Research article

Necessary and sufficient conditions on the Schur convexity of a bivariate mean

  • Received: 01 June 2020 Accepted: 30 September 2020 Published: 10 October 2020
  • MSC : Primary 26E60; Secondary 26A51, 26D15, 26D20, 41A55

  • In the paper, the authors find and apply necessary and sufficient conditions for a bivariate mean of two positive numbers with three parameters to be Schur convex or Schur harmonically convex respectively.

    Citation: Hong-Ping Yin, Xi-Min Liu, Jing-Yu Wang, Bai-Ni Guo. Necessary and sufficient conditions on the Schur convexity of a bivariate mean[J]. AIMS Mathematics, 2021, 6(1): 296-303. doi: 10.3934/math.2021018

    Related Papers:

  • In the paper, the authors find and apply necessary and sufficient conditions for a bivariate mean of two positive numbers with three parameters to be Schur convex or Schur harmonically convex respectively.


    加载中


    [1] Y. M. Chu, G. D. Wang, X. H. Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Math. Nachr., 284 (2011), 653-663. doi: 10.1002/mana.200810197
    [2] C. R. Fu, D. S. Wang, H. N. Shi, Schur-convexity for a mean of two variables with three parameters, Filomat, 32 (2018), 6643-6651. doi: 10.2298/FIL1819643F
    [3] L. L. Fu, B. Y. Xi, H. M. Srivastava, Schur-convexity of the generalized Heronian means involving two positive numbers, Taiwanese J. Math., 15 (2011), 2721-2731. doi: 10.11650/twjm/1500406493
    [4] J. C. Kuang, Applied inequalities (Chang Yong Bu Deng Shi), 4 Eds., Shandong Press of Science and Technology, Ji'nan, China, 2010. (Chinese)
    [5] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its applications, 2 Eds., Springer Verlag, New York/Dordrecht/Heidelberg/London, 2011.
    [6] F. Qi, A note on Schur-convexity of extended mean values, Rocky Mountain J. Math., 35 (2005), 1787-1793. doi: 10.1216/rmjm/1181069663
    [7] F. Qi, J. Sándor, S. S. Dragomir, A. Sofo, Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math., 9 (2005), 411-420. doi: 10.11650/twjm/1500407849
    [8] F. Qi, X. T. Shi, M. Mahmoud, F. F. Liu, Schur-convexity of the Catalan-Qi function related to the Catalan numbers, Tbilisi Math. J., 9 (2016), 141-150. doi: 10.1515/tmj-2016-0026
    [9] H. N. Shi, Y. M. Jiang, W. D. Jiang, Schur-convexity and Schur-geometrically concavity of Gini mean, Comput. Math. Appl., 57 (2009), 266-274. doi: 10.1016/j.camwa.2008.11.001
    [10] H. N. Shi, B. Mihaly, S. H. Wu, D. M. Li, Schur convexity of generalized Heronian means involving two parameters, J. Inequal. Appl., 2008 (2009). Available from: https://doi.org/10.1155/2008/879273.
    [11] H. N. Shi, S. H. Wu, F. Qi, An alternative note on the Schur-convexity of the extended mean values, Math. Inequal. Appl., 9 (2006), 219-224.
    [12] J. Sun, Z. L. Sun, B. Y. Xi, F. Qi, Schur-geometric and Schur-harmonic convexity of an integral mean for convex functions, Turkish J. Anal. Number Theory, 3 (2015), 87-89.
    [13] B. Y. Wang, Foundations of majorization inequalities, Beijing Normal Univ. Press, Beijing, China, 1990. (Chinese)
    [14] Y. Wu, F. Qi, Schur-harmonic convexity for differences of some means, Analysis (Munich), 32 (2012), 263-270.
    [15] Y. Wu, F. Qi, H. N. Shi, Schur-harmonic convexity for differences of some special means in two variables, J. Math. Inequal., 8 (2014), 321-330.
    [16] B. Y. Xi, D. D. Gao, T. Zhang, B. N. Guo, F. Qi, Shannon type inequalities for Kapur's entropy, Mathematics, 7 (2019). Available from: https://doi.org/10.3390/math7010022.
    [17] B. Y. Xi, Y. Wu, H. N. Shi, F. Qi, Generalizations of several inequalities related to multivariate geometric means, Mathematics, 7 (2019). Available from: https://doi.org/10.3390/math7060552.
    [18] W. F. Xia, Y. M. Chu, The Schur convexity of Gini mean values in the sense of harmonic mean, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 1103-1112.
    [19] H. P. Yin, H. N. Shi, F. Qi, On Schur m-power convexity for ratios of some means, J. Math. Inequal., 9 (2015), 145-153.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3381) PDF downloads(138) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog