Citation: Jennifer K. Costanza, Robert C. Abt, Alexa J. McKerrow, Jaime A. Collazo. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios[J]. AIMS Environmental Science, 2015, 2(2): 180-202. doi: 10.3934/environsci.2015.2.180
[1] | LanJiang Luo, Haihong Liu, Fang Yan . Dynamic behavior of P53-Mdm2-Wip1 gene regulatory network under the influence of time delay and noise. Mathematical Biosciences and Engineering, 2023, 20(2): 2321-2347. doi: 10.3934/mbe.2023109 |
[2] | Orit Lavi, Doron Ginsberg, Yoram Louzoun . Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle. Mathematical Biosciences and Engineering, 2011, 8(2): 445-461. doi: 10.3934/mbe.2011.8.445 |
[3] | Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486 |
[4] | Xinyou Meng, Jie Li . Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting. Mathematical Biosciences and Engineering, 2020, 17(3): 1973-2002. doi: 10.3934/mbe.2020105 |
[5] | Fabien Crauste . Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences and Engineering, 2006, 3(2): 325-346. doi: 10.3934/mbe.2006.3.325 |
[6] | Kalyan Manna, Malay Banerjee . Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 2411-2446. doi: 10.3934/mbe.2019121 |
[7] | Dan Liu, Shigui Ruan, Deming Zhu . Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Mathematical Biosciences and Engineering, 2012, 9(2): 347-368. doi: 10.3934/mbe.2012.9.347 |
[8] | Mohammad Sajid, Sahabuddin Sarwardi, Ahmed S. Almohaimeed, Sajjad Hossain . Complex dynamics and Bogdanov-Takens bifurcations in a retarded van der Pol-Duffing oscillator with positional delayed feedback. Mathematical Biosciences and Engineering, 2023, 20(2): 2874-2889. doi: 10.3934/mbe.2023135 |
[9] | Juenu Yang, Fang Yan, Haihong Liu . Dynamic behavior of the p53-Mdm2 core module under the action of drug Nutlin and dual delays. Mathematical Biosciences and Engineering, 2021, 18(4): 3448-3468. doi: 10.3934/mbe.2021173 |
[10] | Maoan Han, Tonghua Zhang . Some bifurcation methods of finding limit cycles. Mathematical Biosciences and Engineering, 2006, 3(1): 67-77. doi: 10.3934/mbe.2006.3.67 |
In this paper, we consider the following initial boundary value problem for higher-order nonlinear viscous parabolic type equations.
$\left\{ ut+(−Δ)Lu+(−Δ)Kut−∫t0g(t−s)(−Δ)Lu(s)ds=a|u|R−2u,x∈Ω,t≥0, (1.1)u(x,0)=u0(x)∈HL0(Ω), (1.2)∂iu∂vi=0,i=0,1,2,...L−1x∈∂Ω,t≥0, (1.3) \right. $ |
where $ L, K \geq 1 $ is an integer number, $ R\geq $ max $ \{2, 2a, 2H\} $ where $ a > 0 $ is a real number, and $ \Omega \subseteq R^N(N\geq 1) $ is a bounded domain with a smooth boundary $ \partial\Omega $.
Equation (1.1) includes many important physical models. In the absence of the memory term and dispersive term, and with $ L = K = 1 $ and $ a = 0 $, Eq (1.1) becomes the linear pseudo-parabolic equation
$ ut−Δu−βut=0. $ | (1.4) |
Showalter and Ting [1] and Gopala Rao and Ting [2] investigated the initial boundary value problem of the linear Eq (1.4) and proved the existence and uniqueness of solutions. Pseudo-parabolic equations appear in many applications for natural sciences, such as radiation with time delay [3], two-phase porous media flow models with dynamic capillarity or hysteresis [4], phase field-type models for unsaturated porous media flows [5], heat conduction models [6], models to describe lightning [7], and so on. A number of authors (Showalter [8,9], DiBenedetto and Showalter [10], Cao and Pop [11], Fan and Pop [12], Cuesta and Pop [13], Schweizer [14], Kaikina [15,16], Matahashi and Tsutsumi [17,18]) have considered this kind of equation by various methods and made a lot of progress. Not only were the existence, uniqueness, and nonexistence results for pseudo-parabolic equations were obtained, but the asymptotic behavior, regularity, and other properties of solutions were also investigated.
In 1972, Gopala Rao et al. [2,19] studied the equation $ u_{t}-k\Delta u_{t}- \Delta u = 0 $. They use the principle of maximum value to establish the uniqueness and the existence of solutions. Using the potential well method and the comparison principle, Xu and Su[20] studied the overall existence, nonexistence, and asymptotic behavior of the solution of the equation $ u_{t}-\Delta u_{t}-\Delta u = u^q $, and they also proved that the solution blows up in finite time when $ J(u_{0}) > d $.
When $ L = K = 1 $, Eq (1.1) becomes
$ ut−Δu=∫t0b(t−τ)Δu(τ)dτ+f(u). $ | (1.5) |
Equation (1.5) originates from various mathematical models in engineering and physical sciences, such as in the study of heat conduction in materials with memory. Yin [21] discussed the problem of initial boundary values of Eq (1.5) and obtained the global existence of classical solutions under one-sided growth conditions. Replacing the memory term $ b(\cdot) $ in (1.5) by $ -g(\cdot) $, Messaoudi[22] proves the blow-up of the solution with negative and vanishing initial energies. When $ f(u) = |u|^{q-2}u $, Messaoudi[23] proved the result of the blow-up of solutions for this equation with positive initial energy under the appropriate conditions of $ b $ and $ q $. Sun and Liu [24] studied the equation
$ ut−Δu−Δut+∫t0g(t−τ)Δu(τ)dτ=uq−2u. $ | (1.6) |
They applied the Galerkin method, the concavity method, and the improved potential well method to prove existence of a global solution and the blow-up results of the solution when the initial energy $ J(u(0))\leq d(\infty) $, and Di et al. [25] obtained the blow-up results of the solution of Eq (1.6) when the initial energy is negative or positive and gave some upper bounds on the blow-up time, and they proved lower bounds on the blow up time by applying differential inequalities.
When $ m > 1 $, Cao and Gu[26] studied the higher order parabolic equations
$ ut+(−Δ)mu=|u|qu. $ | (1.7) |
By applying variational theory and the Galerkin method, they obtained existence and uniqueness results for the global solution. When the initial value belongs to the negative index critical space $ H^{-s, R^s}, R^s = \frac{n\alpha}{w-s\alpha} $, Wang[27,28] proved the existence and uniqueness of the local and the global solutions of the Cauchy problem of Eq (1.7) by using $ L^r-L^q $ estimates. Caristi and Mitidieri [29] applied the method in [30] to prove the existence and nonexistence of the global solution of the initial boundary value problem for higher-order parabolic equations when the initial value decays slowly. Budd et al. [31] studied the self-similar solutions of Eq (1.7) for $ n = 1, k > 1 $. Ishige et al. [32] proved the existence of solutions to the Cauchy problem for a class of higher-order semilinear parabolic equations by introducing a new majority kernel, and also gave the existence of a local time solution for the initial data and necessary conditions for the solution of the Cauchy problem, and determine the strongest singularity of the initial data for the solutions of the Cauchy problem.
When $ K = L, g = 0 $, problem (1.1) becomes the following $ n $-dimensional higher-order proposed parabolic equation
$ ut(x,t)+(−1)MΔMut(x,t)+(−1)MΔMu(x,t)=a|u|q−1u. $ | (1.8) |
Equation (1.8) describes some important physical problems [33] and has attracted the attention of many scholars. Xiao and Li [34] have proved the existence of a non-zero weak solution to the static problem of problem (1.8) by means of the mountain passing theorem, and, additionally, based on the method of potential well theory, they proved the existence of a global weak solution of the development in the equations.
Based on the idea of Li and Tsai [35], this paper discusses the property of the solution of problem (1.1)–(1.3) regarding the solution blow-up in finite time under different initial energies $ E(0) $. An upper bound on the blow-up time $ T^{*} $ is established for different initial energies, and, additionally, a lower bound on the blow-up time $ T^{*} $ is established by applying a differential inequality.
To describe the main results of this paper, this section gives some notations, generalizations, and important lemmas. We adopt the usual notations and convention. Let $ H^L(\Omega) $ denote the Sobolev space with the usual scalar products and norm, Where $ H_{0}^L(\Omega) $ denotes the closure in $ H_{0}^L(\Omega) $ of $ C_{0}^{\infty}(\Omega) $. For simplicity of notation, hereafter we denote by $ ||.||_{p} $ the Lebesgue space $ L^p(\Omega) $ norm, and by $ ||.|| $ the $ L^2(\Omega) $ norm; equivalently we write the norm $ ||D^L \cdot || $ instead of the $ H_{0}^L(\Omega) $ norm $ ||.||_{H_{0}^L(\Omega)} $, where $ D $ denotes the gradient operator, that is, $ D\cdot = \bigtriangledown \cdot = \left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, .... \frac{\partial}{\partial x_{n}}\right) $. Moreover, $ D^L\cdot = \bigtriangleup^{j}\cdot $ if $ L = 2j $, and $ D^L\cdot = D \bigtriangleup^{j}\cdot $ if $ L = 2j+1 $.
$ L^p(\Omega) = L^p, \quad ||u||_{L^p(\Omega)} = ||u||_{p} = \left(\int_{\Omega}|u|^{p}dx\right)^{\frac{1}{p}}, $ |
$ H_{0}^{L}(\Omega) = W_{0}^{L, 2}(\Omega) = H_{0}^{L}, \quad ||u||_{H_{0}^{L}(\Omega)} = ||u||_{H_{0}^{L}} = \left(\int_{\Omega}|u|^2+|D^L u|^2dx\right)^{\frac{1}{2}}. $ |
To justify the main conclusions of this paper, the following assumptions are made on $ K $ $ L $, and the relaxation function $ g(\cdot) $.
$ (A_1) $ $ 1\leq K < L $ are integers with $ 2a \leq R < +\infty $ if $ n < 2L $; $ 2a \leq R\leq \frac{2n}{n-2L} $ if $ n > 2L $,
where $ a > 1 $
$ (A_2) $ $ g:R^+\rightarrow R^+ $ is a $ C^1 $ function, satisfing
$ g(t)≥0,g′(t)≤0,2aR−2a<β=1−∫∞0g(s)ds≤1−∫t0g(s)ds. $ | (2.1) |
Define the energy functional of problem $ (1.1)-(1.3) $ as
$ E(t)=∫t0∥ut∥2+12(1−∫t0g(s)ds)∥DLu∥2+12(g∘DLu)(t)−aR∥u∥RR $ | (2.2) |
where $ \left(g\circ D^L u \right)(t) = \int_0^t g(t-s)\parallel D^L u(t)-D^L u(s)\parallel^2 \, ds $.
Both sides of Eq $ (1.1) $ are simultaneously multiplied by $ u_{t} $ and integrated over $ \Omega $, and from $ (A_1) $ and $ (2.1) $ we have that
$ E′(t)=−∥DKut∥2+12(g′∘DLu)(t)−12g(t)∥DLu∥2<0. $ | (2.3) |
Definition 2.1 We say that $ u(x, t) $ is a weak solution of problem (1.1) if $ u \in L^{\infty}([0, T);H_{0}^L(\Omega)), u_{t} \in L^2([0, T);H_{0}^L(\Omega)) $, and $ u $ satisfies
$ (u_t, v)+(D^L u, D^L v)+(D^K u_t, D^K v)-\int_{0}^{t}g(t-\tau)(D^L u(\tau), D^L v)d \tau = (a|u|^{R-2}u, v) $ |
for all test functions $ v \in H_{0}^L(\Omega) $ and $ t\in [0, T] $.
Theorem 2.1 (Local existence) Suppose that (A1) and (A2) hold. If $ (u_{0}, u_{1}) \in H_{0}^L(\Omega) \times L^2 (\Omega) $, then there exists $ T > 0 $ such that problem (1.1) admits a unique local solution $ u(t) $ which satisfies
$ u\in L^2 ([0, T);H_{0}^L(\Omega)), \quad u_{t}\in L^2([0, T);L^2(\Omega) \cap L^2([0, T];H_{0}^K(\Omega)). $ |
Moreover, at least one of the following statements holds true:
$ \int_{0}^{t} ||u||^2 + ||D^L u||^2 \rightarrow +\infty, as \ t \rightarrow T , or\quad T = +\infty. $ |
The existence and uniqueness of the local solution for problem (1.1) can be obtained by using Faedo-Galerkin methods and the contraction mapping principle in [30,36,37,38].
Lemma 2.1[39]. Let $ q $ be a real number with $ 2\leq q\leq +\infty $ if $ n\leq 2L $, and $ 2\leq q\leq \frac{2n}{n-2L} $ if $ n > 2L $. Then there exists a constant $ B $ dependent on $ \Omega $ and $ q $ such that
$ ∥u∥q≤B∥DLu∥,u∈HL0(Ω). $ | (2.4) |
Remark 2.1. According to Eqs $ (1.1)-(1.3) $ and Lemma 2.1, we get
$ E(t)≥12(1−∫t0g(s)ds)‖DLu‖2+12(g∘DLu)(t)−aR‖u‖RR≥12β‖DLu‖2+12(g∘DLu)(t)−aBRR(‖DLu‖2)R2≥12[(g∘DLu)(t)+β‖DLu‖2]−aBRRβR2[β‖DLu‖2+(g∘DLu)(t)]R2=Q([β‖DLu‖2+(g∘DLu)(t)]12). $ | (2.5) |
Let $ Q(\xi) = \frac{1}{2}\xi^2-\frac{a B^R}{R\beta^{\frac{R}{2}}}\xi^R, \; \xi = \left(\beta\|D^L u\|^2+(g\circ D^L u)(t)\right)^{\frac{1}{2}} > 0. $ A direct calculation yields that $ Q'(\xi) = \xi-\frac{a B^R}{\beta^{\frac{R}{2}}}\xi^{R-1}, Q''(\xi) = 1-\frac{a(R-1)B^R}{\beta^{\frac{R}{2}}}\xi^{R-2}. $ From $ Q'(\xi) = 0, $ we get that $ \xi_1 = \left(\frac{\beta}{aB^2}\right)^{\frac{R}{2(R-2)}} $. When $ \xi = \xi_1 $, direct calculation gives $ Q''(\xi) = 2-R < 0 $. Therefore, $ Q(\xi) $ is maximum at $ \xi_1 $, and its maximum value is
$ H=Q(ξ1)=R−22R(βaB2)R(R−2)=R−22Rξ21. $ | (2.6) |
Lemma 2.2. Let conditions $ (A_1), (A_2) $ hold, $ u $ be a solution of ($ (1.1-(1.3) $), $ E(0) < H $, and $ \beta^{\frac{1}{2}}\|D^L u_0\| > \xi_1 $. Then there exists $ \xi_2 > \xi_1, $ such that
$ β‖DLu‖2+(g∘DLu)(t)≥ξ22. $ | (2.7) |
Proof. From Remark 2.1, $ Q(\xi) $ is increasing on $ (0, \xi_1) $ and decreasing on $ (\xi_1, +\infty) $. $ Q(\xi)\rightarrow -\infty, (\xi\rightarrow \infty). $ According to $ E(0) < H $, there exists $ \xi'_2, \xi_2 $ such that $ \xi_1\in(\xi'_2, \xi_2), $ and $ Q(\xi'_2) = Q(\xi_2) = E(0). $ To prove Eq $ (2.7) $, we use the converse method. Assume that there exists $ t_0 > 0 $ such that
$ β‖DLu(t0)‖2+(g∘DLu)(t0)<ξ22. $ | (2.8) |
1) If $ \xi'_2 < \left(\beta\|D^L u(t_0)\|^2+(g\circ D^L u)(t_0)\right)^{\frac{1}{2}} < \xi_2 $, then
$ Q\left([\beta\|D^L u(t_0)\|^2+(g\circ D^L u)(t_0)]^{\frac{1}{2}}\right) > Q(\xi'_2) = Q(\xi_2) = E(0) > E(t_0). $ |
This contradicts $ (2.5) $.
2) If $ \left(\beta\|D^L u(t_0)\|^2+(g\circ D^L u)(t_0)\right)^{\frac{1}{2}}\leq\xi'_2. $
As $ \beta^{\frac{1}{2}}||D^L u_0|| > \xi_1 $, according to $ (2.5) $, $ Q\left(\beta^{\frac{1}{2}}\|D^L u_0\| \right) < E(0) = Q(\xi_2) $, which implies that $ \beta^{\frac{1}{2}}\|D^L u_0\| > \xi_2. $ Applying the continuity of $ \left(\beta\|D^L u(t_0)\|^2+(g\circ D^L u)(t_0)\right)^{\frac{1}{2}} $, we know that there exists a $ t_1\in(0, t_0) $ such that $ \xi'_2 < \left(\beta\|D^L u(t_1)\|^2+(g\circ D^L u)(t_1)\right)^{\frac{1}{2}} < \xi_2. $ hence, we have $ Q(\left(\beta\|D^L u(t_1)\|^2+(g\circ D^L u)(t_1)\right)^{\frac{1}{2}}) > E(0)\geq E(t_0) $, which contradicts $ (2.5) $.
The following lemma is very important and is similar to the proof of Lemma 4.2 in [35]. Here, we make some appropriate modifications
Lemma 2.3[40]. Let $ \Gamma(t) $ be a nonincreasing function of $ [t_0, \infty], t_0\geq 0 $. Satisfying the differential inequality
$ Γ′2(t)≥ρ+ψΓ(t)2+1ε,t≥t0 $ | (2.9) |
where $ \rho > 0, \psi < 0 $, there exists a positive number $ T^{*} $ such that
$ limt→T∗Γ(t)=0. $ | (2.10) |
The upper bound for $ T^{*} $ is
$ T∗≤t0+1√−ψln√ρ−ψ√ρ−ψ−Γ(t0) $ | (2.11) |
where $ \Gamma(t_0) < min \lbrace 1, \sqrt{\frac{\rho}{-\psi}}\rbrace $, and $ T_{max} $ denotes the maximal existence time of the solution
$ T_{max} = \sup\{ T > 0:u(., t) \in [0, T] \} < +\infty. $ |
In this section, we will give some blow-up results for solutions with initial energy $ (i) $ $ E(0) < 0 $; $ (ii) $ $ 0\leq E(0) < \frac{w}{R-2}H $; and $ (iii) $ $ \frac{w}{R-2}H\leq E(0) < \frac{||u_{0}||^2+||D^K u_{0}|||^2}{\mu} $. Moreover, some upper bounds for blow-up time $ T^* $ depending on the sign and size of initial energy $ E(0) $ are obtained for problem (1.1)–(1.3).
Define the functionals
$ Φ(t)=∫t0‖u‖2ds+∫t0‖DKu‖2ds, $ | (3.1) |
$ Γ(t)=[Φ(t)+(T0−t)(‖u0‖2+‖DKu0‖2)]−ε $ | (3.2) |
where $ \frac{1}{\beta}\leq\varepsilon\leq \frac{R-2a}{2a} $, and $ T_0 $ is positive.
Lemma 3.1. Let $ X, Y $, and $ \phi $ be positive, with $ p, q\geq 1, \frac{1}{p}+\frac{1}{q} = 1 $. Then,
$ XY≤ϕpXpp+Yqqϕq. $ | (3.3) |
Lemma 3.2. Let $ (A_1), (A_2) $ hold, $ u_0\in H_0^L(\Omega) $, and $ u $ be a solution of $ (1.1)-(1.3) $. Then, we have
$ Φ″(t)−4(1+ε)∫t0‖ut‖2ds≥Π(t) $ | (3.4) |
where $ \Pi(t) = -4(1+\varepsilon)E(0)+w[\beta\|D^L u\|^2+(g\circ D^L u)], \; w = 2\varepsilon-\frac{1}{2\beta} > 0. $
Proof. From $ (3.1) $, a direct calculation yields that
$ Φ′(t)=‖u‖2+‖DKu‖2=2∫t0∫Ωuutdxdτ+‖u0‖2+2∫t0∫ΩDKuDKutdxds+‖DKu0‖2, $ | (3.5) |
$ Φ″(t)=2∫Ωuutdx+2∫ΩDKuDKutdx=2∫Ωu[−(−△)Lu−(−△)Kut+∫t0g(t−s)(−△)Lu(s)ds+a|u|R−2u]dx+2∫ΩDKuDKutdx=−2‖DLu‖2−ddt‖DKu‖2+2∫t0∫Ωg(t−s)DLu(s)DLu(t)dxds+2a‖u‖RR+ddt‖Dku‖2. $ | (3.6) |
We infer from $ (2.2), (2.3) $, and $ (3.6) $ that
$ Φ″(t)−4(1+ε)∫t0‖ut‖2ds=Φ″(t)−4(1+ε)E(t)+(2+2ε)(1−∫t0g(s)ds)∥DLu∥2+(2+2ε)(g∘DLu)−4a(1+ε)R∥u∥RR≥−4(1+ε)E(0)+2ε∥DLu∥2+(2+2ε)(g∘DLu)+[2−4a(1+ε)R]∥u∥RR−(2+2ε)∫t0g(s)ds‖DLu‖2+2∫t0∫Ωg(t−s)DLu(s)DLu(t)dxds. $ | (3.7) |
Applying Lemma 3.1 yields
$ ∫t0∫Ωg(t−s)DLu(t)DLu(s)dxds=∫t0∫Ωg(t−s)DLu(t)[DLu(s)−DLu(t)]dxds+∫t0∫Ωg(t−s)DLu(t)Dlu(t)dxds≥−(g∘DLu)(t)+34∫t0g(s)ds‖DLu(t)‖2. $ | (3.8) |
Combining $ (3.7) $ and $ (3.8) $, we get
$ Φ″(t)−4(1+ε)∫t0‖ut‖2ds≥−4(1+ε)E(0)+2ε‖DLu‖2+2ε(g∘DLu)−(12+2ε)∫t0g(s)ds‖DLu‖2>−4(1+ε)E(0)+2ε‖DLu‖2+2ε(g∘DLu)+(12+2ε)(β−1)‖DLu‖2>−4(1+ε)E(0)+w[β‖DLu‖2+(g∘DLu)(t)] $ | (3.9) |
where $ w = 2\varepsilon-\frac{1}{2\beta} $.
Therom 3.1. Let assumptions $ (A_1) $ and $ (A_2) $ hold, and $ T_0 < \frac{1}{\|u_0\|^2+\|D^Ku_0\|^2} $. In addition, it is assumed that one of the following conditions holds true:
$ (1)E(0)<0;(2)0≤E(0)<wR−2H,β12‖DLu0‖>ξ1;(3)0<wR−2H<E(0)<‖u0‖2+‖DKu0‖2μ. $ |
Then, the solution of problem $ (1.1)-(1.3) $ blows up in finite time, which means the maximum time $ T^{*} $ of $ u $ is finite and
$ limt→T∗(∫t0‖u‖2ds+∫t0‖DKu‖2ds)=+∞. $ | (3.10) |
Case (1). if $ E(0) < 0 $, an upper bound on the blow-up time $ T^{*} $ can also be estimated according to the sign and size of energy $ E(0) $. Then,
$ T^{*}\leq \sqrt{\frac{-(2\varepsilon+1)}{8\varepsilon^2(\varepsilon+1)E(0)}} \cdot \ln\frac{1}{1-\sqrt{T_0(\|u_0\|^2+\|D^Ku_0\|^2)}}. $ |
Case (2). if $ 0 < E(0) < \frac{w}{R-2}H $, and $ \xi_1 < \beta^{\frac{1}{2}}\|D^Lu_0\| $, then
$ T^{*}\leq \sqrt{\frac{2\varepsilon+1}{8\varepsilon^2(\varepsilon+1)[\frac{w}{R-2}H-E(0)]}}. $ |
Case (3). if $ \frac{w}{R-2}H\leq E(0) < \frac{\|u_0\|^2+\|D^Ku_0\|^2}{\mu} $, then
$ T^{*}\leq \sqrt{\frac{2\varepsilon+1}{2\varepsilon^2\Lambda \chi(0)}}\cdot \ln\frac{1}{1-\sqrt{T_0(\|u_0\|^2+\|D^Ku_0\|^2)}} $ |
where $ \chi(0) = \|u_0\|^2+\|D^K u_0\|^2-\mu E(0) = \Phi'(0)-\mu E(0) $, $ \mu = \frac{4(1+\delta)}{\Lambda}, \Lambda = w\beta\frac{1}{B} $.
Case (1). if $ E(0) < 0 $, from $ (3.9) $ we infer that
$ Φ″(t)≥−4(1+ε)E(0)+w[β‖DLu‖2+(g∘DLu(t))]+4(1+ε)∫t0‖ut‖2ds>0,t≥0. $ | (3.11) |
Thus, it follows that $ \Phi'(t) $ is monotonically increasing. Therefore, $ \Phi'(t) > \Phi'(0) = \|u_0\|^2+\|D^K u_0\|^2 $
and the second derivative of Eq $ (3.2) $ gives
$ Γ′(t)=−εΓ(t)1+1ε[Φ′(t)−‖u0‖2], $ | (3.12) |
$ Γ″(t)=−εΓ(t)1+1ε{Φ″(t)[Φ(t)+(T0−t)(‖u0‖2+‖DKu0‖2)]−(1+ε)[Φ′(t)−‖u0‖2−‖DKu0‖2]2}=−εΓ(t)1+2εV(t) $ | (3.13) |
where
$ V(t) = \Phi''(t)[\Phi(t)+(T_0-t)(\|u_0\|^2+\|D^K u_0\|^2)] -(1+\varepsilon)[\Phi'(t)-\|u_0\|^2-\|D^K u_0\|^2]^2. $ |
From Lemma 3.2, we have
$ Φ″(t)[Φ(t)+(T0−t)(‖u0‖2+‖DKu0‖2)]≥[Π(t)+4(1+ε)∫t0‖ut‖2ds][∫t0‖u‖2ds+∫t0‖DKu‖2ds+(T0−t)(‖u0‖2+DKu0‖2)]≥Π(t)Γ(t)−1ε+4(1+ε)∫t0‖ut‖2ds∫t0‖u‖2ds+4(1+ε)∫t0‖ut‖2ds∫t0‖DKu‖2ds. $ | (3.14) |
Therefore,
$ [Φ′(t)−‖u0‖2−‖DKu0‖2]2=4(∫t0∫Ωuutdxds)2+4(∫t0∫ΩDKuDKutdxds)2+8∫t0∫Ωuutdxds∫t0∫ΩDKuDKutdxds. $ | (3.15) |
Applying Holder's inequality, Lemma 3.1 yields
$ 4(∫t0∫Ωuutdxds)2≤4∫t0‖u‖2ds⋅∫t0‖ut‖2ds, $ | (3.16) |
$ 4(∫t0∫ΩDKu⋅DKutdxds)2≤4∫t0‖DKu‖2ds⋅∫t0‖DKut‖2ds, $ | (3.17) |
$ 8∫t0∫Ωuutdxds⋅∫t0∫ΩDKu⋅DKutdxds≤4∫t0‖u‖2ds⋅∫t0‖DKut‖2ds+4∫t0‖DKu‖2ds⋅∫t0‖ut‖2ds. $ | (3.18) |
Substituting $ (3.14)-(3.18) $ into $ (3.13) $ yields
$ V(t)>Π(t)Γ(t)−1ε+4(1+ε)∫t0‖ut‖2ds∫t0‖u‖2ds+4(1+ε)∫t0‖ut‖2ds∫t0‖DKu‖2ds−4(1+ε)∫t0‖DKu‖2ds∫t0‖DKut‖2ds−4(1+ε)∫t0‖u‖2ds∫t0‖ut‖2ds−4(1+ε)∫t0‖u‖2ds∫t0‖DKut‖2ds−4(1+ε)∫t0‖DKu‖2ds∫t0‖ut‖2ds>Π(t)Γ(t)−1ε. $ | (3.19) |
From the definitions of $ (3.12) $, $ (3.19) $, and $ \Pi(t) $, it follows that
$ Γ″(t)≤−εΠ(t)Γ(t)1+1ε≤ε(1+ε)E(0)Γ(t)1+1ε. $ | (3.20) |
From $ \Phi'(t) > \Phi'(0) = \|u_0\|^2+\|D^Ku_0\|^2 > 0 $ and $ (3.12) $, we get $ \Gamma'(t) < 0 $, $ \Gamma'(0) = 0 $. $ (3.20) $ multiplied by $ \Gamma'(t) $ and integrated over $ (0, t) $ gives
$ Γ′(t)2≥−8ε2(1+ε)1+2εE(0)Γ(0)2+1ε+8ε2(1+ε)1+2εE(0)Γ(0)2+1ε=ρ+ψΓ(t)2+1ε $ | (3.21) |
where
$ ρ=−8ε2(1+ε)1+2εE(0)Γ(0)2+1ε>0, $ | (3.22) |
$ ψ=8ε2(1+ε)1+2εE(0)<0 $ | (3.23) |
where $ \Gamma(0) = \left[T_0(\|u_0\|^2+\|D^Ku_0\|^2)\right]^{-\varepsilon} $.
Combining $ (3.21)-(3.23) $ and Lemma 2.3 shows that there exists $ T^{*} $ such that $ \lim_{t\rightarrow T^{*}}\Gamma(t) = 0. $ I.e.
$ \lim\limits_{t\rightarrow T^{*}}\left(\int_0^t\|u\|^2\, ds+\|D^Ku\|^2\, ds\right) = +\infty. $ |
Furthermore, according to Lemma 2.3, the upper bound on the blow-up is given by
$ T∗≤√−(2ε+1)8ε2(1+ε)E(0ln11−√T0(‖u0‖2+‖DKu0‖2). $ | (3.24) |
Case (2). if $ 0 < E(0) < \frac{w}{R-2}H $, and $ \beta^{\frac{1}{2}}\|D^Lu_0\| > \xi_{1} $, by Lemma 2.2 and the definition of $ \xi_{1} $
$ Π(t)=−4(1+ε)E(0)+w[β‖DLu‖2+(g∘DLu)(t)]≥−4(1+ε)E(0)+wξ22≥−4(1+ε)E(0)+wξ21>−4(1+ε)E(0)+w4(1+ε)r−2H=4(1+ε)[wr−2H−E(0)]>0. $ | (3.25) |
Substituting $ (3.25) $ into (3.9) yields
$ Φ″(t)≥Π(t)+(4+4ε)∫t0‖ut‖2ds>(4+4ε)[wR−2H−E(0)]+(4+4ε)∫t0‖ut‖2ds>0. $ | (3.26) |
Hence, $ \Phi'(t) > \Phi'(0) = \|u_0\|^2+\|D^Ku_0\|^2 \geq 0. $
Similar to case (1), we get
$ Γ″(t)=−εΓ(t)1+2ε⋅V(t),V(t)≥Π(t)Γ(t)−1ε. $ | (3.27) |
From (3.25) and $ (3.27) $, we get
$ Γ″(t)≤−εΠ(t)Γ(t)1+1ε≤−4ε(1+ε)[wR−2H−E(0)]Γ(t)1+1ε,t≥0. $ | (3.28) |
Similar to case (1), we have $ \Gamma'(t) < 0 $, $ \Gamma(0) = 0 $. $ (3.28) $ Multiply by $ \Gamma'(t) $ and integratig over $ (0, t) $ gives
$ Γ′(t)2≥8ε2(ε+1)2ε+1[wR−2H−E(0)][H(0)2+1ε−H(t)2+1ε]=ρ1+ψ1Γ(t)2+1ε $ | (3.29) |
where
$ ρ1=8ε2(ε+1)2ε+1[wR−2H−E(0)]Γ(0)2+1ε>0, $ | (3.30) |
$ ψ1=8ε2(ε+1)2ε+1[wR−2H−E(0)]>0. $ | (3.31) |
By Lemma 2.3 and $ (3.29)-(3.31) $, there exists $ T^* $ such that
$ limt→T∗Γ(t)=0, $ |
$ \lim\limits_{t\rightarrow T^*}\left(\int_0^t\|u\|^2ds+\int_0^t\|D^Ku\|^2\ ds\right) = +\infty $ |
and
$ T∗≤√2ε+18ε2(ε+1)[wR−2H−E(0)]ln11−√T0(‖u0‖2+‖DKu0‖2). $ | (3.32) |
Case (3) : $ \frac{w}{R-2}H\leq E(0) < \frac{\|u_0\|^2+\|D^K u_0\|^2}{\mu} $.
Define
$ χ(t)=‖u‖2+‖DKu‖2−μE(0)=Φ′(t)−μE(0) $ | (3.33) |
where $ \mu = \frac{4(1+\varepsilon)}{\Lambda}, \; \Lambda = w\beta\frac{1}{B}. $
$ ddtχ(t)=Φ″(t)≥−4(1+ε)E(0)+w[β‖DLu‖2+(g∘DLu)(t)]+4(1+ε)∫t0‖ut‖2ds−4(1+ε)E(0)+wβ1β‖u‖2+4(1+ε)∫t0‖ut‖2ds=wββ[‖u‖2−4(1+ε)BwβE(0)]+4(1+ε)∫t0‖ut‖2ds>Λ[‖u‖2+‖DKu‖2−μE(0)]+4(1+δ)∫t0‖ut‖2ds=Λχ(t)+4(1+ε)∫t0‖ut‖2ds. $ | (3.34) |
According to (3.31) and
$ ‖u0‖2+‖DKu‖2−μE(0)=Φ′(0)−μE(0)=χ(0)>0 $ | (3.35) |
we have $ \frac{d}{dt}\chi(t)\geq\Lambda \chi(t) $, i.e., $ \chi(t)\geq \chi(0)e^{\Lambda t} $. Thereby, we have
$ χ(t)=Φ′(t)−μE(0)≥χ(0)eΛt≥χ(0)>0,t≥0. $ | (3.36) |
By $ (3.34)-(3.36) $, we obtain
$ ddtχ(t)=Φ″(t)≥Λχ(t)≥Λχ(0)>0. $ | (3.37) |
Thus, we get
$ \Phi'(t) > \Phi'(0) = \|u_0\|^2+\|D^Ku_0\|^2 > 0, \quad t > 0. $ |
Similar to the process in case (1), it is possible to derive
$ Γ″(t)≤−εΠ(t)Γ(t)1+1ε,t≥0. $ | (3.38) |
By $ (3.34)-(3.36) $, we conclude that
$ Π(t)≥Λχ(t)≥Λχ(0). $ |
Consequently,
$ Γ″(t)≤−εΠ(t)Γ(t)1+1ε≤−εΛχ(0)Γ(t)1+1ε,t>0. $ | (3.39) |
Multiplying both sides of $ (3.39) $ by $ \Gamma(t) $, and integrating over $ [0, t] $, we have
$ Γ′(t)2≥2ε2Γχ(0)2ε+1[Γ2+1ε0−Γ(t)2+1ε]=ρ2+ψ2Γ(t)2+1ε, $ | (3.40) |
$ ρ2=2ε2Γχ(0)2ε+1Γ(0)2+1ε>0,ψ2=2ε2Γχ(0)2ε+1>0. $ | (3.41) |
By Lemma 2.3 and $ (3.40)-(3.41) $, there exists a time $ T^* $ such that
$ limt→T∗(∫t0‖u‖2ds+∫t0‖DKu‖2ds)=+∞ $ |
and
$ T^{*}\leq\sqrt{\frac{2\varepsilon+1}{2\varepsilon^2\Lambda \chi(0)}}\ln\frac{1}{1-\sqrt{T_0(\|u_0\|^2+\|D^K u_0\|^2)}}. $ |
This section investigates a lower bound on the blow-up time $ T^* $ when the solution of Eqs $ (1.1)-(1.3) $ occurs in finite time.
Theorem 4.1. Let $ A_1 $ and $ A_2 $ hold, $ u_0\in H_0^L(\Omega) $, and $ u $ be a solution of Eqs $ (1.1)-(1.3) $. If $ u $ blows up in the sense of $ H_{0}^L(\Omega) $, then the lower bound $ T^{*} $ of the blow-up can be estimated as
$ T^{*}\geq \int_{R(0)}^{+\infty}\frac{1}{K_1+\frac{a(4+2R)}{r}B^R K_1^{\frac{R}{2}}+4E(0)}\, d K_1 . $ |
Proof. Let
$ R(t)=‖u‖2+‖DLu‖2. $ | (4.1) |
Differentiating $ (1.5) $ with respect to $ t $, we know from (1.1) that
$ R′(t)=2∫Ωu⋅utdx+ddt‖DLu‖2=2∫Ωu[−(−Δ)Lu−(−Δ)Kut] $ | (4.2) |
$ +2∫Ωu[∫t0g(t−s)(−Δ)Lu(s)ds+a|u|R−2u+ddt‖DLu‖2]=−2‖DLu‖2+2∬Ωg(t−s)DLu(s)DLu(t)dxds $ | (4.3) |
$ +2a‖u‖RR−ddt‖DKu‖2+ddt‖DLu‖2. $ | (4.4) |
By Lemma 3.1, we have
$ 2∫t0∫Ωg(t−s)DLu(s)DLu(t)dxds≤2(g∘DLu‖2+12∫t0g(s)ds‖DLu‖2+2∫t0g(s)‖DLu‖2=2(g∘DLu‖2+52∫t0g(s)ds‖DLu‖2. $ | (4.5) |
Substituting $ (4.5) $ into $ (1.6) $ yields
$ R′(t)≤[52∫t0g(s)ds−1]‖DLu‖2+12‖DL‖2+2(g∘DLu)(t)+2a‖u‖RR−ddt‖DKu‖2+ddt‖DLu‖2<12‖DL‖2+4∫t0‖ut‖2ds+2(1−∫t0g(s)ds)‖DLu‖2+2(g∘DLu)(t)−4aR‖u‖RR+(4aR+2a)‖u‖RR<R(t)+4E(0)+a(4R+2)BR‖DLu‖R<R(t)+4E(0)+a(4R+2)BRR(t)R2. $ | (4.6) |
Integrating $ (4.6) $ over $ [0, t] $ yields
$ ∫R(t)R(0)1K1+a4+2RRBRKR21+4E(0)dK1≤t. $ | (4.7) |
If $ u $ blows up with $ H_0^L $, then $ T^* $ has a lower bound
$ T∗≥∫+∞R(0)1K1+a4+2RRBRKR21+4E(0), $ | (4.8) |
which thereby completes the proof of Theorem 4.1.
By using concavity analysis, we get the blow-up results of the solution when the initial energy is negative or positive and an upper bound on the blow-up time $ T^* $. In addition, a lower bound on the blow-up time $ T^* $ is obtained by applying differential inequalities in the case where the solution has a blow-up.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare there is no conflict of interest.
[1] |
Sedjo RA, Sohngen B (2013) Wood as a Major Feedstock for Biofuel Production in the United States: Impacts on Forests and International Trade. J Sustain For 32: 195-211. doi: 10.1080/10549811.2011.652049
![]() |
[2] |
Goh CS, Junginger M, Cocchi M, et al. (2013) Wood pellet market and trade: a global perspective. Biofuels Bioprod Bioref 7: 24-42. doi: 10.1002/bbb.1366
![]() |
[3] |
Immerzeel DJ, Verweij PA, van der Hilst F, et al. (2014) Biodiversity impacts of bioenergy crop production: A state-of-the-art review. GCB Bioenergy 6: 183-209. doi: 10.1111/gcbb.12067
![]() |
[4] |
McDonald RI, Fargione J, Kiesecker J, et al. (2009) Energy sprawl or energy efficiency: Climate policy impacts on natural habitat for the United States of America. PLoS One 4: e6802. doi: 10.1371/journal.pone.0006802
![]() |
[5] |
Stoms DM, Davis FW, Jenner MW, et al. (2012) Modeling wildlife and other trade-offs with biofuel crop production. GCB Bioenergy 4: 330-341. doi: 10.1111/j.1757-1707.2011.01130.x
![]() |
[6] | Dale VH, Kline KL, Wiens J, et al. (2010) Biofuels: Implications for Land Use and Biodiversity. The Ecological Society of America Biofuels and Sustainability Reports. Available from: http://www.esa.org/biofuelsreports/files/ESA%20Biofuels%20Report_VH%20Dale%20et%20al.pdf. |
[7] |
Wiens J, Fargione J, Hill J (2011) Biofuels and biodiversity. Ecol Appl 21: 1085-1095. doi: 10.1890/09-0673.1
![]() |
[8] | Daystar J (2014) Environmental Impacts of Cellulosic Biofuels Made in the South East: Implications of Impact Assessment Methods and Study Assumptions. North Carolina State University: 264 pages. |
[9] | Wear D, Abt R, Alavalapati J, et al. (2010) The South's Outlook for Sustainable Forest Bioenergy and Biofuels Production. The Pinchot Institute Report. Available from: http://www.pinchot.org/uploads/download?fileId=512. |
[10] |
Fletcher RJ, Robertson BA, Evans J, et al. (2011) Biodiversity conservation in the era of biofuels: risks and opportunities. Front Ecol Environ 9: 161-168. doi: 10.1890/090091
![]() |
[11] |
Riffell S, Verschuyl J, Miller D, et al. (2011) Biofuel harvests, coarse woody debris, and biodiversity – A meta-analysis. For Ecol Manage 261: 878-887. doi: 10.1016/j.foreco.2010.12.021
![]() |
[12] | Dale VH, Lowrance R, Mulholland P, et al. (2010) Bioenergy Sustainability at the Regional Scale. Ecol Soc 15: 23. |
[13] | Wear DN, Huggett R, Li R, et al. (2013) Forecasts of Forest Conditions in U.S. Regions under Future Scenarios: A Technical Document Supporting the Forest Service 2010 RPA Assessment. Gen Tech Rep SRS-170. |
[14] | Lubowski RN, Plantinga AJ, Stavins RN (2008) What Drives Land-Use Change in the United States? A National Analysis of Landowner Decisions. Land Econ 84: 529-550. |
[15] | Daniel CJ, Frid L (2012) Predicting Landscape Vegetation Dynamics Using State-and-Transition Simulation Models. Proc First Landsc State-and-Transition Simul Model Conf June 14-16 2011: 5-22. |
[16] | Bestelmeyer BT, Herrick JE, Brown JR, et al. (2004) Land management in the American southwest: a state-and-transition approach to ecosystem complexity. Environ Manage 34: 38-51. |
[17] |
Costanza JK, Hulcr J, Koch FH, et al. (2012) Simulating the effects of the southern pine beetle on regional dynamics 60 years into the future. Ecol Modell 244: 93-103. doi: 10.1016/j.ecolmodel.2012.06.037
![]() |
[18] | Wilson T, Costanza J, Smith J, et al. (2014) Second State-and-Transition Simulation Modeling Conference. Bull Ecol Soc Am 96: 174-175. |
[19] |
Halofsky J, Halofsky J, Burscu T, et al. (2014) Dry forest resilience varies under simulated climate-management scenarios in a central Oregon, USA landscape. Ecol Appl 24: 1908-1925. doi: 10.1890/13-1653.1
![]() |
[20] |
Provencher L, Forbis TA, Frid L, et al. (2007) Comparing alternative management strategies of fire, grazing, and weed control using spatial modeling. Ecol Modell 209: 249-263. doi: 10.1016/j.ecolmodel.2007.06.030
![]() |
[21] | Abt R, Cubbage F, Abt K (2009) Projecting southern timber supply for multiple products by subregion. For Prod J 59: 7-16. |
[22] | Abt KL, Abt RC, Galik CS, et al. (2014) Effect of Policies on Pellet Production and Forests in the U.S. South: A Technical Document Supporting the Forest Service Update of the 2010 RPA Assessment. Gen Tech Rep GTR-SRS-202. |
[23] | U.S. Geological Survey National Gap Analysis Program (2013) Protected Areas Database-US (PAD-US), Version 1.3. Available from: http://gapanalysis.usgs.gov/padus/. |
[24] |
Terando A, Costanza JK, Belyea C, et al. (2014) The southern megalopolis: using the past to predict the future of urban sprawl in the Southeast U.S. PLoS One 9: e102261. doi: 10.1371/journal.pone.0102261
![]() |
[25] |
Noss RF, Platt WJ, Sorrie BA, et al. (2015) How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal Plain. Richardson D, ed. Divers Distrib 21: 236-244. doi: 10.1111/ddi.12278
![]() |
[26] | Southeast Gap Analysis Project (SEGAP) (2008) Southeast GAP regional land cover [digital data]. Available from: http://www.basic.ncsu.edu/segap/. |
[27] | Burke S, Hall BR, Shahbazi G, et al. (2007) North Carolina's Strategic Plan for Biofuels Leadership. Available from: http://www.ces.ncsu.edu/fletcher/mcilab/publications/NC_Strategic_Plan_for_Biofuels_Leadership.pdf. |
[28] | Forisk Consulting LLC (2014) Wood bioenergy US database 2013. Available by subscription. |
[29] |
Lal P, Alavalapati JRR, Marinescu M, et al. (2011) Developing Sustainability Indicators for Woody Biomass Harvesting in the United States. J Sustain For 30: 736-755. doi: 10.1080/10549811.2011.571581
![]() |
[30] | Evans A, Perschel R, Kittler B, et al. (2010) Revised assessment of biomass harvesting and retention guidelines. For Guild, St Fe, NM, USA: 33. |
[31] | Janowiak MK, Webster CR (2010) Promoting Ecological Sustainability in Woody Biomass Harvesting. J For 108: 16-23. |
[32] | Apex Resource Management Solutions (2014) ST-Sim state-and-transition simulation model software. Available from: http//www.apexrms.com/stsm. |
[33] |
Rollins MG (2009) LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment. Int J Wildl Fire 18: 235-249. doi: 10.1071/WF08088
![]() |
[34] | Comer P, Faber-Langendoen D, Evans R, et al. (2003) Ecological Systems of the United States: A Working Classification of U.S. Terrestrial Systems. Arlington, VA, USA. NatureServe, 82 pages. |
[35] |
Costanza JK, Terando AJ, McKerrow AJ, et al. (2015) Modeling climate change, urbanization, and fire effects on Pinus palustris ecosystems of the southeastern U.S. J Environ Manage 151: 186-199. doi: 10.1016/j.jenvman.2014.12.032
![]() |
[36] | LANDFIRE (2014) LANDFIRE 2008 (version 1.1.0) Succession Class (S-Class) Layer. U.S. Department of Interior, Geological Survey. Available from: Http://landfire.cr.usgs.gov/viewer. |
[37] | Multi-Resolution Land Characteristics Consortium (MRLC) (2011) National Land Cover Database, USFS Tree Canopy Cartographic, 2014. Available from: http://www.mrlc.gov/nlcd11_data.php. |
[38] | Mackie R, Mason J, Curcio G (2007) LANDFIRE biophysical setting model for Southern Piedmont Dry Oak(-Pine) Forest. Available from: http://www.landfire.gov/national_veg_models_op2.php. |
[39] | USDA Forest Service (2012) Forest Inventory and Analysis Data. Available from: http://apps.fs.fed.us/fiadb-downloads/datamart.html. |
[40] | Young T, Wang Y, Guess F, et al. (2015) Understanding the Characteristics of Non-industrial Private Forest Landowners Who Harvest Trees. Small-scale For 1-13. |
[41] |
Hardie I, Parks P, Gottleib P, et al. (2000) Responsiveness of Rural and Urban Land Uses to Land Rent Determinants in the U.S. South. Land Econ 76: 659. doi: 10.2307/3146958
![]() |
[42] | USDA Natural Resources Conservation Service (2000) 1997 National Resources Inventory Data, Revised December 2000. |
[43] |
Dale VH, Kline KL, Wright LL, et al. (2011) Interactions among bioenergy feedstock choices, landscape dynamics, and land use. Ecol Appl 21: 1039-1054. doi: 10.1890/09-0501.1
![]() |
[44] | Evans JM, Fletcher RJ, Alavalapati JRR, et al. (2013) Forestry Bioenergy in the Southeast United States: Implications for Wildlife Habitat and Biodiversity. Availbale from: http://www.nwf.org/News-and-Magazines/Media-Center/Reports/Archive/2013/12-05-13-Forestry-Bioenergy-in-the-Southeast.aspx. |
[45] |
Owens AK, Moseley KR, McCay TS, et al. (2008) Amphibian and reptile community response to coarse woody debris manipulations in upland loblolly pine (Pinus taeda) forests. For Ecol Manage 256: 2078-2083. doi: 10.1016/j.foreco.2008.07.030
![]() |
[46] |
Otto CR V, Kroll AJ, McKenny HC (2013) Amphibian response to downed wood retention in managed forests: A prospectus for future biomass harvest in North America. For Ecol Manage 304: 275-285. doi: 10.1016/j.foreco.2013.04.023
![]() |
[47] |
Davis JC, Castleberry SB, Kilgo JC (2010) Influence of coarse woody debris on herpetofaunal communities in upland pine stands of the southeastern Coastal Plain. For Ecol Manage 259: 1111-1117. doi: 10.1016/j.foreco.2009.12.024
![]() |
[48] | Wood P, Sheehan J, Keyser P, et al. (2013) Cerulean Warbler: Management Guidelines for Enhancing Breeding Habitat in Appalachian Hardwood Forests. American Bird Conservancy. The Plains, VA, USA. 28 Pages. |
[49] |
Perry RW, Thill RE (2013) Long-term responses of disturbance-associated birds after different timber harvests. For Ecol Manage 307: 274-283. doi: 10.1016/j.foreco.2013.07.026
![]() |
[50] | Wilson MD, Watts BD (2000) Breeding bird communities in pine plantations on the coastal plain of North Carolina. Chat 64: 1-14. |
[51] | Peet RK, Allard DJ (1993) Longleaf Pine Vegetation of the Southern Atlantic an Eastern Gulf Coast Regions: A Preliminary Classification. In: Hermann SM, ed. Proceedings of the Tall Timbers Fire Ecology Conference, No. 18, The Longleaf Pine Ecosystem: Ecology, Restoration and Management. Tallahassee, FL, USA: Tall Timbers Research Station.; 1993: 45-81. |