f(j)

p
∑

k=p−j

s(j + k + 1)i(k), p ≥ p0.

Since

u(p+ 1) − u(p)

= β

m
∑

j=0

f(j)

{ p+1
∑

k=p+1−j

s(j + k + 1)i(k) −

p
∑

k=p−j

s(j + k + 1)i(k)

}

= β

m
∑

j=0

f(j)

{

s(p+ j + 2)i(p+ 1) − s(p+ 1)i(p− j)

}

,

we have that

w(p+ 1) − w(p) =

{

βs(p+ 1)
m

∑

j=0

f(j)i(p− j) − (µ2 + γ)i(p+ 1)

}

+β

m
∑

j=0

f(j)

{

s(p+ j + 2)i(p+ 1) − s(p+ 1)i(p− j)

}

= β

m
∑

j=0

f(j)s(p+ j + 2)i(p+ 1) − (µ2 + γ)i(p+ 1)

≤ β

m
∑

j=0

f(j)

(

b

µ1
+ ǫ

)

i(p+ 1) − (µ2 + γ)i(p+ 1)

=

{

bβ

µ1
− (µ2 + γ)

}

i(p+ 1) + βǫi(p+ 1).

Since ǫ > 0 is arbitrary, we obtain that if R0 ≤ 1, then

w(p + 1) − w(p) ≤

{

bβ

µ1
− (µ2 + γ)

}

i(p+ 1) ≤ 0, (3.3)

and the nonnegative sequence {w(p)}+∞
p=p0

is monotone decreasing. Therefore, there
exists a nonnegative constant ŵ such that limp→+∞ w(p) = ŵ. We will prove that

ŵ = 0 and (3.1) hold for R0 ≤ 1. If R0 < 1, then bβ
µ1

− (µ2 + γ) < 0 and by (3.3),

we conclude that limp→+∞ i(p) = 0. Then, ŵ = 0 and by Lemma 2.3, we obtain
(3.1). Suppose that R0 = 1. From (1.4), we have that























s(p+ 1) = b̃+ c̃s(p) − β̃1s(p+ 1)

m
∑

j=0

f(j)i(p− j),

i(p+ 1) = d̃i(p) + β̃2s(p+ 1)
m

∑

j=0

f(j)i(p− j),

(3.4)
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where














b̃ =
b

1 + µ1
, c̃ =

1

1 + µ1
, β̃1 =

β

1 + µ1
,

d̃ =
1

1 + µ2 + γ
, β̃2 =

β

1 + µ2 + γ
.

Then, by applying the similar techniques in Izzo et al. [9, Proofs of Lemmas 4.4-
4.5] to (3.4) with Lemmas 2.3 and 2.4, we prove the claim that there is a sequence
{pk}

+∞
k=0 such that each of i(pk − j), j = 0, 1, · · · ,m converges to 0 as k → +∞. If

i = 0, then the claim is evident. Now, suppose that i > 0. By (2.8) in Lemma 2.4,
we have that P (s) ≥ 1 = R0 = P ( b

µ1

), which implies s = b
µ1

from (2.5) in Lemma

2.3. Therefore, there exists a sequence {pk}
+∞
k=1 such that limk→+∞ s(pk + 1) = s.

Then, b̃
1−c̃

= b
µ1

= s and

s(pk + 1) =
b̃− c̃{s(pk + 1) − s(pk)} − β̃1s(pk + 1)

∑m

j=0 f(j)i(pk − j)

1 − c̃
→ s,

as k → +∞. Then, we easily obtain that

lim
k→+∞

[

c̃{s(pk + 1) − s(pk)} + β̃1s(pk + 1)
m

∑

j=0

f(j)i(pk − j)

]

= 0.

Since lim supk→+∞{s(pk + 1) − s(pk)} ≥ 0, we obtain that

lim sup
k→+∞

{s(pk + 1) − s(pk)} = 0, and lim sup
k→+∞

m
∑

j=0

f(j)i(pk − j) = 0.

Thus, it holds that

lim
k→+∞

{s(pk + 1) − s(pk)} = 0, and lim
k→+∞

m
∑

j=0

f(j)i(pk − j) = 0.

Hence, it follows that limk→+∞ s(pk) = limk→+∞ s(pk + 1) = s and

lim
k→+∞

m
∑

j=0

f(j)i(pk − j) = 0.

In the same way, we can prove that

lim
k→+∞

s(pk − l) = s, lim
k→+∞

m
∑

j=0

f(j)i(pk − l − j) = 0, for l = 0, 1, · · · ,m.

