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Abstract: Objective: The aim of this study was to determine the EEG changes induced by emotional 

non-verbal sounds using nonlinear signals’ features and also to examine the subjective emotional 

response in patients with different neurological and psychiatric disorders. Methods: 141 subjects 

participated in our study: patients after moderate TBI, patients in acute coma, patients after stroke, 

patients with schizophrenia and controls. 7 types of emotionally charged stimuli were presented. 

Non-comatose participants were asked to assess the levels of experienced emotions. We analyzed 

fractal dimension, signal’s envelope parameters and Hjorth mobility and complexity. Results: The 

Hjorth parameters were negatively correlated with irritation. The fractal dimension was positively 

correlated with arousal and empathy levels. The only presentation of laughter to post-stroke patients 

induced the reaction similar to the control group. Conclusions: The results showed that the 

investigated nonlinear features of resting state EEG are quite group-specific and also specific to the 

emotional state. Significance: The investigated features could serve to diagnose emotional 

impairments. 

Keywords: EEG; fractal dimension; EEG envelope; Hjorth; schizophrenia; stroke; coma; traumatic 

brain injury 

 

1. Introduction 

In this study we examined a set of time-domain and nonlinear features of EEG signal in patients 
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with different neurological and psychiatric disorders. These features were shown to differ in patients 

with neurological disorders such as epilepsy, attention-deficit/hyperactivity disorder (ADHD) and 

Alzheimer’s disease [1]. So, we expect that the complexity and chaotic nature of EEG data are useful 

to discriminate these disorders by their specific emotional traits. As reported by some researchers [2], 

quantitative measures of chaos and nonlinear features characterize electrophysiological abnormalities 

in neuropsychiatric disorders that are not evident in linear analysis. To show the effectiveness of 

these features to diagnose a concussion, in an approach similar to power analysis, the features can be 

calculated for both usual EEG frequency bands (rhythms) and individual EEG frequencies (2-Hz 

wide bands). This method came from a study on concussed athletes [2]. The investigated signal 

features: time domain Hjorth parameters, approximate entropy, and the Hurst exponent, didn’t differ 

between the groups of the athletes and their healthy peers if calculated in the rhythm-band filtered 

case but they did differ in the narrow-band filtered case. 

The observation of significantly different nonlinear features also revealed important notions 

about concussed athletes: they exhibited a decrease in Hjorth complexity and mobility. It has been 

reported by Pezard with colleagues [3] that depressive subjects tend to display lower complexity than 

controls. Moreover, it was reported that decreased complexity and mobility are associated with 

insomniac subjects [4]. Approximate entropy quantifies the amount of regularity in the data by 

calculating the upcoming amplitude values of the signal based on the knowledge of the preceding 

amplitude values [5]. Sohn with colleagues [6] reported about significantly lower approximate 

entropy for a group of ADHD subjects compared to matched controls and hypothesized that the 

patients might not have sufficient levels of cortical activation to reach the requirements for 

attention-demanding tasks. Following their hypothesis, the approximate entropy is discriminative in 

this case, we suppose it reflects the altered cortical information processing. Moreover, pathological 

disorder studies on schizophrenia, posttraumatic stress disorder, panic disorder, and epilepsy have 

reported lower Hjorth complexity in pathological states compared to healthy subjects [7]. We claim 

that lower EEG complexity is attributed to the abnormal neural integration in the above-mentioned 

mental disorders. 

Nonlinear EEG parameters were previously shown to be related to emotional states and 

affective reactions. For example, fractal dimension of EEG signals provides comparative 

performance for both facial [8] and auditory [9] emotion recognition. Differential entropy of EEG 

signals proved to be more suitable for emotion recognition than traditional frequency domain EEG 

features [10]. Hjorth parameters can be used for happiness/sadness recognition of visual stimuli [11] 

and emotional components of music [12]. Thus, nonlinear parameters are a good choice in the 

paradigm of emotional processes investigation. 

Nonlinear features are also a good tool for emotional processes research in neurological and 

psychiatric disorders of our interest. For example, fractal dimension decreases in the acute phase of a 

stroke and was also associated with worse clinical recovery [13]. Other researchers have reported 

that spectral entropy reflects the slowing of brain activity in patients with post-stroke vascular 

dementia and stroke-related cognitive impairment, whereas permutation entropy and Tsallis entropy 

reflect the complexity of the examined signals [14]. Using the support vector machine algorithm Chu 

and co-authors [15] even succeeded in classifying the type of induced emotion by EEG signal in 

groups of patients with moderate and severe schizophrenia and their healthy counterparts. 

