Research article

A Gröbner-Shirshov basis over a special type of braid monoids

  • Received: 19 March 2020 Accepted: 05 May 2020 Published: 11 May 2020
  • MSC : 13P10, 16S15, 20M05

  • The aim of this paper is to present a Gröbner-Shirshov basis for a special type of braid monoids, namely the symmetric inverse monoid In, in terms of the dex-leg ordering on the related elements of monoid. By taking into account the Gröbner-Shirshov basis, the ideal form (or, equivalently, the normal form structure) of this important monoid will be obtained. This ideal form will give us the solution of the word problem. At the final part of this paper, we give an application of our main result which find out a Gröbner-Shirshov basis for the symmetric inverse monoid I4 such that the accuracy and efficiency of this example can be seen by GBNP package in GAP (Group, Algorithms and Programming) which computes Gröbner bases of non-commutative polynomials [1].

    Citation: Ahmet S. Cevik, Eylem G. Karpuz, Hamed H. Alsulami, Esra K. Cetinalp. A Gröbner-Shirshov basis over a special type of braid monoids[J]. AIMS Mathematics, 2020, 5(5): 4357-4370. doi: 10.3934/math.2020278

    Related Papers:

  • The aim of this paper is to present a Gröbner-Shirshov basis for a special type of braid monoids, namely the symmetric inverse monoid In, in terms of the dex-leg ordering on the related elements of monoid. By taking into account the Gröbner-Shirshov basis, the ideal form (or, equivalently, the normal form structure) of this important monoid will be obtained. This ideal form will give us the solution of the word problem. At the final part of this paper, we give an application of our main result which find out a Gröbner-Shirshov basis for the symmetric inverse monoid I4 such that the accuracy and efficiency of this example can be seen by GBNP package in GAP (Group, Algorithms and Programming) which computes Gröbner bases of non-commutative polynomials [1].


    加载中


    [1] A. M. Cohen, J. W. Knopper, Computing Gröbner bases of noncommutative polynomials, GBNP (version 1.0.3), 2016. Available from: https://www.gap-system.org/Packages/gbnp.html.
    [2] B. Buchberger, An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal (in German). PhD thesis, University of Innsbruck, Innsbruck, Austria, 1965.
    [3] G. M. Bergman, The diamond lemma for ring theory, Adv. Math., 29 (1978), 178-218. doi: 10.1016/0001-8708(78)90010-5
    [4] A. I. Shirshov, Certain algorithmic problem for Lie algebras (in Russian), Sibirskii Math. Z., 3 (1962), 292-296; English translation in SIGSAM Bull., 33 (1999), 3-6.
    [5] L. A. Bokut, Embeddings into simple associative algebras, Algebr. Log., 15 (1976), 73-90. doi: 10.1007/BF01877233
    [6] F. Ates, E. G. Karpuz, C. Kocapinar, et al. Gröbner-Shirshov bases of some monoids, Discrete Math., 311 (2011), 1064-1071. doi: 10.1016/j.disc.2011.03.008
    [7] F. Ates, E. G. Karpuz, C. Kocapinar, et al. Gröbner-Shirshov basis for the singular part of the Brauer semigroup, Turk. J. Math., 42 (2018), 1338-1347.
    [8] L. A. Bokut, Gröbner-Shirshov basis for the Braid group in the Birman-Ko-Lee generators, J. Algebr., 321 (2009), 361-376. doi: 10.1016/j.jalgebra.2008.10.007
    [9] L. A. Bokut, Y. Chen, X. Zhao, Gröbner-Shirshov bases for free inverse semigroups, Int. J. Algebr. Comput., 19 (2009), 129-143. doi: 10.1142/S0218196709005019
    [10] E. G. Karpuz, Gröbner-Shirshov bases of some semigroup constructions, Algebr. Colloq., 22 (2015), 35-46. doi: 10.1142/S100538671500005X
    [11] E. G. Karpuz, F. Ates, A. S. Cevik, Gröbner-Shirshov bases of some Weyl groups, Rocky MT. J. Math., 45 (2015), 1165-1175. doi: 10.1216/RMJ-2015-45-4-1165
    [12] C. Kocapinar, E. G. Karpuz, F. Ates, et al. Gröbner-Shirshov bases of the generalized Bruck-Reilly *-extension, Algeb. Colloq., 19 (2012), 813-820. doi: 10.1142/S1005386712000703
    [13] A. I. Shirshov, Selected works of A.I.Shirshov, Birkhauser Basel, 2009.
    [14] Y. Chen, B. Wang, Gröbner-Shirshov bases and Hilbert series of free dendriform algebras, Southeast Asian Bull. Math., 34 (2010), 639-650.
    [15] Z. Iqbal, S. Yousaf, Hilbert series of the braid monoid MB4 in band generators, Turk. J. Math., 38 (2014), 977-984. doi: 10.3906/mat-1401-58
    [16] E. G. Karpuz, F. Ates, A. S. Cevik, et al. The graph based on Gröbner-Shirshov bases of groups, Fixed Point Theory Appl., 71 (2013).
    [17] U. Ali, B. Berceanu, Canonical forms of positive braids, J. Algebra Appl., 14 (2015), 1450076.
    [18] S. I. Adian, V. G. Durnev, Decision problems for groups and semigroups, Russ. Math. Surv., 55 (2000), 207-296. doi: 10.1070/RM2000v055n02ABEH000267
    [19] F. L. Pritchard, The ideal membership problem in non-commutative polynomial rings, J. Symb. Comput., 22 (1996), 27-48. doi: 10.1006/jsco.1996.0040
    [20] D. Easdown, T. G. Lavers, The inverse braid monoid, Adv. Math., 186 (2004), 438-455. doi: 10.1016/j.aim.2003.07.014
    [21] E. H. Moore, Concerning the abstract groups of order k! and $\frac{1}{2}k!$ holohedrically isomorphic with the symmetric and alternating substitution groups on k letters, Proc. London Math. Soc., 28 (1897), 357-366.
    [22] L. M. Popova, Defining relations in some semigroups of partial transformations of a finite set (in Russian), Uchenye Zap. Leningrad. Gos. Ped. Inst., 218 (1961), 191-212.
    [23] J. East, A symmetrical presentation for the singular part of the symmetric inverse monoid, Algebr. Univ., 74 (2015), 207-228. doi: 10.1007/s00012-015-0347-y
    [24] L. A. Bokut, Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras, Izv. Akad. Nauk SSSR Math., 36 (1972), 1173-1219.
    [25] B. Buchberger, An algorithmic criteria for the solvability of algebraic systems of equations (in German), Aequationes Math., 4 (1970), 374-383. doi: 10.1007/BF01844169
    [26] L. A. Bokut, Y. Chen, Gröbner-Shirshov bases and their calculation, Bull. Math. Sci., 4 (2013), 325-395.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3130) PDF downloads(259) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog