Citation: Galina V. Portnova, Michael S. Atanov. Nonlinear EEG parameters of emotional perception in patients with moderate traumatic brain injury, coma, stroke and schizophrenia[J]. AIMS Neuroscience, 2018, 5(4): 221-235. doi: 10.3934/Neuroscience.2018.4.221
[1] | Ricardo Almeida . Variational problems of variable fractional order involving arbitrary kernels. AIMS Mathematics, 2022, 7(10): 18690-18707. doi: 10.3934/math.20221028 |
[2] | Xiaojing Du, Xiaotong Liang, Yonghong Xie . Integral expressions of solutions to higher order $ \lambda $-weighted Dirac equations valued in the parameter dependent Clifford algebra. AIMS Mathematics, 2025, 10(1): 1043-1060. doi: 10.3934/math.2025050 |
[3] | Yongjian Hu, Huifeng Hao, Xuzhou Zhan . On the solvability of the indefinite Hamburger moment problem. AIMS Mathematics, 2023, 8(12): 30023-30037. doi: 10.3934/math.20231535 |
[4] | Hong Li, Keyu Zhang, Hongyan Xu . Solutions for systems of complex Fermat type partial differential-difference equations with two complex variables. AIMS Mathematics, 2021, 6(11): 11796-11814. doi: 10.3934/math.2021685 |
[5] | Kun Li, Peng Wang . Properties for fourth order discontinuous differential operators with eigenparameter dependent boundary conditions. AIMS Mathematics, 2022, 7(6): 11487-11508. doi: 10.3934/math.2022640 |
[6] | Tuba Gulsen, Emrah Yilmaz, Ayse Çiğdem Yar . Proportional fractional Dirac dynamic system. AIMS Mathematics, 2024, 9(4): 9951-9968. doi: 10.3934/math.2024487 |
[7] | Valérie Gauthier-Umaña, Henryk Gzyl, Enrique ter Horst . Decoding as a linear ill-posed problem: The entropy minimization approach. AIMS Mathematics, 2025, 10(2): 4139-4152. doi: 10.3934/math.2025192 |
[8] | Yong Liu, Chaofeng Gao, Shuai Jiang . On meromorphic solutions of certain differential-difference equations. AIMS Mathematics, 2021, 6(9): 10343-10354. doi: 10.3934/math.2021599 |
[9] | Clara Burgos, Juan Carlos Cortés, Elena López-Navarro, Rafael Jacinto Villanueva . Probabilistic analysis of linear-quadratic logistic-type models with hybrid uncertainties via probability density functions. AIMS Mathematics, 2021, 6(5): 4938-4957. doi: 10.3934/math.2021290 |
[10] | Noureddine Bahri, Abderrahmane Beniani, Abdelkader Braik, Svetlin G. Georgiev, Zayd Hajjej, Khaled Zennir . Global existence and energy decay for a transmission problem under a boundary fractional derivative type. AIMS Mathematics, 2023, 8(11): 27605-27625. doi: 10.3934/math.20231412 |
We consider the system of Dirac equations
$ ℓy(x):=By′(x)+Q(x)y(x)=λy(x), x∈[a,b], $
|
(1) |
where $ B = \left(01−10
$ U(y):=y2(a)+f1(λ)y1(a)=0 $
|
(2) |
$ V(y):=y2(b)+f2(λ)y1(b)=0 $
|
(3) |
and with transmission conditions
$ {y1(wi+0)=αiy1(wi−0)y2(wi+0)=α−1iy2(wi−0)+hi(λ)y1(wi−0)(i=1,2) $
|
(4) |
where $ f_{i}\left(\lambda\right) $, $ h_{i}\left(\lambda\right) \left(i = 1, 2\right) $ are rational functions of Herglotz-Nevanlinna type such that
$ fi(λ)=aiλ+bi−Ni∑k=1fikλ−gik $
|
(5) |
$ hi(λ)=miλ+ni−Pi∑k=1uikλ−tik (i=1,2) $
|
(6) |
$ a_{i} $, $ b_{i} $, $ f_{ik} $, $ g_{ik}, m_{i}, n_{i}, u_{ik} $ and $ t_{ik} $ are real numbers, $ a_{1} < 0, $ $ f_{1k} < 0, $ $ a_{2} > 0, $ $ f_{2k} > 0, m_{i} > 0, $ $ u_{ik} > 0 $ and $ g_{i1} < g_{i2} < ... < g_{iNi} $, $ t_{i1} < t_{i2} < ... < t_{iPi} $, $ \alpha_{i} > 0 $ and $ a < w_{1} < w_{2} < b $. In special case, when $ f_{i} (\lambda) = \infty $, conditions (2) and (3) turn to Dirichlet conditions $ y_{1}(a) = y_{1}(b) = 0 $ respectively. Moreover, when $ h_{i}\left(\lambda\right) = \infty $, conditions (4) turn to $ y_{1}(w_{2}+0) = \alpha_{2}y_{1}(w_{2}-0) $, $ y_{2}(w_{2}+0) = \alpha_{2} ^{-1}y_{2}(w_{2}-0)+h_{2}\left(\lambda\right) y_{1}(w_{2}-0) $ and $ y_{1}(w_{1}+0) = \alpha_{1}y_{1}(w_{1}-0) $, $ y_{2}(w_{1}+0) = \alpha _{1}^{-1}y_{2}(w_{1}-0)+h_{1}\left(\lambda\right) y_{1}(w_{1}-0) $ according to order $ i = 1, 2 $.
Inverse problems of spectral analysis compose of recovering operators from their spectral data. Such problems arise in mathematics, physics, geophysics, mechanics, electronics, meteorology and other branches of natural sciences. Inverse problems also play important role in solving many equations in mathematical physics.
$ R_{1}\left(\lambda\right) y_{1}\left(a\right) +R_{2}\left(\lambda\right) y_{2}\left(a\right) = 0 $ is a boundary condition depending spectral parameter where $ R_{1}\left(\lambda\right) $ and $ R_{2}\left(\lambda\right) $ are polynomials. When $ \deg R_{1}\left(\lambda\right) = \deg R_{2}\left(\lambda\right) = 1 $, this equality depends on spectral parameter as linearly. On the other hand, it is more difficult to search for higher orders of polynomials $ R_{1}\left(\lambda\right) $ and $ R_{2}\left(\lambda\right) $. When $ \dfrac{R_{1}\left(\lambda\right) }{R_{2}\left(\lambda\right) } $ is rational function of Herglotz-Nevanlinna type such that $ f\left(\lambda\right) = a\lambda+b- { \sum\limits_{k = 1}^{N}} \dfrac{f_{k}}{\lambda-g_{_{k}}} $ in boundary conditions, direct and inverse problems for Sturm-Liouville operator have been studied [1,2,3,4,5,6,7,8,9,10,11]. In this paper, direct and inverse spectral problem is studied for the system of Dirac equations with rational function of Herglotz-Nevanlinna in boundary and transmission conditions.
On the other hand, inverse problem firstly was studied by Ambarzumian in 1929 [12]. After that, G. Borg was proved the most important uniqueness theorem in 1946 [13]. In the light of these studies, we note that for the classical Sturm-Liouville operator and Dirac operator, the inverse problem has been studied fairly (see [14,15,16,17,18,19,20], where further references and links to applications can be found). Then, results in these studies have been extended to other inverse problems with boundary conditions depending spectral parameter and with transmission conditions. Therefore, spectral problems for differential operator with transmission conditions inside an interval and with eigenvalue dependent boundary and transmission conditions as linearly and non-linearly have been studied in so many problems of mathematics as well as in applications (see [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43] and other works, and see [44,45,46,47,48,49,50,51,52,53,54] and other works cited therein respectively).
The aim of this article is to get some uniqueness theorems for mentioned above Dirac problem with eigenvalue dependent as rational function of Herglotz-Nevanlinna type in both of the boundary conditions and also transmission conditions at two different points. We take into account inverse problem for reconstruction of considered boundary value problem by Weyl function and by spectral data $ \left\{ \lambda_{n}, \rho_{n}\right\} _{n\in \mathbb{Z} } $ and $ \left\{ \lambda_{n}, \mu_{n}\right\} _{n\in \mathbb{Z} } $. Although the boundary and transmission conditions of the problem are not linearly dependent on the spectral parameter, this allows the eigenvalues to be real and to define normalizing numbers.
Consider the space $ H: = L_{2}(a, b)\oplus L_{2}(a, b)\oplus \mathbb{C} ^{N_{1}+1}\oplus \mathbb{C} ^{N_{2}+1}\oplus \mathbb{C} ^{P_{1}+1}\oplus $ $ \mathbb{C} ^{P_{2}+1} $ and element $ Y $ in $ H $ is in the form of $ Y = \left(y_{1} (x), y_{2}(x), \tau, \eta, \beta, \gamma\right) $, such that $ \tau = \left(Y_{1}, Y_{2}, \ldots, Y_{N_{1}}, Y_{N_{1}+1}\right) $, $ \eta = \left(L_{1}, L_{2}, \ldots, L_{N_{2}}, L_{N_{2}+1}\right) $, $ \beta = \left(R_{1}, R_{2}, \ldots, R_{P_{1}}, R_{P_{1}+1}\right) $, $ \gamma = \left(V_{1}, V_{2}, \ldots, V_{P_{2}}, V_{P_{2}+1}\right) $. $ H $ is a Hilbert space with the inner product defined by
$ <Y,Z>:=b∫a(y1(x)¯z1(x)+y2(x)¯z2(x))dx−YN1+1¯Y′N1+1a1+LN2+1¯L′N2+1a2+α1m1RP1+1¯R′P1+1+α2m2VP2+1¯V′P2+1+N1∑k=1Yk¯Y′k(−1f1k)+N2∑k=1Lk¯L′kf2k+P1∑k=1α1Rr¯R′ru1k+P2∑k=1α2Vr¯V′ru2k $
|
(7) |
for $ Y = \left(y_{1}(x), y_{2}(x), \tau, \eta, \beta, \gamma\right) $ ve $ Z = \left(z_{1}(x), z_{2}(x), \tau^{\prime}, \eta^{\prime}, \beta^{\prime}, \gamma^{\prime}\right) $ in $ H $. Define the operator $ T $ on the domain
$ D(T) = \{Y\in H:y_{1}(x), y_{2}(x)\in AC\left(a, b\right), $
$ ly\in L_{2}\left(a, b\right), $ $ y_{1}(w_{i}^{+}) = \alpha_{i} y_{1}(w_{i}^{-}), i = 1, 2 $
$ Y_{N_{1}+1}: = -a_{1}y_{1}(a), $ $ L_{N_{2}+1}: = -a_{2}y_{1}(b), $
$ R_{P_{1}+1}: = -m_{1}y_{1}(w_{1}^{-}), V_{P_{2}+1}: = -m_{2}y_{1} (w_{2}^{-})\} $
such that
$ TY:=(ly,Tτ,Tη,Tβ,Tγ) $
|
(8) |
where
$ Tτ=TYi={g1iYi−f1iy1(a), i=¯1,N1y2(a)+b1y1(a)+N1∑k=1Yk, i=N1+1 $
|
(9) |
$ Tη=TLi={g2iLi−f2iy1(b), i=¯1,N2y2(b)+b2y1(b)+N2∑k=1Lk, i=N2+1 $
|
(10) |
$ Tβ=TRi={t1iRi−u1iy1(w−1), i=¯1,P1−y2(w+1)+α−11y2(w−1)+n1y1(w−1)+P1∑k=1Rk, i=P1+1 $
|
(11) |
$ Tγ=TVi={t2iVi−u2iy1(w−2), i=¯1,P2−y2(w+2)+α−12y2(w−2)+n2y1(w−2)+∑k=1P2Vk, i=P2+1. $
|
(12) |
Accordingly, equality $ TY = \lambda Y $ corresponds to problem (1)-(4) under the domain $ D(T)\subset H. $
Theorem 1. The eigenvalues of the operator $ T $ and the problem (1)-(4) coincide.
Proof. Assume that $ \lambda $ is an eigenvalue of $ T $ and $ Y(x) = \left(y_{1}(x), y_{2}(x), \tau, \eta, \beta, \gamma\right) \in H $ is the eigenvector corresponding to $ \lambda $. Since $ Y\in D(T) $, it is obvious that the condition $ y_{1}(w_{i}+0)-\alpha_{i}y_{1}(w_{i}-0) = 0 $ and Eq (1) hold. On the other hand, $ $boundary conditions (2)-(3) and the second condition of (4) are satisfied by the following equalities;
$ T\tau = TY_{i} = g_{1i}-Y_{i}-f_{1i}y_{1}(a) = \lambda Y_{i} $, $ i = \overline {1, N_{1}} $
$ TY_{N_{1}+1} = y_{2}(a)+b_{1}y_{1}(a)+\mathop {\mathop \sum \limits_{k = 1} }\limits^{{N_1}} {Y_k} = -a_{1}y_{1}\left(a\right) \lambda $
$ T\eta = TL_{i} = g_{2i}L_{i}-f_{2i}y_{1}(b) = \lambda L_{i} $, $ i = \overline{1, N_{2} } $
$ TL_{N_{2}+1} = y_{2}(b)+b_{2}y_{1}(b)+\mathop {\mathop \sum \limits_{k = 1} }\limits^{{N_2}} {L_k} = -a_{2}y_{1}\left(b\right) \lambda $
$ T\beta = TR_{i} = t_{1i}R_{i}-u_{1i}y_{1}(w_{1}^{-}) $, $ i = \overline{1, P_{1}} $
$ TR_{P_{1}+1} = -y_{2}(w_{1}^{+})+\alpha_{1}^{-1}y_{2}\left(w_{1}^{-}\right) +n_{1}y_{1}\left(w_{1}^{-}\right) +\mathop {\mathop \sum \limits_{k = 1} }\limits^{{P_1}} {R_k} = -m_{1}y_{1}\left(w_{1}^{-}\right) \lambda $
$ T\gamma = TV_{i} = t_{2i}V_{i}-u_{2i}y_{1}(w_{2}^{-}) $, $ i = \overline{1, P_{2}} $
$ TV_{P_{2}+1} = -y_{2}(w_{2}^{+})+\alpha_{2}^{-1}y_{2}\left(w_{2}^{-}\right) +n_{2}y_{1}\left(w_{2}^{-}\right) +\overset{P_{2}}{\underset{k = 1}{ { \sum} }}V_{k} = -m_{2}y_{1}\left(w_{2}^{-}\right) \lambda. $
If $ \lambda = g_{ik}\left(i = 1, 2\text{ and }k = \left\{ 1, 2, \ldots N_{i}\right\} \right) $ are eigenvalues of operator $ T $, then, from above equalities and the domain of $ T $, equalities (1), $ y_{1}(a, g_{1k}) = 0 $, $ y_{1}(b, g_{2k}) = 0 $ and (4) are satisfied.
Moreover, If $ \lambda = t_{ik}\left(i = 1, 2\text{ and }k = \left\{ 1, 2, \ldots P_{i}\right\} \right) $ are eigenvalues of operator $ T $, from above equalities and the domain of $ T $, Eqs (1)-(3) and $ y_{1} (w_{i}^{-}, t_{ik}) = 0 = y_{1}(w_{i}^{+}, t_{ik}) $ are valid. In that case, $ \lambda $ is also an eigenvalue of $ L $.
Conversely, let $ \lambda $ be an eigenvalue of $ L $ and $ \left(y1(x)y2(x)
$ Y = \left(y_{1}(x), y_{2}(x), \frac{f_{11} }{g_{11}-\lambda}y_{1}(a), \frac{f_{12}}{g_{12}-\lambda}y_{1}(a), \ldots, \frac{f_{1N_{1}}}{g_{1N_{1}}-\lambda}y_{1}(a), -a_{1}y_{1}\left(a\right), \right. $
$ \left. \frac{f_{21}}{g_{21}-\lambda}y_{1}(b), \frac{f_{22}} {g_{22}-\lambda}y_{1}(b), \ldots, \frac{f_{2N_{2}}}{g_{2N_{2}}-\lambda} y_{1}(b), -a_{2}y_{1}\left(b\right), \right. $
$ \left. \frac{u_{11}}{t_{11}-\lambda}y_{1}(w_{1}^{-}), \frac{u_{12} }{t_{12}-\lambda}y_{1}(w_{1}^{-}), \ldots, \frac{u_{1P_{1}}}{t_{1P_{1}}-\lambda }y_{1}(w_{1}^{-}), -m_{1}y_{1}(w_{1}^{-}), \right. $
$ \left. \frac{u_{21}}{t_{21}-\lambda}y_{1}(w_{2}^{-}), \frac{u_{22} }{t_{22}-\lambda}y_{1}(w_{2}^{-}), \ldots, \frac{u_{2P_{2}}}{t_{2P_{2}}-\lambda }y_{1}(w_{2}^{-}), -m_{2}y_{1}(w_{2}^{-})\right) $ is the eigenvector corresponding to $ \lambda $.
If $ \lambda = g_{1k}\left(k = \left\{ 1, 2, \ldots N_{1}\right\} \right) $, then,
$ Y = \left(y_{1}(x), y_{2}(x), Y_{1}, Y_{2}, \ldots, Y_{N_{1}}, 0, L_{1}, L_{2}, \ldots, L_{N_{2} }, L_{N_{2}+1}, R_{1}, R_{2}, \ldots, R_{P_{1}}, R_{P_{1}+1}, \right. $ $ \left. V_{1}, V_{2}, \ldots, V_{P_{2}}, V_{P_{2}+1}\right) $,
$ Y_{i} = \left\{ 0, i≠k−y2(a),i=k
If $ \lambda = g_{2k}\left(k = \left\{ 1, 2, \ldots N_{2}\right\} \right) $, then,
$ Y = \left(y_{1} (x), y_{2}(x), Y_{1}, Y_{2}, \ldots, Y_{N_{1}}, Y_{N_{1}+1}, L_{1}, L_{2}, \ldots, L_{N_{2}}, 0, R_{1}, R_{2}, \ldots, R_{P_{1}}, R_{P_{1}+1}, \right. $$ \left. V_{1}, V_{2}, \ldots, V_{P_{2}}, V_{P_{2}+1}\right) $, $ L_{i} = \left\{ \begin{array} [c]{c} 0, \ \ \ \ \ \ i\neq k\\ -y_{2}\left(b\right), i = k \end{array}, i = 1, 2, \ldots, N_{2}\right. $ is the eigenvector of $ T $ corresponding to $ g_{2k} $.
Furthermore, if $ \lambda = t_{1k}\left(k = \left\{ 1, 2, \ldots P_{1}\right\} \right) $, then,
$ Y = \left(y_{1}(x), y_{2}(x), Y_{1}, Y_{2}, \ldots, Y_{N_{1}}, Y_{N_{1}}, L_{1}, L_{2}, \ldots, L_{N_{2}}, L_{N_{2}+1}, R_{1}, R_{2}, \ldots, R_{P_{1}}, 0, \right. $$ \left. V_{1}, V_{2}, \ldots, V_{P_{2}}, V_{P_{2}+1}\right) $, $ R_{i} = \left\{ \begin{array} [c]{c} 0, \ \ \ \ \ \ i\neq k\\ y_{2}\left(w_{1}^{+}\right) -\alpha_{1}^{-1}y_{2}\left(w_{1}^{-}\right), i = k \end{array}, i = 1, 2, \ldots, P_{1}\right. $ is the eigenvector corresponding to $ t_{1k} $.
If $ \lambda = t_{2k}\left(k = \left\{ 1, 2, \ldots P_{2}\right\} \right) $, then, $ Y = \left(y_{1}(x), y_{2}(x), Y_{1}, Y_{2}, \ldots, Y_{N_{1}}, Y_{N_{1}}, L_{1}, L_{2}, \ldots, L_{N_{2}}, L_{N_{2} +1}, R_{1}, R_{2}, \ldots, R_{P_{1}}, R_{P_{1}+1}, \right. $ $ \left. V_{1}, V_{2}, \ldots, V_{P_{2}}, 0\right) $, $ V_{i} = \left\{ 0, i≠ky2(w+2)−α−12y2(w−2),i=k
It is possible to write $ f_{i}\left(\lambda\right) $ as follows:
$ f_{i}\left(\lambda\right) = \dfrac{a_{i}(\lambda)}{b_{i}(\lambda)} $, $ i = 1, 2 $ where
$ a_{i}(\lambda) = ({a_i}\lambda + {b_i})\mathop {\mathop \prod \limits^{{N_i}} }\limits_{k = 1} \left(\lambda-g_{ik}\right) -\mathop {\mathop \sum \limits^{{N_i}} }\limits_{k = 1} \mathop {\mathop \prod \limits_{j = 1\left( {j \ne k} \right)} }\limits^{{N_i}} {f_{ik}}\left( {\lambda - {g_{ij}}} \right) $
$ {b_i}(\lambda ) = \mathop {\mathop \prod \limits^{Ni} }\limits_{k = 1} \left( {\lambda - {g_{ik}}} \right) $.
Assume that $ a_{2}(\lambda) $ and $ b_{2}(\lambda) $ do not have common zeros.
Let functions $ \varphi(x, \lambda) $ and $ \psi(x, \lambda) $ be the solutions of (1) under the initial conditions
$ φ(a,λ)=(−b1(λ)a1(λ)),ψ(b,λ)=(−b2(λ)a2(λ)) $
|
(13) |
as well as the transmission conditions (4) respectively such that
$ \varphi(x, \lambda) = \left\{ φ1(x,λ), x<w1φ2(x,λ), w1<x<w2φ3(x,λ), w2<x<b
Then it can be easily proven that $ \varphi _{i}(x, \lambda) $ and $ \psi_{i}(x, \lambda) $, $ i = \overline{1, 3} $ are the solutions of the following integral equations;
$ \varphi_{i+1, 1}(x, \lambda) = \alpha_{i}\varphi_{i1}(w_{i}, \lambda)\cos \lambda\left(x-w_{i}\right) $
$ -\left[\alpha_{i}^{-1}\varphi_{i2}(w_{i}, \lambda)+h_{i}(\lambda)\varphi_{i1}(w_{i}, \lambda)\right] \sin\lambda\left(x-w_{i}\right) $
$ +\underset{w_{i}}{\overset{x}{\int}}\left[p(t)\sin\lambda(x-t)+q(t)\cos \lambda(x-t)\right] \varphi_{i+1, 1}(t, \lambda)dt $
$ +\underset{wi}{\overset{x}{\int}}\left[q(t)\sin\lambda(x-t)-p(t)\cos \lambda(x-t)\right] \varphi_{i+1, 2}(t, \lambda)dt $,
$ \varphi_{i+1, 2}(x, \lambda) = \alpha_{i}\varphi_{i1}(w_{i}, \lambda)\sin \lambda\left( x-w_{i}\right) \\ +\left[ \alpha_{i}^{-1}\varphi_{i2}(w_{i}, \lambda)+h_{i}(\lambda )\varphi_{i1}(w_{i}, \lambda)\right] \cos\lambda\left( x-w_{i}\right) \\ +\underset{w_{i}}{\overset{x}{\int}}\left[ -p(t)\cos\lambda(x-t)+q(t)\sin \lambda(x-t)\right] \varphi_{i+1, 1}(t, \lambda)dt \\ +\underset{wi}{\overset{x}{\int}}\left[ -q(t)\cos\lambda(x-t)-p(t)\sin \lambda(x-t)\right] \varphi_{i+1, 2}(t, \lambda)dt , {\rm{for}}~~ i = 1, 2 $ |
and
$ \psi_{i1}\left( x, \lambda\right) = \alpha_{i}^{-1}\psi_{i+1, 1}\left( w_{i}, \lambda\right) \cos\lambda\left( x-w_{i}\right) \\+\left( -\alpha_{i}\psi_{i+1, 2}\left( w_{i}, \lambda\right) +h_{i}\left( \lambda\right) \psi_{i+1, 1}\left( w_{i}, \lambda\right) \right) \sin \lambda\left( x-w_{i}\right) \\-\underset{x}{\overset{w_{i}}{\int}}\left[ p(t)\sin\lambda\left( x-t\right) +q(t)\cos\lambda\left( x-t\right) \right] \psi_{i1}\left( t, \lambda\right) dt\\+\underset{x}{\overset{w_{i}}{\int}}\left[ -q(t)\sin\lambda\left( x-t\right) +p(t)\cos\lambda\left( x-t\right) \right] \psi_{i2}\left( t, \lambda\right) dt\\\psi_{i2}\left( x, \lambda\right) = \alpha_{i}^{-1}\psi_{i+1, 1}\left( w_{i}, \lambda\right) \sin\lambda\left( x-w_{i}\right) \\+\left( \alpha_{i}\psi_{i+1, 2}\left( w_{i}, \lambda\right) -h_{i}\left( \lambda\right) \psi_{i+1, 1}\left( w_{i}, \lambda\right) \right) \cos \lambda\left( x-w_{i}\right) \\+\underset{x}{\overset{w_{i}}{\int}}\left[ p(t)\cos\lambda\left( x-t\right) -q(t)\sin\lambda\left( x-t\right) \right] \psi_{i1}\left( t, \lambda\right) dt\\+\underset{x}{\overset{w_{2}}{\int}}\left[ q(t)\cos\lambda\left( x-t\right) +p(t)\sin\lambda\left( x-t\right) \right] \psi_{i2}\left( t, \lambda\right) dt,{\rm{for}}~~i = 2, 1 $ |
Lemma 1. For the solutions $\varphi_{i}(x, \lambda)$ and $\psi_{i}(x, \lambda)$, $i = \overline {1, 3}$ as $\left\vert \lambda\right\vert \rightarrow\infty$, the following asymptotic estimates hold;
$\varphi_{11}(x, \lambda) = \left\{ a_{1}\lambda^{N_{1}+1}\sin \lambda(x-a)+o\left( \left\vert \lambda\right\vert ^{N_{1}+1}\exp\left\vert \operatorname{Im}\lambda\right\vert \left[ \left( x-a\right) \right] \right) , \right. $
$\varphi_{12}(x, \lambda) = \left\{ a_{1}\lambda^{N_{1}+1}\cos \lambda(x-a)+o\left( \left\vert \lambda\right\vert ^{N_{1}+1}\exp\left\vert \operatorname{Im}\lambda\right\vert \left[ \left( x-a\right) \right] \right) , \right. $
$\varphi_{21}(x, \lambda) = \left\{ a1m1λL1+N1+2sinλ(w1−a)sinλ(x−w1)+o(|λ|L1+N1+2exp|Imλ|[(w1−a)+(x−w1)])
$\varphi_{22}(x, \lambda) = \left\{ a1m1λL1+N1+2sinλ(w1−a)cosλ(x−w1)+o(|λ|L1+N1+2exp|Imλ|[(w1−a)+(x−w1)])
$\varphi_{31}(x, \lambda) = \left\{ −m2m1a1λL1+L2+N1+3sinλ(w1−a)sinλ(w2−w1)sinλ(x−w2)+o(|λ|L1+L2+N1+3exp|Imλ|[(w1−a)+(w2−w1)+(x−w2)])
$\varphi_{32}(x, \lambda) = \left\{ m2m1a1λL1+L2+N1+3sinλ(w1−a)sinλ(w2−w1)cosλ(x−w2)+o(|λ|L1+L2+N1+3exp|Imλ|[(w1−a)+(w2−w1)+(x−w2)])
$\psi_{11}(x, \lambda) = \left\{ −a2λN2+1sinλ(x−b)+o(|λ|N2+1exp|Imλ|[(x−b)])
$\psi_{12}(x, \lambda) = \left\{ a2λN2+1cosλ(x−b)+o(|λ|N2+1exp|Imλ|[(x−b)])
$\psi_{21}(x, \lambda) = \left\{ −m2a2λN2+L2+2sinλ(w2−b)sinλ(x−w2)+o(|λ|N2+L2+2exp|Imλ|[(w2−b)+(x−w2)])
$\psi_{22}(x, \lambda) = \left\{ m2a2λN2+L2+2sinλ(w2−b)cosλ(x−w2)+o(|λ|N2+L2+2exp|Imλ|[(w2−b)+(x−w2)])
$\psi_{31}(x, \lambda) = \left\{ −m1m2a2λN2+L1+L2+3sinλ(w2−b)sinλ(w1−w2)sinλ(x−w1)+o(|λ|N2+L1+L2+3exp|Imλ|[(w2−b)+(w1−w2)+(x−w2)])
$\psi_{32}(x, \lambda) = \left\{ m1m2a2λN2+L1+L2+3sinλ(w2−b)sinλ(w1−w2)cosλ(x−w1)+o(|λ|N2+L1+L2+3exp|Imλ|[(w2−b)+(w1−w2)+(x−w1)])
Theorem 2. The eigenvalues $\left\{ \lambda_{n}\right\} _{n\in \mathbb{Z} }$ of problem $L$ are real numbers.
Proof. It is enough to prove that eigenvalues of operator $T$ are real. By using inner product (7), for $Y$ in $D\left( T\right) $, we compute that
$⟨TY,Y⟩=b∫alyˉydx−1a1TYN1+1¯YN1+1+1a2TLN2+1¯LN2+1+α1m1TRP1+1¯RP1+1+α2m2TVP2+1¯VP2+1N1−∑k=1TYk¯Yk(1f1k)+N2∑k=1TLk¯Lk(1f2k)+P1∑k=1α1TRk¯Rk(1u1k)+P2∑k=1α2TVk¯Vk(1u2k). $
|
If necessary arrangements are made, we get
$
⟨TY,Y⟩=b∫ap(x)(|y1|2−|y2|2)dx+b∫aq(x)2Re(y2¯y1)dx+b1|y1(a)|+N1∑k=12Re(Yk¯y1(a))−b2|y1(b)|2−N2∑k=12Re(Lk¯y1(b))−a1n1|y1(w−1)|2−P1∑k=1a12Re(Rky1(w−1))−a2n2|y1(w−2)|2−P2∑k=1a22Re(Vky1(w−2))−N1∑k=1g1k|Yk|21f1k+N2∑k=1g2kf2k|Lk|2+P1∑k=1a1t1ku1k|Rk|2+P2∑k=1a2t2ku2k|Vk|2−b∫a2Re(y2¯y1′)dx.
$
|
Accordingly, since $\langle TY, Y\rangle $ is real for each $Y$ in $D\left(T\right) $, $\lambda\in \mathbb{R} $ is obtained.
Lemma 2. The equality $\left\Vert Y_{n}\right\Vert ^{2} = \rho_{n}$ is valid such that $Y_{n}$ is eigenvector corresponding to eigenvalue $\lambda_{n}$ of $T$.
Proof. Let $\lambda_{n}\neq g_{ik}$. When $\lambda _{n} = g_{ik}$, following proof is done with minor changes. By using the structure of $D\left(T\right) $ and the Eqs (8)-(12), we get
$
‖Yn‖2=b∫a(φ21(x,λn)+φ22(x,λn))dx−|YN1+1|2a1+|LN2+1|2a2+α1m1|RP1+1|2+α2m2|VP2+1|2−N1∑k=1|Yk|2f1k+N2∑k=1|Lk|2f2k+P1∑k=1α1u1k|Rk|2+P2∑k=1α2u2k|Vk|2
$
|
(14) |
$ = { \int\limits_{a}^{b}} \left( \varphi_{1}^{2}\left( x, \lambda_{n}\right) +\varphi_{2}^{2}\left( x, \lambda_{n}\right) \right) dx-a_{1}\varphi_{1}^{2}\left( a, \lambda _{n}\right) +a_{2}\varphi_{1}^{2}\left( b, \lambda_{n}\right) +m_{1} \alpha_{1}\varphi_{1}^{2}\left( w_{1}-0, \lambda_{n}\right) $ $+m_{2}\alpha_{2}\varphi_{1}^{2}\left( w_{2}-0, \lambda_{n}\right) - { \sum\limits_{k = 1}^{N_{1}}} \dfrac{f_{1k}\varphi_{1}^{2}\left( a, \lambda_{n}\right) }{\left( \lambda_{n}-g_{1k}\right) ^{2}}+ { \sum\limits_{k = 1}^{N_{2}}} \dfrac{f_{2k}\varphi_{1}^{2}\left( b, \lambda_{n}\right) }{\left( \lambda_{n}-g_{2k}\right) ^{2}} $ $+ { \sum\limits_{k = 1}^{P_{1}}} \dfrac{\alpha_{1}u_{_{1k}}\varphi_{1}^{2}\left( w_{1}-0, \lambda_{n}\right) }{\left( \lambda_{n}-t_{_{1k}}\right) ^{2}}+ { \sum\limits_{k = 1}^{P_{2}}} \dfrac{\alpha_{2}u_{_{2k}}\varphi_{1}^{2}\left( w_{2}-0, \lambda_{n}\right) }{\left( \lambda_{n}-t_{_{2k}}\right) ^{2}}$ $ = { \int\limits_{a}^{b}} \left( \varphi_{1}^{2}\left( x, \lambda_{n}\right) +\varphi_{2}^{2}\left( x, \lambda_{n}\right) \right) dx-\varphi_{1}^{2}\left( a, \lambda_{n}\right) \left( a_{1}+ { \sum\limits_{k = 1}^{N_{1}}} \dfrac{f_{1k}}{\left( \lambda_{n}-g_{1k}\right) ^{2}}\right) $ $+\varphi_{1}^{2}\left( b, \lambda_{n}\right) \left( a_{2}+ { \sum\limits_{k = 1}^{N_{2}}} \dfrac{f_{2k}}{\left( \lambda_{n}-g_{2k}\right) ^{2}}\right) +\alpha _{1}\varphi_{1}^{2}\left( w_{1}-0, \lambda_{n}\right) \left( m_{1}+ { \sum\limits_{k = 1}^{P_{1}}} \dfrac{u_{_{1k}}}{\left( \lambda_{n}-t_{_{1k}}\right) ^{2}}\right) $ $+\alpha_{2}\varphi_{1}^{2}\left( w_{2}-0, \lambda_{n}\right) \left( m_{2}+ { \sum\limits_{k = 1}^{P_{2}}} \dfrac{u_{_{2k}}}{\left( \lambda_{n}-t_{_{2k}}\right) ^{2}}\right) $ $ = { \int\limits_{a}^{b}} \left( \varphi_{1}^{2}\left( x, \lambda_{n}\right) +\varphi_{2}^{2}\left( x, \lambda_{n}\right) \right) dx-\varphi_{1}^{2}\left( a, \lambda_{n}\right) f_{1}^{^{\prime}}\left( \lambda_{n}\right) +\varphi_{1}^{2}\left( b, \lambda_{n}\right) f_{2}^{^{\prime}}\left( \lambda_{n}\right) $ $+\alpha_{1}\varphi_{1}^{2}\left( w_{1}^{-}, \lambda_{n}\right) h_{1}^{^{\prime}}\left( \lambda_{n}\right) +\alpha_{2}\varphi_{1}^{2}\left( w_{2}^{-}, \lambda_{n}\right) h_{2}^{^{\prime}}\left( \lambda_{n}\right) = \rho_{n}. $ |
On the other hand, the expression
$ W\left( \varphi, \psi\right) = \varphi_{1}(x, \lambda)\psi_{2}(x, \lambda )-\varphi_{2}(x, \lambda)\psi_{1}(x, \lambda) $ |
is called characteristic function of problem (1)-(4). Moreover, since solutions $\varphi\left(x, \lambda\right) $ and $\psi\left(x, \lambda \right) $ satisfy the problem $L$,
for $\forall x\in\left[a, b\right] $
$\dfrac{\partial}{\partial x}W\left( \varphi, \psi\right) $ $ = \varphi_{1}^{\prime}\left( x, \lambda\right) \psi_{2}\left( x, \lambda \right) +\psi_{2}^{\prime}\left( x, \lambda\right) \varphi_{1}\left( x, \lambda\right) -\varphi_{2}^{\prime}\left( x, \lambda\right) \psi _{1}\left( x, \lambda\right) -\psi_{1}^{\prime}\left( x, \lambda\right) \varphi_{2}\left( x, \lambda\right) $ $ = \left[ q(x)\varphi_{1}\left( x, \lambda\right) -p(x)\varphi_{2}\left( x, \lambda\right) -\lambda\varphi_{2}\left( x, \lambda\right) \right] \psi_{2}\left( x, \lambda\right) $ $+\left[ -p(x)\psi_{1}\left( x, \lambda\right) -q(x)\psi_{2}\left( x, \lambda\right) +\lambda\psi_{1}\left( x, \lambda\right) \right] \varphi_{1}\left( x, \lambda\right) $ $-\left[ -p(x)\varphi_{1}\left( x, \lambda\right) -q(x)\varphi_{2}\left( x, \lambda\right) +\lambda\varphi_{1}\left( x, \lambda\right) \right] \psi_{1}\left( x, \lambda\right) $ $-\left[ q(x)\psi_{1}\left( x, \lambda\right) -p(x)\psi_{2}\left( x, \lambda\right) -\lambda\psi_{2}\left( x, \lambda\right) \right] \varphi_{2}\left( x, \lambda\right) = 0 $ |
is obtained. Furthermore, since solutions $\varphi(x, \lambda)$ and $\psi(x, \lambda)$ also satisfy transmission conditions (4), we get
$ W(w_{i} +0) = \varphi_{1}\left( w_{i}+0, \lambda\right) \psi_{2}\left( w_{i} +0, \lambda\right) -\varphi_{2}\left( w_{i}+0, \lambda\right) \psi_{1}\left( w_{i}+0, \lambda\right)\\ = \alpha_{i}\varphi_{1}\left( w_{i}-0, \lambda\right) \left[ \alpha_{i}^{-1}\psi_{2}\left( w_{i}-0, \lambda\right) +h_{i}\left( \lambda\right) \psi_{1}\left( w_{i}-0, \lambda\right) \right]\\-\left[ \alpha_{i}^{-1}\varphi_{2}\left( w_{i} -0, \lambda\right) +h_{i}\left( \lambda\right) \varphi_{1}\left( w_{i}-0, \lambda\right) \right] \alpha_{i}\psi_{1}\left( w_{i} -0, \lambda\right)\\ = \varphi_{1}\left( w_{i}-0, \lambda\right) \psi_{2}\left( w_{i}-0, \lambda\right) -\varphi_{2}\left( w_{i}-0, \lambda\right) \psi _{1}\left( w_{i}-0, \lambda\right)\\ = W(w_{i}-0). $ |
Therefore, since characteristic function $W\left(\varphi, \psi\right) $ is independent from $x$,
$W\{\varphi, \psi\}: = \Delta(\lambda)\\ = \varphi_{1}(x, \lambda)\psi_{2}(x, \lambda)-\varphi_{2}(x, \lambda)\psi _{1}(x, \lambda)\\ = a_{2}\left( \lambda\right) \varphi_{1}(b, \lambda)+b_{2}\left( \lambda\right) \varphi_{2}(b, \lambda)\\ = -b_{1}\left( \lambda\right) \psi_{2}(a, \lambda)-a_{1}\left( \lambda\right) \psi_{1}(a, \lambda)$ |
can be written.
It is clear that $\Delta(\lambda)$ is an entire function and its zeros namely $\left\{ \lambda_{n}\right\} _{n\in \mathbb{Z} }$coincide with the eigenvalues of the problem $L$.
Accordingly, for each eigenvalue $\lambda_{n}$ equality $\psi\left(x, \lambda_{n}\right) = s_{n}\varphi\left(x, \lambda_{n}\right) $ is valid where $s_{n} = \dfrac {\psi_{1}\left(a, \lambda_{n}\right) }{-b_{1}\left(\lambda_{n}\right) } = \dfrac{\psi_{2}\left(a, \lambda_{n}\right) }{a_{1}\left(\lambda _{n}\right) }$.
On the other hand, since $a_{i}\left(g_{ik}\right) \neq0$ ve $b_{i}\left(g_{ik}\right) = 0$ for $\forall i\in\left\{ 1, 2\right\} $ and $k = \left\{ 1, 2, \ldots, N_{i}\right\} $, $g_{ik}$ is an eigenvalue if and only if $\varphi_{1}\left(b, g_{2k}\right) = 0$, $\varphi_{1}\left(a, g_{1k}\right) = 0$ i.e., $\Delta(g_{ik}) = 0$.
At the same time, $t_{ik}$ is an eigenvalue if and only if $\varphi_{1} (w_{i}^{-}, t_{ik}) = 0 = \varphi_{1}(w_{i}^{+}, t_{ik})$ i.e., $\Delta(t_{ik}) = 0$ such that $i = 1, 2$ and $k = \left\{ 1, 2, \ldots P_{i}\right\} $.
Theorem 3. Eigenvalues of problem $L$ are simple.
Proof. Let $\lambda_{n}\neq g_{ik}$ and $\varphi\left(x, \lambda_{n}\right) $ be eigenfunction corresponds to the eigenvalue $\lambda_{n}$. In that case, the Eq (1) can be written for $\psi\left(x, \lambda\right) $ and $\varphi\left(x, \lambda_{n}\right) $ as follows;
$ B\psi^{\prime}\left( x, \lambda\right) +Q(x)\psi\left( x, \lambda\right) = \lambda\psi\left( x, \lambda\right) \\ B\varphi^{\prime}\left( x, \lambda_{n}\right) +Q(x)\varphi\left( x, \lambda_{n}\right) = \lambda_{n}\varphi\left( x, \lambda_{n}\right) . $ |
If we multiply these equations by $\varphi\left(x, \lambda_{n}\right) $ and $\psi\left(x, \lambda\right) $ respectively and add side by side, we get the following equality;
$
(ψ2(x,λ)φ1(x,λn)−ψ1(x,λ)φ2(x,λn))′=(λ−λn)(ψ1(x,λ)φ1(x,λn)+ψ2(x,λ)φ2(x,λn)).
$
|
Then if last equality is integrated over the interval $\left[a, b\right] $ and the initial conditions (13) and transmission conditions (4) are used to get
$ { \int\limits_{a}^{b}} \left( \psi_{1}\left( x, \lambda\right) \varphi_{1}\left( x, \lambda _{n}\right) +\psi_{2}\left( x, \lambda\right) \varphi_{2}\left( x, \lambda_{n}\right) \right) dx\\ +\alpha_{2}\varphi_{1}\left( w_{2}^{-}, \lambda_{n}\right) \psi_{1}\left( w_{2}^{-}, \lambda\right) \dfrac{h_{2}\left( \lambda\right) -h_{2}\left( \lambda_{n}\right) }{\lambda-\lambda_{n}}\\ +\alpha_{1}\psi_{1}\left( w_{1}^{-}, \lambda\right) \varphi_{1}\left( w_{1}^{-}, \lambda_{n}\right) \dfrac{h_{1}\left( \lambda\right) -h_{1}\left( \lambda_{n}\right) }{\lambda-\lambda_{n}}\\ +\psi_{1}(b, \lambda_{n})\varphi_{1}(b, \lambda_{n})\dfrac{f_{2}\left( \lambda\right) -f_{2}\left( \lambda_{n}\right) }{\lambda-\lambda_{n} }\\ -\varphi_{1}\left( a, \lambda_{n}\right) \psi_{1}\left( a, \lambda\right) \dfrac{f_{1}\left( \lambda\right) -f_{1}\left( \lambda_{n}\right) }{\lambda-\lambda_{n}}\\ = -\left( \dfrac{\Delta(\lambda)-\Delta(\lambda_{n})}{\left( \lambda -\lambda_{n}\right) }\right) \text{. } $ |
Then, considering that $\psi\left(x, \lambda_{n}\right) = s_{n} \varphi\left(x, \lambda_{n}\right) $
if the limit is passed when $ \lambda\rightarrow\lambda_{n}\text{, } s_{n}\rho_{n} = -\dot{\Delta}(\lambda_{n})$ is obtained.
If $g_{1k}$ and $g_{2k}$ are non-simple eigenvalues then $\varphi_{1}\left(a, g_{1k}\right) = 0$, $\varphi_{1}\left(b, g_{2k}\right) = 0$ and so $ { \int\limits_{a}^{b}} \left(\varphi_{1}^{2}\left(x, \lambda_{n}\right) +\varphi_{2}^{2}\left(x, \lambda_{n}\right) \right) dx = -\left[\alpha_{1}\varphi_{1}^{2}\left(w_{1}^{-}, \lambda_{n}\right) h_{1}^{^{\prime}}\left(\lambda_{n}\right) +\alpha_{2}\varphi_{1}^{2}\left(w_{2}^{-}, \lambda_{n}\right) h_{2} ^{^{\prime}}\left(\lambda_{n}\right) \right] $ is obtained. Since $\alpha_{1}$, $\alpha_{2}$ and for all $\lambda_{n}$, $h_{1}^{^{\prime} }\left(\lambda_{n}\right) $, $h_{2}^{^{\prime}}\left(\lambda_{n}\right) $ are positive, we have a contradiction. Therefore, eigenvalues $g_{ik}$ are also simple.
Using expressions $a_{2}\left(\lambda\right) $, $b_{2}\left(\lambda\right) $ and asymptotic behaviour of solution $\varphi\left(x, \lambda\right) $, we obtain the following asymptotic of characteristic function $\Delta(\lambda)$ as $\left\vert \lambda\right\vert \rightarrow\infty$; $\Delta(\lambda) = -a_{1}a_{2}m_{1} m_{2}\lambda^{N_{1}+N_{2}+L_{1}+L_{2}+4}\sin\lambda\left(w_{1}-a\right) \sin\lambda\left(w_{2}-w_{1}\right) \sin\lambda\left(b-w_{2}\right) $$+o\left(\left\vert \lambda\right\vert ^{N_{1}+N_{2}+L_{1}+L_{2} +4}e^{\left\vert \operatorname{Im}\lambda\right\vert \left(b-a\right) }\right) $.
Let $ \Phi\left(x, \lambda\right) : = \left(Φ1(x,λ)Φ2(x,λ)
Since $ V(\Phi) = 0 = V(\psi) $, it can be supposed that $ \Phi\left(x, \lambda\right) = k\psi\left(x, \lambda\right) $ $ \left(k\neq0\right) $ where $ k $ is a constant.
$ W(φ,Φ)=φ1(x,λ)Φ2(x,λ)−φ2(x,λ)Φ1(x,λ)|x=a=−b1(λ)Φ2(a,λ)−a1(λ)Φ1(a,λ)=−U(Φ)=−1. $
|
By the relation $ U\left(\Phi\right) = 1 $, we get $ k\left[b_{1}\left(\lambda\right) \psi_{2}\left(a, \lambda\right) +a_{1}\left(\lambda \right) \psi_{1}\left(a, \lambda\right) \right] = 1 $. Since $ U\left(\psi\right) = -\Delta(\lambda) $, we obtain $ \Phi\left(x, \lambda\right) = k\psi\left(x, \lambda\right) = -\dfrac{\psi\left(x, \lambda\right) }{\Delta\left(\lambda\right) } $ for $ \lambda\neq\lambda_{n} $.
Let $ S\left(x, \lambda\right) = \left(S1(x,λ)S2(x,λ)
Accordingly, the following equalities are obtained:
$ φ1(x,λ)=−b1(λ)C(x,λ)+a1(λ)S(x,λ) $
|
(15) |
$ Φ(x,λ)=1b1(λ)(S(x,λ)−Φ1(a,λ)φ(x,λ)). $
|
(16) |
The function $ \Phi\left(x, \lambda\right) $ is called Weyl solution and the function $ M\left(\lambda\right) = -\Phi_{1}\left(a, \lambda\right) $ is called Weyl function of problem $ L $. Therefore, since $ \Phi\left(x, \lambda\right) = -\dfrac{\psi\left(x, \lambda\right) }{\Delta\left(\lambda\right) } $, we set $ M\left(\lambda\right) : = \dfrac{\psi_{1}\left(a, \lambda\right) }{\Delta\left(\lambda\right) } $.
Consider the boundary value problem $ \tilde{L} $ in the same form with $ L $ but different coefficients. Here, the expressions related to the $ L $ problem are shown with $ s $ and the ones related to $ \tilde{L} $ are shown with $ \tilde{s} $. According to this statement, we set the problem $ \tilde{L} $ as follows:
$ \tilde{\ell}\left[ y(x)\right] : = By^{\prime}(x)+\tilde{Q}(x)y(x) = \lambda y(x)\text{, }x\in\left[ a, b\right] $ |
$ ˜U(y):=y2(a)+˜f1(λ)y1(a)=0˜V(y):=y2(b)+˜f2(λ)y1(b)=0y1(wi+0)=˜αiy1(wi−0)y2(wi+0)=−˜α−1iy2(wi−0)+˜hi(λ)y1(wi−0) $
|
where $ \tilde{Q}(x) = \left(˜p(x)q(x)q(x)−˜p(x)
Theorem 4. If $ M\left(\lambda\right) = \tilde{M}\left(\lambda\right) $, $ f_{1}\left(\lambda\right) = \tilde {f}_{1}\left(\lambda\right) $, then $ Q\left(x\right) = \tilde{Q}\left(x\right) $ almost everywhere in $ \left(a, b\right) $, $ f_{2}\left(\lambda\right) = \tilde{f}_{2}\left(\lambda\right) $, $ h_{i}\left(\lambda\right) = \tilde{h}_{i}\left(\lambda\right), $and $ \alpha_{i}\left(\lambda\right) = \tilde{\alpha}_{i}\left(\lambda\right) $ $ (i = 1, 2) $.
Proof. Introduce a matrix $ P(x, \lambda) = \left[P_{ij}(x, \lambda)\right] _{i, j = 1, 2} $ by the equality as follows;
$ \left(P11P12P21P22
According to this, we get
$ P11(x,λ)=−φ1(x,λ)˜Φ2(x,λ)+Φ1(x,λ)˜φ2(x,λ)P12(x,λ)=−˜φ1(x,λ)Φ1(x,λ)+φ1(x,λ)˜Φ1(x,λ)P21(x,λ)=−φ2(x,λ)˜Φ2(x,λ)+Φ2(x,λ)˜φ2(x,λ)P22(x,λ)=−˜φ1(x,λ)Φ2(x,λ)+φ2(x,λ)˜Φ1(x,λ) $
|
(17) |
or by using the relation $ \Phi\left(x, \lambda\right) = -\dfrac{\psi\left(x, \lambda\right) }{\Delta\left(\lambda\right) } $,
we obtain
$ P11(x,λ)=φ1(x,λ)˜ψ2(x,λ)˜Δ(λ)−˜ψ2(x,λ)ψ1(x,λ)Δ(λ)P12(x,λ)=−φ1(x,λ)˜ψ1(x,λ)˜Δ(λ)+˜φ1(x,λ)ψ1(x,λ)Δ(λ)P21(x,λ)=φ2(x,λ)˜ψ2(x,λ)˜Δ(λ)−˜φ2(x,λ)ψ2(x,λ)Δ(λ)P22(x,λ)=˜φ1(x,λ)ψ2(x,λ)Δ(λ)−φ2(x,λ)˜ψ1(x,λ)˜Δ(λ). $
|
(18) |
Taking into account the Eqs (15) and (16) and $ M\left(\lambda\right) = \tilde{M}\left(\lambda\right) $, we can easily get
$
P11(x,λ)=C1(x,λ)˜S2(x,λ)−S1(x,λ)˜C2(x,λ)P12(x,λ)=˜C1(x,λ)S1(x,λ)−C1(x,λ)˜S1(x,λ)P21(x,λ)=C2(x,λ)˜S2(x,λ)−S2(x,λ)˜C2(x,λ)P22(x,λ)=˜C1(x,λ)S2(x,λ)−C2(x,λ)˜S1(x,λ). $
|
Hence, the functions $ P_{ij}(x, \lambda) $ are entire in $ \lambda $. Denote
$ G_{\delta}: = \left\{ \lambda:\left\vert \lambda-\lambda _{n}\right\vert \geq\delta, \text{ }n = 0, \pm1, \pm2, \ldots\right\}, \delta > 0 $ and
$ \tilde{G}_{\delta}: = \left\{ \lambda:\left\vert \lambda -\tilde{\lambda}_{n}\right\vert \geq\delta, \text{ }n = 0, \pm1, \pm2, \ldots \right\} $ where $ \delta > 0 $ is sufficiently small and fixed.
Clearly, for $ \lambda\in G_{\delta}\cap\tilde{G}_{\delta} $, $ \left\vert \sin\lambda x\right\vert \geq C_{\delta}e^{\left\vert \operatorname{Im} \lambda\right\vert x}, $ $ \left\vert \lambda\right\vert \rightarrow\infty $.
Therefore, $ \left\vert \Delta(\lambda)\right\vert \geq C_{\delta}\lambda ^{N_{1}+N_{2}+L_{1}+L_{2}+4}e^{\left\vert \operatorname{Im}\lambda\right\vert \left(b-a\right) }, $ \ $ \lambda\in G_{\delta}\cap\tilde{G}_{\delta}, $ $ \left\vert \lambda\right\vert \geq\lambda^{\ast} $ for sufficiently large $ \lambda^{\ast} = \lambda^{\ast}\left(\delta\right) $ and from (18) we see that $ P_{ij}(x, \lambda) $ are bounded with respect to $ \lambda $ where $ \lambda\in G_{\delta}\cap\tilde{G}_{\delta} $ and $ \left\vert \lambda \right\vert $ sufficiently large. From Liouville's theorem, it is obtained that these functions do not depend on $ \lambda $.
On the other hand, from (18)
$ P_{11}(x, \lambda)-1 = \varphi_{1}(x, \lambda)\left(\dfrac{\tilde{\psi} _{2}(x, \lambda)}{\tilde{\Delta}\left(\lambda\right) }-\dfrac{\psi _{2}(x, \lambda)}{\Delta\left(\lambda\right) }\right) -\dfrac {\psi_{1}(x, \lambda)}{\Delta\left(\lambda\right) }\left(\tilde{\varphi }_{2}(x, \lambda)-\varphi_{2}(x, \lambda)\right) $
$ P_{12}(x, \lambda) = \tilde{\varphi}_{1}(x, \lambda)\left(\dfrac {\psi_{1}(x, \lambda)}{\Delta(\lambda)}-\dfrac{\tilde{\psi}_{1}(x, \lambda)}{\tilde{\Delta}\left(\lambda\right) }\right) -\dfrac{\tilde{\psi} _{1}(x, \lambda)}{\tilde{\Delta}\left(\lambda\right) }\left(\varphi _{1}(x, \lambda)-\tilde{\varphi}_{1}(x, \lambda)\right) $
$ P_{21}(x, \lambda) = \varphi_{2}(x, \lambda)\left(\dfrac{\tilde{\psi }_{2}(x, \lambda)}{\tilde{\Delta}\left(\lambda\right) }-\dfrac{\psi _{2}(x, \lambda)}{\Delta\left(\lambda\right) }\right) -\dfrac{\psi _{2}(x, \lambda)}{\Delta\left(\lambda\right) }\left(\tilde{\varphi} _{2}(x, \lambda)-\varphi_{2}(x, \lambda)\right) $
$ P_{22}(x, \lambda)-1 = \dfrac{\psi_{2}(x, \lambda)}{\Delta\left(\lambda\right) }\left(\tilde{\varphi}_{1}(x, \lambda)-\varphi_{1}(x, \lambda)\right) -\varphi_{2}(x, \lambda)\left(\dfrac{\tilde{\psi}_{1}(x, \lambda)} {\tilde{\Delta}\left(\lambda\right) }-\dfrac{\psi_{1}(x, \lambda)} {\Delta\left(\lambda\right) }\right) $.
If it is considered that $ P_{ij}(x, \lambda) $ do not depend on $ \lambda $ and asymptotic formulas of solutions $ \varphi(x, \lambda) $ and $ \psi(x, \lambda) $, we obtain
$ \underset{\lambda\rightarrow-\infty}{\lim}\varphi_{1}(x, \lambda)\left(\dfrac{\tilde{\psi}_{2}(x, \lambda)}{\tilde{\Delta}\left(\lambda\right) }-\dfrac{\psi_{2}(x, \lambda)}{\Delta\left(\lambda\right) }\right) = 0, $
$ \underset{\lambda\rightarrow-\infty}{\lim}\dfrac{\psi_{1}(x, \lambda)} {\Delta(\lambda)}\left(\tilde{\varphi}_{2}(x, \lambda)-\varphi_{2} (x, \lambda)\right) = 0 $
for all $ x $ in $ \left[a, b\right] $. Hence, $ \underset{\lambda \rightarrow-\infty}{\lim}\left[P_{11}(x, \lambda)-1\right] = 0 $.
Thus, $ P_{11}(x, \lambda) = 1 $ and similarly, $ P_{22}(x, \lambda) = 1 $ and $ P_{12}(x, \lambda) = P_{21}(x, \lambda) = 0 $.
Substitute these relations in (17), to obtain
$ \varphi_{1}(x, \lambda) = \tilde{\varphi}_{1}(x, \lambda) $, $ \dfrac{\psi _{1}(x, \lambda)}{\Delta(\lambda)} = \dfrac{\tilde{\psi}_{1}(x, \lambda)} {\tilde{\Delta}\left(\lambda\right) } $
$ \varphi_{2}(x, \lambda) = \tilde{\varphi}_{2}(x, \lambda) $, $ \dfrac{\psi _{2}(x, \lambda)}{\Delta(\lambda)} = \dfrac{\tilde{\psi}_{2}(x, \lambda)} {\tilde{\Delta}\left(\lambda\right) } $ for all $ x $ and $ \lambda $.