In our studies, we attempt to determine the specificity of emotional auditory nonverbal perception 

using nonlinear EEG parameters. In the present study we investigated four groups of patients with 
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different diagnoses and therefore different types of emotional impairment, i.e., patients after: severe 

TBI (in coma), moderate TBI, stroke, and with schizophrenia. It is well known that mood depression is 

a typical post-stroke complication [16] and is associated with a disability [17] and with a worse 

rehabilitation outcome in stroke survivors [18]. Patients with moderate TBI demonstrate significant 

emotional and behavioral maladjustment, increased difficulties with anger management, antisocial 

behavior and abnormal self-monitoring [19]. Severe TBI is often accompanied by the lack of empathy, 

reduced behavioral regulation and impaired social function [20]. In our previous research on patients 

with TBI we found the EEG response on emotional stimulation to vary depending on the severity of 

trauma [21] Namely, patients with severe TBI showed decreased theta-rhythm power in the frontal 

areas during unpleasant sounds presentation, while the patients with moderate TBI exhibited increased 

alpha-rhythm power in the occipital areas during both pleasant and unpleasant stimulation. Patients 

with schizophrenia usually lack outward expression of emotion, diminished motivation and reduced 

experience of pleasure [22]. The described emotional changes in different groups of patients are 

polymorphic and have different origins and pathogeneses. We expect that nonlinear features of EEG 

signals could reveal the dynamics accompanying the emotional processes and discriminate these 

groups of patients. 

2. Materials and methods 

2.1. Participants  

5 groups of adult subjects participated in our study (N = 141): healthy (control group), patients 

after moderate TBI (mTBI), patients in acute coma (caused by severe TBI), patients after stroke in the 

left middle cerebral artery and patients with schizophrenia. The exclusion criteria were: any history of 

epileptic seizures, tumors, and massive brain hematomas, additional medications or accompanying 

diseases. The resulting structure of the groups is depicted in Table 1. Glasgow Coma Scale was used 

for diagnostic purposes only. 

Access to patients after TBI by the Central Clinical Hospital of Russian Academy of Science, 

access to patients with schizophrenia was provided by the 1st Psychiatric Clinical Hospital named by 

N.A. Alexeev.  

No participants took any anticonvulsants, nootropics or antianxiolytics. All the comatose patients 

received identical acute care therapy according to local standards (the medication’s doses were similar 

for each patient). All participants with schizophrenia received medical therapy of haloperidol (the 

same medication’s doses). Patients after stroke received antihypertensive therapy (the medication’s 

doses were similar for each patient). Patients after mTBI and healthy subjects were not under 

medication. 

The outcome of comatose patients was as follows: 6 patients recovered within two weeks of the 

study, 8 patients remained in a vegetative state for the following three months, 5 patients were 

transferred to other hospital departments due to extracranial complications. 

We analyzed hearing function in healthy subjects and patients after moderate TBI as we 

presented auditory stimulation. We used PDD-401 audiometer (Piston Ltd., Budapest, Hungary) to 

identify hearing threshold levels. None of the examined subjects had any symptoms of hearing loss. 

 

https://www.webmd.com/a-to-z-guides/hearing-loss-causes-symptoms-treatment#_blank
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Table 1. Descriptive statistics of subjects. 

Groups Number of 

subjects 

Age Sex (f/m) Glasgow Coma 

Scale 

Duration of the 

disease 

Control group  37 31.6 ± 7.1 22/25 - - 

Patients with 

schizophrenia 

26 25.9 ± 4.7 11/15 - 3 ± 0.6 years 

Moderate TBI 

patients 

31 31.2 ± 6.6 15/16 13.0 ± 1.9 10.5 ± 7.7 months 

Patients after stroke 28 55.2 ± 5.1 13/15 - 7.9 ± 1.3 months 

Patients in coma 19 27.1 ± 5.3 8/11 4.3 ± 1.7 5.9 ± 2.9 days 

Note: Mean ± std.dev. where applicable. 

All participants (or their authorized relatives) gave written informed consent prior to 

participating in the study. The protocol of the study was approved by the Ethics Committee of the 

Institute of Higher Nervous Activity and Neurophysiology of RAS. 

