Citation: Tariq A. Aljaaidi, Deepak B. Pachpatte. Some Grüss-type inequalities using generalized Katugampola fractional integral[J]. AIMS Mathematics, 2020, 5(2): 1011-1024. doi: 10.3934/math.2020070
[1] | E. Akin, S. Aslıyüce, A. F. Güvenilir, et al. Discrete Grüss type inequality on fractional calculus, J. Inequal. Appl., 2015 (2015), 174. |
[2] | V. L. Chinchane, D. B. Pachpatte, A note on fractional integral inequality involving convex functions using saigo fractional integral, Indian J. Math., 61 (2019), 27-39. |
[3] | V. L. Chinchane, D. B. Pachpatte, On some new Grüss-type inequality using Hadamard fractional integral operator, J. Fract. Calc. Appl., 5 (2014), 1-10. |
[4] | Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (2010), 93-99. |
[5] | Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlin. Sci., 9 (2010), 493-497. |
[6] | S. S. Dragomir, A generalization of Grüss inequality in inner product spaces and applications, J. Math. Anal. Appl., 237 (1999), 74-82. doi: 10.1006/jmaa.1999.6452 |
[7] | S. S. Dragomir, Some integral inequalities of Grüss type, Indian J. Pur. Appl. Math., 31 (2000), 397-415. |
[8] | T. S. Du, J. G. Liao, L. Z. Chen, et al. Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (α, m)-preinvex functions, J. Inequal. Appl., 2016 (2016), 306. |
[9] | T. Du, M. U. Awan, A. Kashuri, et al. Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m, h)-preinvexity, Appl. Anal., 2019 (2019), 1-21. |
[10] | N. Elezovic, L. J. Marangunic, J. Pecaric, Some improvements of Grüss type inequality, J. Math. Inequal., 1 (2007), 425-436. |
[11] | G. Gruss, Uber das maximum des absoluten betrages von, Math. Z., 39 (1935), 215-226. doi: 10.1007/BF01201355 |
[12] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1-15. |
[13] | U. N. Katugampola, New fractional integral unifying six existing fractional integrals, 2016, arXiv:1612.08596 (eprint). |
[14] | A. M. D Mercer, P. Mercer, New proofs of the Grüss inequality, Aust. J. Math. Anal. Appl., 1 (2004), 12. |
[15] | D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classical and New Inequalities in Analysis, Springer, 1993. |
[16] | N. Minculete, L. Ciurdariu, A generalized form of Grüss type inequality and other integral inequalities, J. Inequal. Appl., 2014 (2014), 119. |
[17] | B. G. Pachpatte, A note on Chebyshev-Grüss inequalities for differential equations, Tamsui Oxf. J. Math. sci., 22 (2006), 29-37. |
[18] | B. G. Pachpatte, On multidimensional Grüss type integral inequalities, J. Inequal. Pure Appl. Math., 3 (2002), 27. |
[19] | J. V. C. Sousa, D. S. Oliveira, E. C. de Oliveira, Grüss-type inequalities by means of generalized fractional integrals, B. Braz. Math. Soc., 50 (2019), 1029-1047. doi: 10.1007/s00574-019-00138-z |
[20] | J. Tariboon, S. K. Ntouyas, W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Math. Sci., 2014 (2014). |
[21] | G. Wang, P. Agarwal, M. Chand, Certain Grüss type inequalities involving the generalized fractional integral operator, J. Inequal. Appl., 2014 (2014), 147. |
[22] | C. Zhu, W. Yang, Q. Zhao, Some new fractional q-integral Grüss-type inequalities and other inequalities, J. Inequal. Appl., 2012 (2012), 299. |