Since by
∑m

j=0 f(j) = 1, there exists at least one 0 ≤ j0 ≤ m such that f(j0) > 0,

we can obtain that i(pk − l − j0) = 0, l = 0, 1, · · · ,m. Hence, the claim is proved.
Then, by the definition of w(p), we obtain limk→+∞ w(pk + 1) = 0, which implies
that ŵ = 0. Hence, by limp→+∞ w(p) = 0, we can conclude that (3.1) still holds for
R0 = 1.

Finally, we will prove that if R0 ≤ 1, then E0 = ( b
µ1

, 0) is uniformly stable. First,

consider the case that there exists a nonnegative integer p1 such that s(p + 1) >
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s = b
µ1

for any p ≥ p1. From the first equation of (2.1), we have that for any p > 0,

s(p+ 1) − s(p) = (b − µ1s(p+ 1)) − βs(p+ 1)

m
∑

j=0

f(j)i(p− j) ≤ 0. (3.5)

Then, we obtain that b
µ1

≤ s(p+ 1) ≤ s(p) ≤ s(p1) for any p ≥ p1. Next, consider

the case that there exists a nonnegative integer p2 such that s(p2) ≤ s = b
µ1

. Then,

by the first equation of (2.1), we have that

s(p2 + 1) ≤
b+ s(p2)

1 + µ1
≤
b+ b/µ1

1 + µ1
=

b

µ1
.

Thus, we obtain that s(p) ≤ s = b
µ1

, for any p ≥ p2. Then, by the second equation

of (2.1) and bβ
µ1

≤ µ2 + λ, we have that for any p ≥ p2,

i(p+ 1) ≤
i(p) + β(b/µ1)

∑m

j=0 f(j)i(p− j)

1 + (µ2 + λ)

≤
1 + (µ2 + λ)

∑m
j=0 f(j)

1 + (µ2 + λ)
max

0≤j≤m
i(p− j)

= max
0≤j≤m

i(p− j). (3.6)

Moreover, by the first equation of (2.1), we have that

s(p+ 1) −
b

µ1
=

1

1 + µ1

(

s(p) −
b

µ1

)

−
βs(p+ 1)

1 + µ1

m
∑

j=0

f(j)i(p− j),

and hence, for any p ≥ p2, we obtain that
∣

∣

∣
s(p+ 1) −

b

µ1

∣

∣

∣

≤

(

1

1 + µ1

)p−p2+1
∣

∣

∣
s(p2) −

b

µ1

∣

∣

∣
+
β(b/µ1)

1 + µ1

max0≤j≤m i(p2 − j)

1 − 1/(1 + µ1)

=

(

1

1 + µ1

)p−p2+1
∣

∣

∣
s(p2) −

b

µ1

∣

∣

∣
+
bβ

µ2
1

max
0≤j≤m

i(p2 − j).

Thus, by the above discussion, we can conclude that E0 = ( b
µ1

, 0) is uniformly

stable. Hence, if R0 ≤ 1, then E0 = ( b
µ1

, 0) is globally asymptotically stable.

Lemma 3.2. (3.1) implies R0 ≤ 1.

Proof. Suppose that R0 = P ( b
µ1

) > 1. Then, by Lemma 2.4, there exists a posi-

tive constant solution (s(p), i(p)) = (s∗, i∗) of system (2.1) defined by (1.2). This
contradicts the fact that (3.1) holds. Hence, the proof is complete.

Proof of the first part of Theorem 1.1. By Lemmas 3.1 and 3.2, we immediately ob-
tain the conclusion of this theorem.

4. Global stability of the endemic equilibrium E∗ = (s∗, i∗) for R0 > 1. In
this section, we assume that R0 > 1 and similar to the result of McCluskey [14,
Theorem 4.1] for the continuous SIR model, we prove the second part of Theorem
1.1 for system (1.4). By Lemmas 4.1-4.3, we obtain the permanence of system (2.1)
for R0 > 1.
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Lemma 4.1. If i(p+1) < min
0≤j≤m

i(p−j), then s(p+1) < s∗. Inversely, if s(p+1) ≥

s∗, then i(p+ 1) ≥ min
0≤j≤m

i(p− j).

Proof. By the second equation of (2.1), we have that

i(p+ 1) =
i(p) − i(p+ 1)

µ2 + λ
+
s(p+ 1)

s∗

m
∑

j=0

f(j)i(p− j).