2.2. Stimuli 

We presented 30 second long sounds as stimuli. There was initially a large list (about 40) of 

such sounds, then a group of 198 healthy experts (mean age about 30 years) assessed all the stimuli 

on scales of pleasantness, arousal, fear, gladness, etc. We selected 7 stimuli for this study—most 

emotionally charged with most stable assessment: a dog barking, a crying infant, vomiting, coughing, 

scratching nails on a glass, a bird singing, and human laughter. Each stimulus was presented 

randomly 8 times, the interstimulus interval was 700–2000 msec long (randomly conducted): the 

obtained ~ 240 sec EEG fragments for each stimulus were further analyzed. Resting states with open 

and closed eyes were recorded for 2 minutes in the beginning and at the end of the study. 

The subjects of the control, schizophrenia, stroke and mTBI groups assessed emotional valence 

and arousal level of the stimuli by the scales pleasantness (from −5 to 5), arousal (from 0 to 10), fear 

(from 0 to 10), empathy (from 0 to 10) and irritation (from 0 to 10). The stimuli were presented in a 

random order for 30 seconds (8–10 times each) with 0.7–2.0 second gaps between them (Table S1); 

the whole experiment lasted about 50 minutes. 

2.3. EEG registration 

The subjects sat in a comfortable position in an armchair in an acoustically and electrically 

shielded chamber, the comatose patients laid in a hospital bed in a resuscitation unit. The participants 

were instructed to remain calm and to listen to the presented sounds keeping their eyes closed (to avoid 

visual interference) and not to fall asleep. The stimuli were presented via earphones. EEG was 

recorded using the “Encephalan” (Medicom MTD, Taganrog, Russian Federation) device. Polygraphic 

channels were also recorded although these data are not presented. 19 AgCl electrodes (Fp1, Fp2, F7, 

F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2) were placed according to the 
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International 10–20 system. The electrodes placed on the left and right mastoids served as joint 

references under unipolar montage. The vertical electrooculogram (EOG) was measured with AgCl 

cup electrodes placed 1 cm above and below the left eye, and the horizontal EOG was measured with 

electrodes placed 1 cm lateral from the outer canthi of both eyes. The sampling rate was 250 Hz, the 

filtering was set to bandpass 1.6–30 Hz. The electrode impedances were maintained at less than 10 kΩ. 

The small artifacts were deleted manually. EMG-related artifacts were deleted manually and using 

filtering 1.6–30 Hz. Eyes movement artifacts were cleaned out using EOG data by Encephalan device. 

3. Data analysis 

The artifact correction was conducted by the following way: the small artifacts were deleted 

manually, eyes movement artifacts were cleaned out using EOG data by “Encephalan” device. 

3.1. Fractal dimension (FD)  

We conducted the calculations of the examined signal bandpass-filtered in the range of interest 

(2–20 Hz), Butterworth filter of order 12 was used. FD was evaluated using the Higuchi algorithm [23]. 

3.2. Envelope mean frequency (EMF) 

To express the (de-)synchronization dynamics of the rhythms we applied the following method. 

First, we calculated the envelope of the EEG signal for the whole frequency range (1.6–30 Hz) and for 

the alpha rhythm (8–13 Hz) using the Hilbert transform [24]. Second, we assessed the (in-)stability of 

the envelope’s amplitude by calculating its average frequency using FFT (wideband—EMF, 

alpha—EMFA) and the ratio of its standard deviation to its mean (wideband only—RAT). 

3.3. Hjorth parameters 

Hjorth complexity [25] represents the change in frequency and indicates how the shape of a signal 

is similar to a pure sine wave. This parameter was calculated for wideband 1.6–30 Hz filtered signal in 

the following way:  

, 

where 

,  

y(t)—a signal, y’(t)—its derivative, and var(...)—the variance. 

The Hjorth complexity and mobility showed very similar results in our research, so we refer to 

them both as Hjorth parameters. 
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3.4. Power spectral density 

Fast Fourier Transform (FFT) was used to evaluate the PSD, the resulting data were integrated 

over intervals of unit width in the range of interest (2–3 Hz, 3–4 Hz, …, 19–20 Hz). It was carried out 

for each EEG fragment and then used in correlation analysis with nonlinear EEG features. 

