Citation: Eric Ariel L. Salas, Sadichya Amatya, Geoffrey M. Henebry. Application of Iterative Noise-adding Procedures for Evaluation of Moment Distance Index for LiDAR Waveforms[J]. AIMS Geosciences, 2017, 3(2): 187-215. doi: 10.3934/geosci.2017.2.187
[1] | Garner R (2014) New NASA Probe Will Study Earth's Forests in 3-D. NASA, 08-Sep-2014. Available from: http://www.nasa.gov/content/goddard/new-nasa-probe-will-study-earth-s-forests-in-3-d. |
[2] | Ni-Meister W, Jupp DLB, Dubayah R (2001) Modeling lidar waveforms in heterogeneous and discrete canopies. IEEE Trans Geosci Remote Sens 39: 1943-1958. doi: 10.1109/36.951085 |
[3] | Koetz B (2007) Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization. Remote Sens Environ 106: 449-459. doi: 10.1016/j.rse.2006.09.013 |
[4] | Wu J (2009) Lidar waveform-based woody and foliar biomass estimation in savanna environments. Proc Silvilaser, 1-10. |
[5] | Lefsky MA, Harding D, Cohen WB, et al. (1999) Surface Lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sens Environ 67: 83-98. doi: 10.1016/S0034-4257(98)00071-6 |
[6] | Dubayah RO, Drake JB (2000) Lidar remote sensing for forestry. J For 98: 44-46. |
[7] | Hurtt GC (2004) Beyond potential vegetation: combining Lidar data and a height-structured model for carbon studies. Ecol Appl 14: 873-883. doi: 10.1890/02-5317 |
[8] | Lefsky MA, Keller M, Panga Y, et al. (2007) Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms. J Appl Remote Sens 1: 013537. doi: 10.1117/1.2795724 |
[9] | Sun G, Ranson KJ, Kimes DS, et al. (2008) Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data. Remote Sens Environ 112: 107-117. doi: 10.1016/j.rse.2006.09.036 |
[10] | Chen Q (2010) Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry. Remote Sens Environ 114: 1610-1627. doi: 10.1016/j.rse.2010.02.016 |
[11] | Lefsky M, McHale MR (2008) Volume estimates of trees with complex architecture from terrestrial laser scanning. J Appl Remote Sens 2: 1-19. |
[12] | Duncanson LI, Niemann KO, Wulder MA (2010) Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sens Environ 114: 138-154. doi: 10.1016/j.rse.2009.08.018 |
[13] | Yan WY, Shaker A, El-Ashmawy N (2015) Urban land cover classification using airborne LiDAR data: A review. Remote Sens Environ 158: 295-310. doi: 10.1016/j.rse.2014.11.001 |
[14] | Reitberger J, Krzystek P, Stilla U (2008) Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. Int J Remote Sens 29: 1407-1431. doi: 10.1080/01431160701736448 |
[15] | Vaughn NR, Moskal LM, Turnblom EC (2012) Tree species detection accuracies using discrete point lidar and airborne waveform lidar. Remote Sens 4: 377-403. doi: 10.3390/rs4020377 |
[16] | Alonzo M, Bookhagen B, Roberts DA (2014) Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens Environ 148: 70-83. doi: 10.1016/j.rse.2014.03.018 |
[17] | Blair JB, Rabine DL, Hofton MA (1999) The Laser Vegetation Imaging Sensor (LVIS): A medium-altitude, digitization-only, airborne laser altimeter for mapping vegetation and topography. ISPRS J Photogramm Remote Sens 54: 115-122. doi: 10.1016/S0924-2716(99)00002-7 |
[18] | Drake JB, Dubayah RO, Knox RG, et al. (2002) Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest. Remote Sens Environ 81: 378-392. doi: 10.1016/S0034-4257(02)00013-5 |
[19] | Danson FM (2014) Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure. Agric For Meteorol 198–199: 7-14. |
[20] | Zhao K, Popescu S (2009) Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sens Environ 113: 1628-1645. doi: 10.1016/j.rse.2009.03.006 |