Therefore, if i(p + 1) < min0≤j≤m i(p − j), then by i(p) − i(p + 1) > 0 and
∑m

j=0 f(j)i(p− j) > i(p+ 1), we have that

i(p+ 1) >
s(p+ 1)

s∗
i(p+ 1),

from which we obtain s(p + 1) < s∗. Then, the remained part of this lemma is
evident.

Lemma 4.2. If R0 > 1, then any solution of system (2.1) with initial condition
(1.5),

lim inf
p→+∞

s(p) ≥ v1 :=
b

1 + µ1 + β b
µ

> 0, (4.1)

lim inf
p→+∞

i(p) ≥ v2 :=

(

1

1 + µ2 + λ

)m+l0

i∗ > 0, (4.2)

where for k = µ1 + βqi∗, the constant l0 ≥ 1 is sufficiently large such that s∗ <
s△ := b

k
{1 − ( 1

1+k
)l0}.

Proof. By the first equation of (2.3), it is straightforward to obtain (4.1). We now
show that (4.2) holds. For any 0 < q < 1, by (1.2), one can see that s∗ = b

µ1+βi∗
<

b
µ1+βqi∗

. We first prove the claim that any solution (s(p), i(p)) of system (2.1) does

not have the following property: there exists a nonnegative integer p0 such that
i(p) ≤ qi∗ for all p ≥ p0. Suppose on the contrary that there exist a solution
(s(p), i(p)) of system (2.1) and a nonnegative integer p0 such that i(p) ≤ qi∗ for all
p ≥ p0. From system (2.1), one can obtain that

s(p+ 1) ≥
s(p)

1 + k
+

b

1 + k
, for p ≥ p0 +m,

which yields that

s(p+ 1) ≥

(

1

1 + k

)p+1−(p0+m)

s(p0 +m) +
b

1 + k

p−(p0+m)
∑

l=0

(

1

1 + k

)l

≥
b

1 + k

1 − ( 1
1+k

)p+1−(p0+m)

1 − 1
1+k

≥
b

k

{

1 −

(

1

1 + k

)p+1−(p0+m)}

, for any p ≥ p0 +m.

Therefore, we have that

s(p+ 1) ≥
b

k

{

1 −

(

1

1 + k

)l0}

= s△ > s∗, for any p ≥ p0 +m+ l0 − 1. (4.3)
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Then, by the second part of Lemma 4.1, we obtain that

i(p+ 1) ≥ min
0≤j≤m

i(p− j), for any p ≥ p0 +m+ l0 − 1. (4.4)

Thus, we obtain that there exists a positive constant î such that i(p) ≥ î for any
p ≥ p0 + m + l0 − 1. Moreover, for the sequence {w(p)}+∞

p=p0
defined by (3.2), we

have that

w(p + 1) − w(p) = β
m

∑

j=0

f(j)s(p+ j + 2)i(p+ 1) − (µ2 + γ)i(p+ 1)

> {βs△ − (µ2 + γ)}i(p+ 1)

> {βs△ − (µ2 + γ)}î, for any p ≥ p0 +m+ l0 − 1,

which implies by βs△ − (µ2 + γ) = β(s△ − s∗) > 0, that limp→+∞ w(p) = +∞.
However, by (3.2) and Lemma 2.2, it holds that there is a positive constant p4 ≥
p0+m+l0−1 and w̄ such that w(p) ≤ w̄ for any p ≥ p4, which leads to contradiction.
Hence, the claim is proved.

By the claim, we are left to consider two possibilities. First, i(p) ≥ qi∗ for all p
sufficiently large. Second, we consider the case that i(p) oscillates about qi∗ for all
p sufficiently large. We now show that i(p) ≥ qv2 for all p sufficiently large.

If the first condition that i(p) ≥ qi∗ holds for all p sufficiently large, then we get
the conclusion of the proof. If the second condition holds, let p1 < p2 be sufficiently
large such that

i(p1), i(p2) > qi∗, and i(p) ≤ qi∗ for any p1 < p < p2.

Then, by the second equation of system (2.1), we have that

i(p+ 1) − i(p) ≥ −(µ2 + λ)i(p+ 1),

that is

i(p+ 1) ≥
1

1 + µ2 + λ
i(p), for any p ≥ p1.

This implies that

i(p+ 1) ≥

(

1

1 + µ2 + λ

)p+1−p1

i(p1) ≥

(

1

1 + µ2 + λ

)p+1−p1

qi∗, for any p ≥ p1.