3.5. Statistical analysis 

A repeated-measures ANOVA with Bonferroni correction for multiple comparisons (p < 0.05) 

was used to determine group effects on EEG metrics (post-hoc Tukey). We analyzed separately group 

effect for non-linear features for the resting state and the group effect of differences between the 

features during stimulation was compared to the values during rest. The Pearson correlation coefficient 

between PSD and nonlinear features was calculated. Only significant (p < 0.05) correlation values 

were used for further analysis.  

4. Results 

4.1. Power spectral density 

Comatose patients had higher 2–7 Hz PSD compared to other groups of subjects (F(4, 141) = 

8.928, p < 0.00001) in all electrodes. Patients after stroke had higher 5–9 Hz PSD compared to TBI, 

schizophrenia and control groups (F(4, 141) = 10.318, p < 0.00001) (except Т5, Т6 electrodes). The 

alpha-rhythm PSD (10–13 Hz) was significantly higher in control group (F(4, 141) = 7.0168, 

p < 0.0001) in central, parietal and occipital areas: electrodes C3, Cz, C4, P3, Pz, P4, O1, O2 (depicted 

in Figure 1). 

 

Figure 1. PSD values 2–20 Hz averaged over electrodes C3, Cz, C4: x—frequency in Hz, 

y—PSD in μV2/Hz. 
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4.2. Group differences during rest 

In this subsection the values during rest were compared between the groups. 

4.2.1. FD 

1. Lower in patients after stroke (except C3, T4, P3, Pz, P4), F(4, 141) = 3.47050, p < 0.03. 

2. Higher in patients with schizophrenia (C3, T5, P3, Pz, P4, T6, O1, O2), F(4, 141) = 4.7050, 

p < 0.005. 

4.2.2. EMF 

1. Lower in patients after stroke (all except F7, C3, P3, Pz, P4, O1). 

2. Lower in comatose patients (all except P4, T6). 

3. Higher in patients with schizophrenia (all except C4, T4, T6), F(4, 137) = 5.2412, p < 0.001. 

4.2.3. EMFA 

Higher in patients with schizophrenia (Fp1, Fp2, F7, F3, Fz), F(4, 137) = 5.9452, p < 0.0005. 

4.2.4. RAT 

Higher in comatose patients (Fp1, F7, Fz, T3, C3, T5, P3, Pz, O1, O2), F(4, 141) = 5.97050, 

p < 0.001.  

4.3. Hjorth parameters 

Both mobility and complexity were lower in comatose patients (all except F3, F4, T5), 

F(4, 141) = 6.1986, p < 0.001. 

Notably, no feature differed between mTBI and control groups. 

The correlation analysis between linear and nonlinear parameters showed that FD was negatively 

correlated with 2–10 Hz and 13–14 Hz PSD, Hjorth parameters were negatively correlated with 2–8 

Hz PSD and positively correlated with 15–20 Hz PSD. EMF was negatively correlated with 2–6 Hz 

PSD and positively correlated with 15–19 Hz PSD. EMFA was negatively correlated with 10–12 Hz 

PSD. RAD was positively correlated with 2–8 Hz PSD and 16–17 Hz PSD (depicted in Figure 2).  
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Figure 2. Significant (|r| > 0.35, p < 0.05) correlations between PSD and nonlinear EEG 

features. 

4.4. Group differences during stimulation 

The features during stimulation were compared to the values during rest.  

4.4.1. FD 

1. Higher in control group during presentation of crying (except F7, C3, Cz, C4, O2), p < 0.03. 

2. Lower in patients with moderate TBI during presentation of coughing and vomiting (Fp1, Fp2, F7, 

Fz, F3, F4, C3, C4), p < 0.009. 

3. Higher in comatose patients during these stimuli (Fp1, Fp2, F7, F3, Fz, F8, O1, T4), p < 0.03. 

4. Higher in patients with schizophrenia during animal sounds presentation (barking and singing) (Fz, 

Fp2, F8, Cz, F4, C4, T4, P4, T6, O1), p < 0.04. 

5. Lower in patients after stroke during animal sounds (barking and singing) presentation (F4, Fz, Pz, 

P4), p < 0.01, and higher during presentation of laughter (Fp1, Fz, F3, T3), p < 0.02. 

4.4.2. EMF 

1. Lower in control group during vomiting, coughing and scratching presentation (except T4, P4, T6), 

p < 0.05. 