[21] | Zhao F (2011) Measuring effective leaf area index, foliage profile, and stand height in New England forest stands using a full-waveform ground-based lidar. Remote Sens Environ 115: 2954-2964. doi: 10.1016/j.rse.2010.08.030 |
[22] | Tang H (2012) Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica. Remote Sens Environ 124: 242-250. doi: 10.1016/j.rse.2012.05.005 |
[23] | Adams T, Beets P, Parrish C (2011) Another dimension from LiDAR – Obtaining foliage density from full waveform data. Int Conf LiDAR Appl Assess For Ecosyst, Oct. 2011. |
[24] | Drake JB, Dubayah RO, Clark DB, et al. (2002) Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sens Environ 79: 305-319. doi: 10.1016/S0034-4257(01)00281-4 |
[25] | Drake JB, Knox RG, Dubayah RO, et al. (2003) Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships. Glob Ecol Biogeogr 12: 147-159. doi: 10.1046/j.1466-822X.2003.00010.x |
[26] | Ni-Meister W, Lee S, Strahler AH, et al. (2010) Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing. J Geophys Res Biogeosciences 115: p. G00E11. |
[27] | Powell SL, Cohen WB, Healey SP, et al. (2010) Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens Environ 114: 1053-1068. doi: 10.1016/j.rse.2009.12.018 |
[28] | Zolkos SG, Goetz SJ, Dubayah RO (2013) A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens Environ 128: 289-298. doi: 10.1016/j.rse.2012.10.017 |
[29] | Huang W, Sun G, Dubayah RO, et al (2013) Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales. Remote Sens Environ 134: 319-332. doi: 10.1016/j.rse.2013.03.017 |
[30] | Whitehurst AS, Swatantran A, Blair JB, et al. (2013) Characterization of canopy layering in forested ecosystems using full waveform Lidar. Remote Sens 5: 2014-2036. doi: 10.3390/rs5042014 |
[31] | Zhao F, Yang X, Strahler AH, et al. (2013) A comparison of foliage profiles in the Sierra National Forest obtained with a full-waveform under-canopy EVI lidar system with the foliage profiles obtained with an airborne full-waveform LVIS lidar system. Remote Sens Environ 136: 330-341. doi: 10.1016/j.rse.2013.05.020 |
[32] | Wagner W, Ullrich A, Ducic V, et al. (2006) Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J Photogramm Remote Sens 60: 100-112. doi: 10.1016/j.isprsjprs.2005.12.001 |
[33] | Mallet C, Bretar F (2009) Full-waveform topographic lidar: State-of-the-art. ISPRS J Photogramm Remote Sens 64: 1-16. |
[34] | Hancock S, Lewis P, Foster M, et al. (2012) Measuring forests with dual wavelength lidar: A simulation study over topography. Agric For Meteorol 161: 123-133. |
[35] | Lefsky MA, Harding DJ, Keller M, et al. (2005) Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett 32: L22S02. |
[36] | Hancock S, Armston J, Li Z, et al. (2015) Waveform lidar over vegetation: An evaluation of inversion methods for estimating return energy. Remote Sens Environ 164: 208-224. doi: 10.1016/j.rse.2015.04.013 |
[37] | Martinuzzi S, Vierling LA, Gould WA, et al. (2009) Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sens Environ 113: 2533-2546. doi: 10.1016/j.rse.2009.07.002 |
[38] | Unser M (1999) Splines: a perfect fit for signal and image processing. IEEE Signal Process Mag 16: 22-38. |
[39] | El-Baz A, Gimel'farb G (2007) EM-based approximation of empirical distributions with linear combinations of discrete Gaussians. IEEE Int Conf Image Process 4: IV-373-IV-376. |
[40] | Hofton MA, Minster JB, Blair JB (2000) Decomposition of laser altimeter waveforms. IEEE Trans Geosci Remote Sens 38: 1989-1996. doi: 10.1109/36.851780 |
[41] | Anderson K, Hancock S, Disney M, et al. (2016) Is waveform worth it? A comparison of LiDAR approaches for vegetation and landscape characterization. Remote Sens Ecol Conserv 2: 5-15. |
[42] | Hopkinson C, Chasmer L (2009) Testing LiDAR models of fractional cover across multiple forest ecozones. Remote Sens Environ 113: 275-288. doi: 10.1016/j.rse.2008.09.012 |
[43] | Muss JD, Mladenoff N, Townsend PA (2011) A pseudo-waveform technique to assess forest structure using discrete lidar data. Remote Sens Environ 115: 824-835. doi: 10.1016/j.rse.2010.11.008 |
[44] | García A, Riaño D, Chuvieco E, et al. (2010) Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens Environ 114: 816-830. doi: 10.1016/j.rse.2009.11.021 |
[45] | Salas EAL, Henebry GM (2013) A new approach for the analysis of hyperspectral data: Theory and sensitivity analysis of the Moment Distance method. Remote Sens 6: 20-41. doi: 10.3390/rs6010020 |
[46] | Salas EAL, Henebry GM (2012) Separability of maize and soybean in the spectral regions of chlorophyll and carotenoids using the Moment Distance Index. Isr J Plant Sci 60: 65-76. doi: 10.1560/IJPS.60.1-2.65 |
[47] | Aguilar MA, Nemmaoui A, Novelli A, Aguilar FJ, García Lorca A (2016) Object-based greenhouse mapping using very high resolution satellite data and Landsat 8 time series. Remote Sens 8: 513. doi: 10.3390/rs8060513 |
[48] | Salas EAL, Boykin KG, Valdez R (2016) Multispectral and texture feature application in image-object analysis of summer vegetation in eastern Tajikistan Pamirs. Remote Sens 8: 78. doi: 10.3390/rs8010078 |
[49] | Salas EAL, Henebry GM (2016) Canopy height estimation by characterizing waveform LiDAR geometry based on shape-distance metric. Geosci 2: 366-390. |
[50] | Cawse-Nicholson K, van Aardt J, Romanczyk P, et al. (2014) Below-ground responses in waveform lidar due to multiple scattering. Available from: ftp://cis.rit.edu/people/vanaardt/Temp/PostDoc/Cawse_Echo_letter_2014.pdf |
[51] | Fieber FD, Davenport IJ, Tanase MA, et al. (2015) Validation of canopy height profile methodology for small-footprint full-waveform airborne LiDAR data in a discontinuous canopy environment. ISPRS J Photogramm Remote Sens 104: 144-157. doi: 10.1016/j.isprsjprs.2015.03.001 |
[52] | Radke RJ, Andra S, Al-Kofahi O, et al. (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14: 294-307. doi: 10.1109/TIP.2004.838698 |
[53] | Henderson D, Hamernik RP (1986) Impulse noise: critical review. J Acoust Soc Am 80: 569-584. doi: 10.1121/1.394052 |
[54] | Sripad A., Snyder D (1977) A necessary and sufficient condition for quantization errors to be uniform and white. IEEE Trans Acoust Speech Signal Process 25: 442-448. doi: 10.1109/TASSP.1977.1162977 |
[55] | Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36: 1627-1639. doi: 10.1021/ac60214a047 |
[56] | Madden HH (1978) Comments on the Savitzky-Golay convolution method for least-squares-fit smoothing and differentiation of digital data. Anal Chem 50: 1383-1386. doi: 10.1021/ac50031a048 |
[57] | Kotchenova SY, Song X, Shabanov NV, et al. (2004) Lidar remote sensing for modeling gross primary production of deciduous forests. Remote Sens Environ 92: 158-172. doi: 10.1016/j.rse.2004.05.010 |
[58] | Li Q (2008) Decomposition of airborne laser scanning waveform data based on EM algorithm. Int Arch Photogramm Remote Sens Spat Inf Sci 37: 211-218. |
[59] | Popescu SC, Wynne RH (2004) Seeing the trees in the forest. Photogramm Eng Remote Sens 70: 589-604. doi: 10.14358/PERS.70.5.589 |