Taking into account these results and Eq (1), we have
$ \left( Q(x)-\tilde{Q}(x)\right) \varphi(x, \lambda) = 0\text{.} $ |
Therefore, $ Q(x) = \tilde{Q}(x) $ i.e., $ p(x) = \tilde{p}(x) $. Moreover, it is considered that
$ \dfrac{\psi_{1}(x, \lambda)}{\Delta(\lambda)} = \dfrac{\tilde{\psi}_{1}(x, \lambda)}{\tilde{\Delta}\left(\lambda\right) }, $ $ \dfrac{\psi_{2}(x, \lambda)}{\Delta(\lambda)} = \dfrac{\tilde{\psi} _{2}(x, \lambda)}{\tilde{\Delta}\left(\lambda\right) } $
and
$ b_{2}\left(\lambda\right) \psi_{2}(x, \lambda)+a_{2}\left(\lambda\right) \psi_{1}(x, \lambda) = 0 $
$ \tilde{b}_{2}\left(\lambda\right) \tilde{\psi}_{2}(x, \lambda)+\tilde{a}_{2}\left(\lambda\right) \tilde{\psi }_{1}(x, \lambda) = 0 $
we get $ a_{2}\left(\lambda\right) \tilde{b}_{2}\left(\lambda\right) -b_{2}\left(\lambda\right) \tilde {a}_{2}\left(\lambda\right) = 0 $. As we have said above, $ a_{2}\left(\lambda\right) $, $ b_{2}\left(\lambda\right) $ as well as $ \tilde{a} _{2}\left(\lambda\right) $, $ \tilde{b}_{2}\left(\lambda\right) $ do not have common zeros. Hence, $ a_{2}\left(\lambda\right) = \tilde{a}_{2}\left(\lambda\right), $ $ b_{2}\left(\lambda\right) = \tilde{b}_{2}\left(\lambda\right) $, i.e., $ f_{2}\left(\lambda\right) = \tilde{f}_{2}\left(\lambda\right) $.
On the other hand, substituting $ \varphi_{1} $ and $ \varphi_{2} $ into transmission conditions (4), we get
$ \varphi_{1}(w_{i}^{+}, \lambda) = \alpha_{i}\varphi_{1}(w_{i}^{-}, \lambda) $, $ \ \tilde{\varphi} _{1}(w_{i}^{+}, \lambda) = \tilde{a}_{i}\tilde{\varphi}_{1}(w_{i}^{-}, \lambda) $
$ \varphi_{2}(w_{i}^{+}, \lambda) = \alpha_{i}^{-1}\varphi _{2}(w_{1}^{-}, \lambda)+h_{i}\left(\lambda\right) \varphi_{1}(w_{i} ^{-}, \lambda) $,
$ \tilde{\varphi}_{2}(w_{i}^{+}, \lambda) = \tilde{\alpha}_{i}^{-1}\tilde{\varphi}_{2}(w_{i}^{-}, \lambda)+\tilde{h} _{i}\left(\lambda\right) \tilde{\varphi}_{1}(w_{i}^{-}, \lambda) $, $ i = 1, 2 $.
Therefore, since $ \varphi_{1}(x, \lambda) = \tilde{\varphi }_{1}(x, \lambda), $ $ \varphi_{2}(x, \lambda) = \tilde{\varphi}_{2}(x, \lambda) $, these yield that $ \alpha_{1} = \tilde{\alpha}_{1} $, $ \alpha_{2} = \tilde{\alpha }_{2} $
and $ h_{1}\left(\lambda\right) = \tilde{h}_{1}\left(\lambda\right) $, $ h_{2}\left(\lambda\right) = \tilde{h}_{2}\left(\lambda\right) $.
Theorem 5. If $ \left\{ \lambda_{n}, \rho_{n}\right\} _{n\in \mathbb{Z} } = \left\{ \tilde{\lambda}_{n}, \tilde{\rho}_{n}\right\} _{n\in \mathbb{Z} } $, $ f_{1}\left(\lambda\right) = \tilde{f}_{1}\left(\lambda\right) $ then $ Q\left(x\right) = \tilde{Q}\left(x\right) $ almost everywhere in $ \left(a, b\right) $, $ f_{2}\left(\lambda\right) = \tilde{f}_{2}\left(\lambda\right) $, $ h_{i}\left(\lambda\right) = \tilde{h}_{i}\left(\lambda\right), $and $ \alpha_{i}\left(\lambda\right) = \tilde{\alpha} _{i}\left(\lambda\right) $ $ (i = 1, 2) $.
Proof. Since $ \lambda_{n} = \tilde{\lambda}_{n} $, $ \Delta\left(\lambda\right) = c\tilde{\Delta}\left(\lambda\right) $. On the other hand, also since $ s_{n}\rho_{n} = -\dot{\Delta}(\lambda_{n}) $ and $ \rho_{n} = \tilde{\rho }_{n} $, we get that $ s_{n} = c\tilde{s}_{n} $. Therefore, $ \psi _{1}\left(a, \lambda_{n}\right) = c\tilde{\psi}_{1}\left(a, \lambda _{n}\right) $ is obtained.
Denote $ H\left(\lambda\right) : = \dfrac{\psi_{1}\left(a, \lambda\right) -c\tilde{\psi}_{1}\left(a, \lambda\right) }{\Delta\left(\lambda\right) } $ which is an entire function in $ \lambda $. Since $ \underset{\left\vert \lambda\right\vert \rightarrow\infty}{\lim}H\left(\lambda\right) = 0 $, $ H\left(\lambda\right) \equiv0 $ and so $ \psi_{1}\left(a, \lambda\right) = c\tilde{\psi}_{1}\left(a, \lambda\right) $. Hence, $ M\left(\lambda \right) = \tilde{M}\left(\lambda\right) $. As a result, the proof of theorem is finished by Theorem 4.
We examine the boundary value problem $ L_{1} $ with the condition $ y_{1}(a) = 0 $ instead of (2) in problem $ L $. Let $ \left\{ \mu_{n}\right\} _{n\in \mathbb{Z} } $ be eigenvalues of the problem $ L_{1} $. It is clear that $ \left\{ \mu _{n}\right\} _{n\in \mathbb{Z} } $ are zeros of $ \Delta_{1}(\mu): = -\psi_{1}(a, \mu) $.
Theorem 6. If $ \left\{ \lambda_{n}, \mu_{n}\right\} _{n\in \mathbb{Z} } = \left\{ \tilde{\lambda}_{n}, \tilde{\mu}_{n}\right\} _{n\in \mathbb{Z} } $, $ f_{1}\left(\lambda\right) = \tilde{f}_{1}\left(\lambda\right) $ and $ K = \tilde{K} $ such that $ K = a_{2}m_{1}m_{2} $, $ \tilde{K} = \tilde{a}_{2}\tilde {m}_{1}\tilde{m}_{2} $ then $ Q\left(x\right) = \tilde{Q}\left(x\right) $ almost everywhere in $ \left(a, b\right) $, $ f_{2}\left(\lambda\right) = \tilde{f}_{2}\left(\lambda\right) $, $ h_{i}\left(\lambda\right) = \tilde{h}_{i}\left(\lambda\right), $and $ \alpha_{i}\left(\lambda\right) = \tilde{\alpha}_{i}\left(\lambda\right) $ $ (i = 1, 2) $.
Proof. Since for all $ n\in \mathbb{Z} $, $ \lambda_{n} = \widetilde{\lambda}_{n} $ and $ \mu_{n} = \widetilde{\mu}_{n} $, $ \dfrac{\Delta\left(\lambda\right) }{\widetilde{\Delta}\left(\lambda\right) } $ and $ \dfrac{\Delta_{1}\left(\mu\right) }{\widetilde {\Delta}_{1}\left(\mu\right) } $ are entire functions in $ \lambda $ and in $ \mu $ respectively. On the other hand, taking into account the asymptotic behaviours of $ \Delta(\lambda) $, $ \Delta_{1}(\mu) $ and $ K = \tilde{K} $, we obtain $ \underset{\lambda\rightarrow-\infty}{\lim}\dfrac{\Delta(\lambda)}{\tilde{\Delta}\left(\lambda\right) } = 1 $ and $ \underset{\mu \rightarrow-\infty}{\lim}\dfrac{\Delta_{1}(\mu)}{\tilde{\Delta}_{1}\left(\mu\right) } = 1 $. Therefore, since $ \lambda_{n} = \widetilde{\lambda}_{n} $ and $ \mu_{n} = \widetilde{\mu}_{n} $, we get $ \Delta(\lambda) = \tilde{\Delta} (\lambda) $ and $ \Delta_{1}(\mu) = \tilde{\Delta}_{1}(\mu) $. If we consider the case $ \Delta_{1}(\mu) = \tilde{\Delta}_{1}(\mu) $, then $ \psi_{1}(a, \mu) = \tilde{\psi}_{1}(a, \mu) $ is obtained. Furthermore, since $ M(\lambda) = \dfrac{\psi_{1}(a, \lambda)}{\Delta(\lambda)} $, $ M\left(\lambda\right) = \tilde{M}\left(\lambda\right) $. Hence, the proof is completed by Theorem 4.
The purpose of this paper is to state and prove some uniqueness theorems for Dirac equations with boundary and transmission conditions depending rational function of Herglotz-Nevanlinna. Accordingly, it has been proved that while $ f_{1}(\lambda) $ in condition (2) is known, the coefficients of the boundary value problem (1)-(4) can be determined uniquely by each of the following;
i) The Weyl function $ M\left(\lambda\right) $
ii) Spectral data $ \left\{ \lambda_{n}, \rho_{n}\right\} $ forming eigenvalues and normalizing constants respectively
iii) Two given spectra $ \left\{ \lambda_{n}, \mu_{n}\right\} $
These results are the application of the classical uniqueness theorems of Marchenko, Gelfand, Levitan and Borg to such Dirac equations. Considering this study, similar studies can be made for classical Sturm-Liouville operators, the system of Dirac equations and diffusion operators with finite number of transmission conditions depending spectral parameter as Herglotz-Nevanlinna function.
There is no conflict of interest.
[1] | Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116: 2266–2301. |
[2] |
Mohammadi MR, Khaleghi A, Nasrabadi AM, et al. (2016) EEG classification of ADHD and normal children using non-linear features and neural network. Biomed Eng Lett 6: 66–73. doi: 10.1007/s13534-016-0218-2
![]() |
[3] |
Pezard L, Nandrino J, Renault B, et al. (1996) Depression as a dynamical disease. Biol Psychiatry 39: 991–999. doi: 10.1016/0006-3223(95)00307-X
![]() |
[4] | Hamida ST, Ahmed B, Penzel T. A novel insomnia identification method based on Hjorth parameters. 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT); 2015 Dec 7–10; Abu Dhabi, UAE. New Jersey: IEEE; c2016. p. 548–552. |
[5] |
Bruhn J, Röpcke H, Hoeft A (2000) Approximate entropy as an electroencephalographic measure of anesthetic drug effect during desflurane anesthesia. Anesthesiology 92: 715–726. doi: 10.1097/00000542-200003000-00016
![]() |
[6] |
Sohn H, Kim I, Lee W, et al. (2010) Linear and non-linear EEG analysis of adolescents with attention-deficit/hyperactivity disorder during a cognitive task. Clin Neurophysiol 121: 1863–1870. doi: 10.1016/j.clinph.2010.04.007
![]() |
[7] |
Takahashi T (2013) Complexity of spontaneous brain activity in mental disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 45: 258–266. doi: 10.1016/j.pnpbp.2012.05.001
![]() |
[8] |
Takehara T, Ochiai F, Watanabe H, et al. (2013) The relationship between fractal dimension and other-race and inversion effects in recognising facial emotions. Cogn Emot 27: 577–588. doi: 10.1080/02699931.2012.725655
![]() |
[9] |
Cheng M, Tsoi AC (2017) Fractal dimension pattern-based multiresolution analysis for rough estimator of speaker-dependent audio emotion recognition. Int J Wavelets Multiresolut Inf Process 15: 1750042. doi: 10.1142/S0219691317500424
![]() |
[10] | Duan R, Zhu J, Lu B. Differential entropy feature for EEG-based emotion classification. 6th International IEEE/EMBS Conference on Neural Engineering (NER); 2013 Nov 6–8; San Diego, USA. New Jersey: IEEE; c2014. p. 81–84. |
[11] |
Mehmood RM, Lee HJ (2015) EEG based emotion recognition from human brain using hjorth parameters and SVM. International Journal of Bio-Science and Bio-Technology 7: 23–32. doi: 10.14257/ijbsbt.2015.7.3.03
![]() |
[12] | Unterlöhner i Salvat N. Classifying music by their emotional content by using machine learning [master's thesis]. [Barcelona (Spain)]: Univ. Politecnica de Catalunya; 2013. |
[13] |
Zappasodi F, Olejarczyk E, Marzetti L, et al. (2014) Fractal dimension of EEG activity senses neuronal impairment in acute stroke. PLoS One 9: e100199. doi: 10.1371/journal.pone.0100199
![]() |
[14] | Al-Qazzaz NK, Ali S, Ahmad SA, Islam MS, Escudero J. Entropy-based markers of EEG background activity of stroke-related mild cognitive impairment and vascular dementia patients. In: Yurish S, Malayeri A, editors. Sensors and electronic instrumentation advances: proceedings of the 2nd international conference on sensors and electronic instrumentation advances; 2016 Sep 22-23; Barcelona, Castelldefels, Spain. Barcelona: IFSA Publishing; c2016. p. 92–95. |
[15] |
Chu W, Huang M, Jian B, et al. (2017) Analysis of EEG entropy during visual evocation of emotion in schizophrenia. Ann Gen Psychiatry 16: 34–43. doi: 10.1186/s12991-017-0157-z
![]() |
[16] | Paolucci S (2008). Epidemiology and treatment of post-stroke depression. Neuropsychiatr Dis Treat 4: 145–154. |
[17] |
Pohjasvaara T, Vataja R, Leppävuori A, et al. (2001) Depression is an independent predictor of poor long-term functional outcome post-stroke. European Journal of Neurology 8: 315–319. doi: 10.1046/j.1468-1331.2001.00182.x
![]() |
[18] |
Gillen R, Tennen H, McKee TE, et al. (2001) Depressive symptoms and history of depression predict rehabilitation efficiency in stroke patients. Arch Phys Med Rehabil 82: 1645–1649. doi: 10.1053/apmr.2001.26249
![]() |
[19] |
Hanks RA, Temkin N, Machamer J, et al. (1999) Emotional and behavioral adjustment after traumatic brain injury. Arch Phys Med Rehabil 80: 991–997. doi: 10.1016/S0003-9993(99)90049-7
![]() |
[20] |
Williams C, Wood RL (2010) Alexithymia and emotional empathy following traumatic brain injury. J Clin Exp Neuropsychol 32: 259–267. doi: 10.1080/13803390902976940
![]() |
[21] |
Galina P, Gladun K, Alexey I (2014) The EEG analysis of auditory emotional stimuli perception in TBI patients with different SCG score. Open Journal of Modern Neurosurgery 4: 81–96. doi: 10.4236/ojmn.2014.42017
![]() |
[22] |
Kring AM, Caponigro JM (2010) Emotion in schizophrenia: where feeling meets thinking. Curr Dir Psychol Sci 19: 255–259. doi: 10.1177/0963721410377599
![]() |
[23] |
Higuchi T (1988) Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenomena 31: 277–283. doi: 10.1016/0167-2789(88)90081-4
![]() |
[24] |
Ktonas PY, Papp N (1980) Instantaneous envelope and phase extraction from real signals: theory, implementation, and an application to EEG analysis. Signal Processing 2: 373–385. doi: 10.1016/0165-1684(80)90079-1
![]() |
[25] |
Hjorth B (1970). EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol 29: 306–310. doi: 10.1016/0013-4694(70)90143-4
![]() |
[26] | Sutter R, Kaplan PW (2012) Electroencephalographic patterns in coma: when things slow down. Epileptologie 29: 201–209. |
[27] |
Faught E (1993) Current role of electroencephalography in cerebral ischemia. Stroke 24: 609–613. doi: 10.1161/01.STR.24.4.609
![]() |
[28] | Gómez C, Mediavilla Á, Hornero R, et al. (2009) Abásolo D., Fernández A. Use of the Higuchi's fractal dimension for the analysis of MEG recordings from Alzheimer's disease patients. Med Eng Phys 31: 306–313. |
[29] |
Hinkley LB, Vinogradov S, Guggisberg AG, et al. (2011) Clinical symptoms and alpha band resting-state functional connectivity imaging in patients with schizophrenia: implications for novel approaches to treatment. Biol Psychiatry 70: 1134–1142. doi: 10.1016/j.biopsych.2011.06.029
![]() |
[30] |
Uhlhaas PJ, Haenschel C, Nikolić D, et al. (2008) The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull 34: 927–943. doi: 10.1093/schbul/sbn062
![]() |
[31] | Iragui VJ, McCutchen CB (1983) Physiologic and prognostic significance of" alpha coma". J Neurol Neurosurg Psychiatry 46: 632–638. |
[32] |
Angelakis E, Lubar JF, Stathopoulou S, et al. (2004) Peak alpha frequency: an electroencephalographic measure of cognitive preparedness. Clin Neurophysiol 115: 887–897. doi: 10.1016/j.clinph.2003.11.034
![]() |
[33] |
Fuss FK (2016) A method for quantifying the emotional intensity and duration of a startle reaction with customized fractal dimensions of EEG signals. Applied Mathematics 7: 355–364. doi: 10.4236/am.2016.74033
![]() |
[34] |
Ekman P, Friesen WV, Simons RC (1985) Is the startle reaction an emotion?. J Pers Soc Psychol 49: 1416–1426. doi: 10.1037/0022-3514.49.5.1416
![]() |
[35] | Liu Y, Sourina O, Nguyen MK (2011) Real-time EEG-based emotion recognition and its applications, In: Gavrilova ML, Tan CJK Authors, Transactions on computational science XII, Berlin: Springer, 256–277. |
[36] |
Portnova G, Balaev V, Tetereva A, et al. (2018) Correlation of BOLD Signal with Linear and Nonlinear Patterns of EEG in Resting State EEG-Informed fMRI. Front Hum Neurosci 11: 654. doi: 10.3389/fnhum.2017.00654
![]() |
[37] |
Bornas X, Tortella-Feliu M, Balle M, et al. (2013) Self-focused cognitive emotion regulation style as associated with widespread diminished EEG fractal dimension. Int J Psychol 48: 695–703. doi: 10.1080/00207594.2012.671945
![]() |
[38] | Georgiev S, Minchev Z, Christova C, et al. (2009) EEG fractal dimension measurement before and after human auditory stimulation. Bioautomation 12: 70–81. |
[39] |
Koukkou M, Lehmann D, Wackermann J, et al. (1993) Dimensional complexity of EEG brain mechanisms in untreated schizophrenia. Biol Psychiatry 33: 397–407. doi: 10.1016/0006-3223(93)90167-C
![]() |
![]() |
![]() |
1. | Mehmet Kayalar, A uniqueness theorem for singular Sturm-liouville operator, 2023, 34, 1012-9405, 10.1007/s13370-023-01097-x |