Citation: Naila Mehreen, Rashid Farooq, Shehnaz Akhter. On partition dimension of fullerene graphs[J]. AIMS Mathematics, 2018, 3(3): 343-352. doi: 10.3934/Math.2018.3.343
[1] | A. R. Ashrafi, Z. Mehranian, Topological study of (3; 6)- and (4; 6)-fullerenes, In: topological modelling of nanostructures and extended systems, Springer Netherlands, (2013), 487–510. |
[2] | G. Chartrand, L. Eroh, M. A. Johnson, et al. Resolvability in graphs and the metric dimension of a graph, Disc. Appl. Math., 105 (2000), 99–113. |
[3] | G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, Aequationes Math., 59 (2000), 45–54. |
[4] | G. Chartrand, E. Salehi, P. Zhang, On the partition dimension of a graph, Congr. Numer., 131 (1998), 55–66. |
[5] | C. Grigorious, S. Stephen, B. Rajan, et al. On the partition dimension of circulant graphs, The Computer Journal, 60 (2016), 180–184. |
[6] | F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191–195. |
[7] | I. Javaid, N. K. Raja, M. Salman, et al. The partition dimension of circulant graphs, World Applied Sciences Journal, 18 (2012), 1705–1717. |
[8] | F. Koorepazan-Moftakhar, A. R. Ashrafi, Z. Mehranian, Automorphism group and fixing number of (3; 6) and (4; 6)-fullerene graphs, Electron. Notes Discrete Math., 45 (2014), 113–120. |
[9] | H. W. Kroto, J. R. Heath, S. C. O'Brien, et al. C60: buckminsterfullerene, Nature, 318 (1985), 162–163. |
[10] | R. A. Melter, I. Tomescu, Metric bases in digital geometry, Computer vision, graphics, and image Processing, 25 (1984), 113–121. |
[11] | H. M. A. Siddiqui, M. Imran, Computation of metric dimension and partition dimension of Nanotubes, J. Comput. Theor. Nanosci., 12 (2015), 199–203. |
[12] | H. M. A. Siddiqui, M. Imran, Computing metric and partition dimension of 2-Dimensional lattices of certain Nanotubes, J. Comput. Theor. Nanosci., 11 (2014), 2419–2423. |
[13] | P. J. Slater, of trees, Congress. Numer., 14 (1975), 549–559. |
[14] | J. A. Rodríguez-Velázquez, I. G. Yero, M. Lemanska, On the partition dimension of trees, Disc. Appl. Math., 166 (2014), 204–209. |
[15] | J. A. Rodríguez-Velázquez, I. G. Yero, H. Fernau, On the partition dimension of unicyclic graphs, Bull. Math. Soc. Sci. Math. Roumanie, 57 (2014), 381–391. |
[16] | I. Tomescu, I. J. Slamin, On the partition dimension and connected partition dimension of wheels, Ars Combin., 84 (2007), 311–317. |
[17] | I. Tomescu, Discrepancies between metric dimension and partition dimension of a connected graph, Disc. Math., 308 (2008), 5026–5031. |