Therefore, we obtain that

i(p+ 1) ≥

(

1

1 + µ2 + λ

)m+l0

qi∗ = qv2, for any p1 ≤ p ≤ p1 +m+ l0 − 1. (4.5)

If p2 ≥ p1 + m + l0, then by applying the similar discussion to (4.3) and (4.4) in
place of p0 by p1 + 1, we obtain that i(p + 1) ≥ v2 for p1 +m + l0 ≤ p ≤ p2 − 1.
Hence, we prove that i(p+ 1) ≥ qv2 for p1 ≤ p ≤ p2. Since the interval p1 ≤ p ≤ p2

is arbitrarily chosen, we conclude that i(p+1) ≥ qv2 for all sufficiently large for the
second case. Since q (0 < q < 1) is also arbitrarily chosen, we conclude that

lim inf
p→+∞

i(p) ≥ v2.

This completes the proof.
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Lemma 4.3. There exists a unique endemic equilibrium E∗ = (s∗, i∗) of system
(2.1) and

0 <
b

µ1 + i
≤ s ≤ s∗ ≤ s <

b

µ1
, and 0 < i ≤ i∗ ≤ i <

b

µ
, (4.6)

if and only if, R0 > 1.

Proof. By (3.1)-(3.2) and Lemma 4.2, we have that R0 > 1, if and only if, there ex-
ists a unique endemic equilibrium E∗ = (s∗, i∗) of system (2.1) and lim infp→+∞ i(p)
> 0. Then, by (2.5) and Lemma 2.4, we obtain (4.6). This completes the proof.

Proof of the second part of Theorem 1.1. Consider the following Lyapunov function
(see McCluskey [14, 15]).

U(p) =
1

βi∗
Us(p) +

1

βs∗
Ui(p) + U+(p), (4.7)

where



















Us(p) = g

(

s(p)

s∗

)

, Ui(p) = g

(

i(p)

i∗

)

,

U+(p) =

m
∑

j=0

f(j)

p
∑

k=p−j

g

(

i(k)

i∗

)

,

and g(x) = x− 1 − lnx, x > 0.
We now show that U(p+ 1) − U(p) ≤ 0. First, we calculate Us(p+ 1) − Us(p).

Us(p+ 1) − Us(p)

=
s(p+ 1) − s(p)

s∗
− ln

s(p+ 1)

s(p)

≤
s(p+ 1) − s(p)

s∗
−
s(p+ 1) − s(p)

s(p+ 1)

=
1

s∗
s(p+ 1) − s∗

s(p+ 1)
(s(p+ 1) − s(p))

=
1

s∗
s(p+ 1) − s∗

s(p+ 1)

{

b− βs(p+ 1)

m
∑

j=0

f(j)i(p− j) − µ1s(p+ 1)

}

, (4.8)

because ln(1 − x) ≤ −x holds for any x < 1, one can obtain that

− ln
s(p+ 1)

s(p)
= ln

(

1 −

(

1 −
s(p)

s(p+ 1)

))

≤ −

(

1 −
s(p)

s(p+ 1)

)

= −
s(p+ 1) − s(p)

s(p+ 1)
.
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Substituting b = βs∗i∗ + µ1s
∗ into (4.8), we see that

Us(p+ 1) − Us(p)

≤
1

s∗
s(p+ 1) − s∗

s(p+ 1)

{

βs∗i∗ + µ1s
∗ − βs(p+ 1)

m
∑

j=0

f(j)i(p− j) − µ1s(p+ 1)

}

= −
µ1

s∗
(s(p+ 1) − s∗)2

s(p+ 1)

+βi∗
m

∑

j=0

f(j)

(

1 −
s∗

s(p+ 1)

)(

1 −
s(p+ 1)

s∗
·
i(p− j)

i∗

)

.

Second, similarly, we calculate Ui(p+ 1) − Ui(p).

Ui(p+ 1) − Ui(p)

=
i(p+ 1) − i(p)

i∗
− ln

i(p+ 1)

i(p)

≤
i(p+ 1) − i(p)

i∗
−
i(p+ 1) − i(p)

i(p+ 1)

=
1

i∗
i(p+ 1) − i∗

i(p+ 1)
(i(p+ 1) − i(p))

=
1

i∗
i(p+ 1) − i∗

i(p+ 1)

{

βs(p+ 1)

m
∑

j=0

f(j)i(p− j) − (µ2 + λ)i(p+ 1)

}

.

Since µ2 + λ = βs∗ holds, we obtain that

Ui(p+ 1) − Ui(p)

≤
1

i∗
i(p+ 1) − i∗

i(p+ 1)

{

βs(p+ 1)
m

∑

j=0

f(j)i(p− j) − βs∗i(p+ 1)

}

= βs∗
m

∑

j=0

f(j)

(

1 −
i∗

i(p+ 1)

)(

s(p+ 1)

s∗
·
i(p− j)

i∗
−
i(p+ 1)

i∗

)

.

Finally, calculating U+(p+ 1) − U+(p), we get that

U+(p+ 1) − U+(p)

=

m
∑

j=0

f(j)

{ p+1
∑

k=p+1−j

{

g

(

i(k)

i∗

)

−

p
∑

k=p−j

g

(

i(k)

i∗

)}

=
m

∑

j=0

f(j)

{

g

(

i(p+ 1)

i∗

)

− g

(

i(p− j)

i∗

)}

=
m

∑

j=0

f(j)g

(

i(p+ 1)

i∗

)

−
m

∑

j=0

f(j)g

(

i(p− j)

i∗

)

.

Defining

xp+1 =
s(p+ 1)

s∗
, yp+1 =

i(p+ 1)

i∗
, zp,j =

i(p− j)

i∗
, j = 0, 1, · · · ,m,
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similar to McCluskey [14, Proof of Theorem 4.1], we obtain that

U(p+ 1) − U(p) ≤ −
µ1

βs∗i∗
(s(p+ 1) − s∗)2

s(p+ 1)

−

m
∑

j=0

f(j)

(

−2 +
1

xp+1
+
xp+1zp,j

yp+1
+ ln yp+1 − ln zp,j

)

= −
µ1

βs∗i∗
(s(p+ 1) − s∗)2

s(p+ 1)

−
m

∑

j=0

f(j)

[

g

(

1

xp+1

)

+ g

(

xp+1zp,j

yp+1

)]

≤ 0.

Hence, U(p+ 1) − U(p) ≤ 0 for any p ≥ 0. Since U(p) ≥ 0 is monotone decreasing
sequence, there is a limit limp→+∞ U(p) ≥ 0. Then, limp→+∞(U(p+1)−U(p)) = 0,
from which we obtain that

lim
p→+∞

s(p+ 1) = s∗,

and

lim
p→+∞

i(p− j)

i(p+ 1)
= lim

p→+∞

zp,j

yp+1
= 1,

if f(j) > 0, j = 0, 1, · · · ,m. Then, by the first equation of (2.1), we have that for
p ≥ 0,

s(p+ 1) − s(p)

= (b− µ1s(p+ 1)) − βs(p+ 1)

m
∑

j=0

f(j)i(p− j)

= (b− µ1s(p+ 1)) − βs(p+ 1)

∑m

j=0 f(j)i(p− j)

i(p+ 1)
i(p+ 1),

which implies

i(p+ 1) =
b− (1 + µ1)s(p+ 1) + s(p)

βs(p+ 1)
∑

m
j=0

f(j)i(p−j)

i(p+1)

.

Using the relations

lim
p→+∞

(b− (1 + µ1)s(p+ 1) + s(p)) = b− µ1s
∗ > 0,

and

lim
p→+∞

βs(p+ 1)

∑m
j=0 f(j)i(p− j)

i(p+ 1)
= βs∗ > 0,

we obtain that limp→+∞ i(p+ 1) = i∗, that is, limp→+∞(s(p), i(p)) = (s∗, i∗).
Since U(p) ≤ U(0) for all p ≥ 0 and g(x) ≥ 0 with equality if and only if x = 1,

E∗ is uniformly stable. Hence, the proof is complete.
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5. Discussions. Recently, in order to investigate the transmission dynamics of
infectious diseases, there have been many papers focusing on the analysis of the
global stability of the disease-free equilibrium and the endemic equilibrium of a
class of discrete and continuous SIR epidemic models. Motivated by the fact that
the discrete models are more appropriate forms than the continuous ones in order
to directly fit the statistical data concerning infectious diseases with a latent period
such as malaria, in this paper, we show that the disease-free equilibrium E0 is
globally asymptotically stable if R0 ≤ 1, and the unique endemic equilibrium E∗

exists and is globally asymptotically stable if R0 > 1 for the discrete SIR epidemic
model (1.4) by applying a variation of the backward Euler discretization (cf. [8,
9]) and Lyapunov functional techniques in McCluskey [14, 15]. We note that its
stability conditions no longer need any restriction of the size of time delays for the
model (1.4) which is discretized by a variation of the backward Euler method. From
a biological viewpoint, it is noteworthy that the global dynamics is determined by
a single threshold parameter R0 without imposing any restriction on the length
of an incubation period of the diseases not only for the continuous SIR model in
[1, 2, 12, 14, 17] but also for this discrete SIR model. Applying these techniques to
the other types of discrete epidemic models is our future work.
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mous referee for his/her careful readings and valuable comments which improved
the paper in the present style.

