Citation: Ahmet S. Cevik, Eylem G. Karpuz, Hamed H. Alsulami, Esra K. Cetinalp. A Gröbner-Shirshov basis over a special type of braid monoids[J]. AIMS Mathematics, 2020, 5(5): 4357-4370. doi: 10.3934/math.2020278
[1] | A. M. Cohen, J. W. Knopper, Computing Gröbner bases of noncommutative polynomials, GBNP (version 1.0.3), 2016. Available from: https://www.gap-system.org/Packages/gbnp.html. |
[2] | B. Buchberger, An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal (in German). PhD thesis, University of Innsbruck, Innsbruck, Austria, 1965. |
[3] | G. M. Bergman, The diamond lemma for ring theory, Adv. Math., 29 (1978), 178-218. doi: 10.1016/0001-8708(78)90010-5 |
[4] | A. I. Shirshov, Certain algorithmic problem for Lie algebras (in Russian), Sibirskii Math. Z., 3 (1962), 292-296; English translation in SIGSAM Bull., 33 (1999), 3-6. |
[5] | L. A. Bokut, Embeddings into simple associative algebras, Algebr. Log., 15 (1976), 73-90. doi: 10.1007/BF01877233 |
[6] | F. Ates, E. G. Karpuz, C. Kocapinar, et al. Gröbner-Shirshov bases of some monoids, Discrete Math., 311 (2011), 1064-1071. doi: 10.1016/j.disc.2011.03.008 |
[7] | F. Ates, E. G. Karpuz, C. Kocapinar, et al. Gröbner-Shirshov basis for the singular part of the Brauer semigroup, Turk. J. Math., 42 (2018), 1338-1347. |
[8] | L. A. Bokut, Gröbner-Shirshov basis for the Braid group in the Birman-Ko-Lee generators, J. Algebr., 321 (2009), 361-376. doi: 10.1016/j.jalgebra.2008.10.007 |
[9] | L. A. Bokut, Y. Chen, X. Zhao, Gröbner-Shirshov bases for free inverse semigroups, Int. J. Algebr. Comput., 19 (2009), 129-143. doi: 10.1142/S0218196709005019 |
[10] | E. G. Karpuz, Gröbner-Shirshov bases of some semigroup constructions, Algebr. Colloq., 22 (2015), 35-46. doi: 10.1142/S100538671500005X |
[11] | E. G. Karpuz, F. Ates, A. S. Cevik, Gröbner-Shirshov bases of some Weyl groups, Rocky MT. J. Math., 45 (2015), 1165-1175. doi: 10.1216/RMJ-2015-45-4-1165 |
[12] | C. Kocapinar, E. G. Karpuz, F. Ates, et al. Gröbner-Shirshov bases of the generalized Bruck-Reilly *-extension, Algeb. Colloq., 19 (2012), 813-820. doi: 10.1142/S1005386712000703 |
[13] | A. I. Shirshov, Selected works of A.I.Shirshov, Birkhauser Basel, 2009. |
[14] | Y. Chen, B. Wang, Gröbner-Shirshov bases and Hilbert series of free dendriform algebras, Southeast Asian Bull. Math., 34 (2010), 639-650. |
[15] | Z. Iqbal, S. Yousaf, Hilbert series of the braid monoid MB4 in band generators, Turk. J. Math., 38 (2014), 977-984. doi: 10.3906/mat-1401-58 |
[16] | E. G. Karpuz, F. Ates, A. S. Cevik, et al. The graph based on Gröbner-Shirshov bases of groups, Fixed Point Theory Appl., 71 (2013). |
[17] | U. Ali, B. Berceanu, Canonical forms of positive braids, J. Algebra Appl., 14 (2015), 1450076. |
[18] | S. I. Adian, V. G. Durnev, Decision problems for groups and semigroups, Russ. Math. Surv., 55 (2000), 207-296. doi: 10.1070/RM2000v055n02ABEH000267 |
[19] | F. L. Pritchard, The ideal membership problem in non-commutative polynomial rings, J. Symb. Comput., 22 (1996), 27-48. doi: 10.1006/jsco.1996.0040 |
[20] | D. Easdown, T. G. Lavers, The inverse braid monoid, Adv. Math., 186 (2004), 438-455. doi: 10.1016/j.aim.2003.07.014 |
[21] | E. H. Moore, Concerning the abstract groups of order k! and $\frac{1}{2}k!$ holohedrically isomorphic with the symmetric and alternating substitution groups on k letters, Proc. London Math. Soc., 28 (1897), 357-366. |
[22] | L. M. Popova, Defining relations in some semigroups of partial transformations of a finite set (in Russian), Uchenye Zap. Leningrad. Gos. Ped. Inst., 218 (1961), 191-212. |
[23] | J. East, A symmetrical presentation for the singular part of the symmetric inverse monoid, Algebr. Univ., 74 (2015), 207-228. doi: 10.1007/s00012-015-0347-y |
[24] | L. A. Bokut, Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras, Izv. Akad. Nauk SSSR Math., 36 (1972), 1173-1219. |
[25] | B. Buchberger, An algorithmic criteria for the solvability of algebraic systems of equations (in German), Aequationes Math., 4 (1970), 374-383. doi: 10.1007/BF01844169 |
[26] | L. A. Bokut, Y. Chen, Gröbner-Shirshov bases and their calculation, Bull. Math. Sci., 4 (2013), 325-395. |