2. Lower in patients with moderate TBI during scratching (P4,T6, Cz, C4), p < 0.007. 

3. Lower in comatose patients during vomiting, coughing and scratching presentation (Fp2, F4, F8, T4, 

T6, P4), p < 0.03 and higher during laughter and crying presentation (F4, F8, C4, T4, Pz, P4, T6, 

O1, O2). 

4. Higher in patients with schizophrenia during bird song presentation (except Fp1, T3, T5, O2), 

p < 0.009. 

4.4.3. EMFA 

1. Lower in control group during presentation of vomiting, coughing, scratching, bird singing and 

barking (all channels). 

2. Higher in patients with schizophrenia during presentation of bird singing, laughter, crying, 

coughing and vomiting (all except O2) and barking (Cz, C4, P4, T6). 
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4.4.4. RAT 

1. Higher in patients after moderate TBI during presentation of crying (Cz, C4, T4,T6), p < 0.04 and 

laughter (C3, Cz, C4, T4), p < 0.05. 

2. Higher in comatose patients during presentation of pleasant stimuli (laughter and bird singing) (F8, 

Cz, T6, Pz, O1, O2), p < 0.02. 

3. Higher in patients with schizophrenia during presentation of coughing, laughter, scratching and bird 

singing (except T3, C3, T5, T6, O1, O2), p < 0.03, and lower during presentation of crying and 

barking (F3, T3, C3, Cz, C4, Pz, O1, O2), p < 0.01. 

4.5. Hjorth parameters 

1. Lower in patients after moderate TBI during all emotional stimuli (all channels), p < 0.05. 

2. Lower in comatose patients during presentation of bird singing, barking and crying (F7, T3, C3, C4, 

P4, P3), p < 0.01.  

3. Lower in patients with schizophrenia during presentation of laughter, barking and crying (Fp1, Fz, 

F3, F8, Cz, P3, Pz), p < 0.03, and higher during presentation of scratching (P3, Pz, O1), p < 0.04. 

4. Lower in patients after stroke during presentation of barking (Fz, C3, Cz, Pz), p < 0.05. 

The results of this subsection are summarized in Table 2. 

Table 2. Significant differences of the features between stimuli presentation and rest 

(“+”—higher in rest, “−”—lower in rest). 

 Bird song Barking Crying 

  FD EMF EMFA RAD Hjorth FD EMF EMFA RAD Hjorth FD EMF EMFA RAD Hjorth 

Control group     −               +         

Schizophrenia + + + +   +     − −     + − − 

Moderate TBI         −         −       + − 

Stroke −         −       −           

Coma       − −         −   +   − − 

    Continued on next page 
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 Coughing and Vomiting Scratching Laughter 

Control group + − −       − −               

Schizophrenia     +           +       + + − 

Moderate TBI −       −   −     −       + − 

Stroke                     +         

Coma + −         −         +       

The assessment of emotional stimuli showed that participants of the control group reported 

significantly higher pleasantness of laughter (F(4, 141) = 7.124, p < 0.0005) and lower pleasantness of 

crying (F(4, 141) = 3.945, p < 0.05), compared to the groups of patients (depicted in Figure 3). Arousal 

was significantly higher in mTBI group during the presentation of unpleasant stimuli (coughing, 

vomiting) compared to other groups of subjects (F(4, 141) = 8.61, p < 0.0001).  

4.6. The correlations between emotional assessment of stimuli and non-linear features 

The empathy values (Table S1) were positively correlated with FD in the control group during the 

presentation of all stimuli (r > 0.46, p < 0.05). The arousal values were positively correlated with FD in 

patients with schizophrenia during the presentation of animal sounds (barking and bird singing) (r > 

0.37, p < 0.05). The irritation values were negatively correlated with Hjorth parameters for all types of 

stimuli in all groups (r < −0.39, p < 0.05).  
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Figure 3. Emotional assessment of stimuli. A—arousal (0 10), B—empathy (0 10), 

C—irritation (0 10). 

5. Discussion 

In the present study, we found that the examined nonlinear features of resting state EEG are 

quite group-specific. Particularly, RAT was higher, Hjorth parameters and EMF were lower in 

comatose patients; EMF and FD were lower in patients after stroke. Having the correlation of these 

parameters with delta- and theta-rhythm PSD we suppose that the found specificity is related to the 

higher slow-wave activity [26,27] in these patients. These results match the previous data about 

reduced FD in patients with Alzheimer’s disease [28] and studies reported that spectral entropy 

reflects the slowing of brain activity in post-stroke vascular dementia and stroke-related cognitive 

impairment patients [13]. 

EMFA and FD were oppositely higher in patients with schizophrenia. The negative correlations 

of these parameters with alpha-rhythm PSD may support the previous data of unusual alpha-rhythm 

activity of EEG in this group of patients [29]. This activity also proved to be related to clinical 

symptoms [30]. EMFA was shown to be sensitive to the emotional reaction of patients with 

schizophrenia: we observed the increase of EMFA during emotional stimulation only in this group, it 

even decreased in control group and demonstrated no significant changes in other groups. We 

supposed that the unusual emotional perception of patients with schizophrenia caused the abnormal 

changes in the EEG nonlinear parameters. Further, alpha activity during coma is not the same as 

physiological alpha rhythm [31] and patients after stroke and traumatic brain injury appeared to show 

a decreased frequency and magnitude of the alpha-rhythm [32], therefore EMFA didn’t reflect their 

EEG changes. 

We also found that some nonlinear EEG parameters can be associated with certain emotional 
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states. For example, the control group showed an increase of FD during stimuli presentation (crying, 

coughing, and vomiting) which evoked arousal and empathy. These FD values also correlated with 

the subjective assessment of these emotions levels during the presentation. Some previous studies 

have reported that higher emotional response is associated with higher FD [33]; the “acute” or 

sudden emotions can also be determined using FD [34]; furthermore, FD was found to be useful to 

detect the level of arousal [35]. In our previous study [36] we also observed a significant positive 

correlation between FD of the EEG signal and fMRI BOLD-signal in some regions including the 

limbic system. Thus, FD in the control group could be used as a measure of arousal. We also 

observed this “normal” response in patients after stroke during laughter presentation, which was 

correlated with arousal feelings. The animal sounds (bird singing and dog barking), which evoked 

mostly irritation feelings in this group of patients, were inversely accompanied by a decrease in FD. 

FD increase in patients with schizophrenia was similarly accompanied by higher reported 

arousal (bird singing and dog barking). The higher FD in these patients has previously been 

explained by other effects like self-focused emotions [37] and neurotic behavior [38], and the latter 

was also shown to be correlated with higher FD during auditory stimuli presentation. Thus, the 

higher FD in patients with schizophrenia should be explained not only by their more intense 

emotional reaction, i.e. higher arousal, but also by the loosened organization of thoughts and mental 

suggestions of certain superior abilities [39]. 

Hjorth parameters showed a significant decrease in all groups of patients during stimulation, but 

not in healthy subjects. This effect was most pronounced in comatose patients in response to animal 

sounds (bird singing, dog barking) and crying. Hjorth parameters were previously shown to be useful 

for recognition of emotional state: happy, sad, neutral and afraid [11], though using pictures as 

stimuli. We expected we could determine the pleasantness of our stimuli but the changes in the 

parameters didn’t represent pleasantness in any way. Moreover, our results showed a negative 

correlation of Hjorth parameters during stimulation with the irritation level, which was most 

demonstrative considering barking sounds. 

This study has some limitations which have to be pointed out. First of all, in spite of controlled 

medication’s dozes, we are not sure that the emotional assessment and accompanying EEG changes 

in patients with schizophrenia were related only with their emotional disturbances. We also assume 

that the expanded amount of emotional sounds (we presented only seven types) and the presentation 

of emotional stimulation in other modalities could provide more detailed information about 

emotional impairment in patients. 

6. Conclusions 

We’ve shown that FD can be used to detect arousal in response to emotional stimulation. 

EMFA reaction to the stimulation was observed only in patients with schizophrenia (increase) 

and controls (decrease). 

The emotional stimuli (coughing and vomiting) that induced empathy in healthy subjects 

induced not empathy but irritation in patients with moderate TBI and led to opposite FD changes in 

this group. We’ve found that the presentation of laughter induced the same EEG changes in patients 

after stroke and comatose patients as in control group.  

Hjorth parameters are useful to detect the abnormal increased irritation during stimulation.  

In upcoming research we are planning to build a classification procedure to diagnose emotional 
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impairments in different psychical and neurological diseases using these nonlinear parameters. 
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