REFERENCES

[1] E. Beretta and Y. Takeuchi, Convergence results in SIR epidemic models with varying pop-

ulation size, Nonlinear Anal., 28 (1997), 1909–1921.
[2] E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic

model with distributed time delay, Nonlinear Anal., 47 (2001), 4107–4115.
[3] C. Castillo-Chavez and A-A. Yakubu, Dispersal, disease and life-history evolution, Math.

Biosci., 173 (2001), 35–53.
[4] C. Castillo-Chavez and A-A. Yakubu, Discrete-time S-I-S models with complex dynamics,

Nonlinear Anal., 47 (2001), 4753–4762.
[5] K. L. Cooke, Stability analysis for a vector disease model, Rocky Mountain J. Math., 9 (1979),

31–42.
[6] O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation

of the basic reproduction R0 in models for infectious diseases in heterogeneous populations,
J. Math. Biol., 28 (1990), 365–382.

[7] M. C. M. De Jong, O. Diekmann and J. A. P. Heesterbeek, The computation of R0 for

discrete-time epidemic models with dynamic heterogeneity, Math. Biosci., 119 (1994), 97–
114.

[8] G. Izzo and A. Vecchio, A discrete time version for models of population dynamics in the

presence of an infection, J. Comput. Appl. Math., 210 (2007), 210–221.
[9] G. Izzo, Y. Muroya and A. Vecchio, A general discrete time model of population dynamics

in the presence of an infection, Discrete Dyn. Nat. Soc., 2009, Art. ID 143019, 15 pages
doi:10.1155/2009/143019.

[10] S. Jang and S. N. Elaydi, Difference equations from discretization of a continuous epidemic

model with immigration of infectives, Can. Appl. Math. Q., 11 (2003), 93–105.
[11] J. Li, Z. Ma and F. Brauer, Global analysis of discrete-time SI and SIS epidemic models,

Math. Biol. Engi., 4 (2007), 699–710.
[12] W. Ma, Y. Takeuchi, T. Hara and E. Beretta, Permanence of an SIR epidemic model with

distributed time delays, Tohoku Math. J., 54 (2002), 581–591.

http://www.ams.org/mathscinet-getitem?mr=MR1436361&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1972351&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1860421&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1975868&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0517971&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1057044&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2389171&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2520417&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2131838&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2388820&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1936269&return=pdf


GLOBAL STABILITY FOR A CLASS OF DISCRETE SIR EPIDEMIC MODELS 361

[13] W. Ma, M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time delay,
Appl. Math. Lett., 17 (2004), 1141–1145.

[14] C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-Distributed

or discrete, Nonlinear Anal. RWA., 11 (2010), 55–59.
[15] C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear inci-

dence, Nonlinear Anal. RWA., (2010), doi:10.1016/j.nonrwa.2009.11.005.
[16] M. Sekiguchi, Permanence of some discrete epidemic models, Int. J. Biomath., 2 (2009),

443–461.
[17] Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic

model with finite incubation times, Nonlinear Anal., 42 (2000), 931–947.
[18] Y. Zhou, Z. Ma and F. Brauer, A discrete epidemic model for SARS transmission and control

in China, Mathematical and Computer Modeling., 40 (2004), 1491–1506.

Received July 8, 2009; Accepted February 13, 2010.

E-mail address: yo1.gc-rw.docomo@akane.waseda.jp

E-mail address: yunayuna.na@gmail.com

E-mail address: ymuroya@waseda.jp

http://www.ams.org/mathscinet-getitem?mr=MR2091848&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1780445&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2122464&return=pdf

	1. Introduction
	2. Basic properties
	3. Global stability of the disease-free equilibrium E0=(b/1, 0) for R0 1
	4. Global stability of the endemic equilibrium E*=(s*, i*) for R0>1
	5. Discussions
	Acknowledgments
	REFERENCES

