Citation: María Concepción Ramos. Soil losses in rainfed Mediterranean vineyards under climate change scenarios. The effects of drainage terraces.[J]. AIMS Agriculture and Food, 2016, 1(2): 124-143. doi: 10.3934/agrfood.2016.2.124
[1] | Tropeano D (1984) Rate of soil erosion processes on vineyards in Central Piedmont (NW Italy). Earth Surf Process Landforms 9: 253–266. doi: 10.1002/esp.3290090305 |
[2] | Wainwright J (1996) Infiltration, runoff and erosion characteristics of agricultural land in extreme storm events, SE France. Catena 26: 27–47. doi: 10.1016/0341-8162(95)00033-X |
[3] | Wicherek S (1991) Viticulture and soil erosion in the North of Parisian Basin. Example: The mid Aisne region. Zeitschrift Für Geomorphol 83: 115–126. |
[4] | Kosmas C, Danalatos N, Cammeraat LH, et al. (1997) The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 29: 45–59. doi: 10.1016/S0341-8162(96)00062-8 |
[5] | Ramos MC, Durán B (2014) Assessment of rainfall erosivity and its spatial and temporal variabilities: Case study of the Penedès area (NE Spain). Catena 123: 135–147. doi: 10.1016/j.catena.2014.07.015 |
[6] | Ramos MC, Martínez-Casasnovas JA (2006) Impact of land levelling on soil moisture and runoff variability in vineyards under different rainfall distributions in a Mediterranean climate and its influence on crop productivity. J Hydrol 321: 131–146. doi: 10.1016/j.jhydrol.2005.07.055 |
[7] | Ramos MC, Martínez-Casasnovas JA (2010) Soil water balance in rainfed vineyards of the Penedès region (Northeastern Spain) affected by rainfall characteristics and land levelling: influence on grape yield. Plant Soil 333: 375–389. doi: 10.1007/s11104-010-0353-y |
[8] | Ramos MC, Martínez-Casasnovas JA (2009) Impacts of annual precipitation extremes on soil and nutrient losses in vineyards of NE Spain. Hydrol Process 23: 224–235. doi: 10.1002/hyp.7130 |
[9] | Martı́nez-Casasnovas J, Ramos M, Ribes-Dasi M (2002) Soil erosion caused by extreme rainfall events: mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma 105: 125–140. doi: 10.1016/S0016-7061(01)00096-9 |
[10] | Ramos MC, Martínez-Casasnovas JA (2006) Nutrient losses by runoff in vineyards of the Mediterranean Alt Penedès region (NE Spain). Agric Ecosyst Environ 113: 356–363. doi: 10.1016/j.agee.2005.10.009 |
[11] | Martínez-Casasnovas JA, Ramos MC (2006) The cost of soil erosion in vineyard fields in the Penedès–Anoia Region (NE Spain). Catena 68: 194–199. doi: 10.1016/j.catena.2006.04.007 |
[12] | de Luis M, Brunetti M, Gonzalez-Hidalgo JC, et al. (2010) Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Glob Planet Change 74: 27–33. doi: 10.1016/j.gloplacha.2010.06.006 |
[13] | Ramos MC, Balasch JC, Martínez-Casasnovas JA (2012) Seasonal temperature and precipitation variability during the last 60 years in a Mediterranean climate area of Northeastern Spain: a multivariate analysis. Theor Appl Climatol 110: 35–53. doi: 10.1007/s00704-012-0608-z |
[14] | Goubanova K, Li L (2007) Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Glob Planet Change 57: 27–42. doi: 10.1016/j.gloplacha.2006.11.012 |
[15] | Bartolini G, Grifoni D, Torrigiani T, et al. (2014) Precipitation changes from two long-term hourly datasets in Tuscany, Italy. Int J Climatol 34: 3977–3985. |
[16] | Nunes AN, Lourenço L (2015) Precipitation variability in Portugal from 1960 to 2011. J Geogr Sci 25: 784–800. doi: 10.1007/s11442-015-1202-y |
[17] | Tošić I, Zorn M, Ortar J, et al. (2016) Annual and seasonal variability of precipitation and temperatures in Slovenia from 1961 to 2011. Atmos Res 168: 220–233. doi: 10.1016/j.atmosres.2015.09.014 |
[18] | Easterling DR, Karl TR, Gallo KP, et al. (2000) Observed climate variability and change of relevance to the biosphere. J Geophys Res Atmos 105: 20101–20114. doi: 10.1029/2000JD900166 |
[19] | Klein Tank AMG, Können GP (2003) Trends in Indices of Daily Temperature and Precipitation Extremes in Europe, 1946–99. J Clim 16: 3665–3680. |
[20] | Kharin VV, Zwiers FW, Zhang X, et al. (2007) Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations. J Clim 20: 1419–1444. doi: 10.1175/JCLI4066.1 |
[21] | Favis-Mortlock DT, Boardman J (1995) Nonlinear responses of soil erosion to climate change: a modelling study on the UK South Downs. Catena 25: 365-387. doi: 10.1016/0341-8162(95)00018-N |
[22] | Nearing MA, Jetten V, Baffaut C, et al. (2005) Modeling response of soil erosion and flow to changes in precipitation and cover. Catena 61: 131-154 doi: 10.1016/j.catena.2005.03.007 |
[23] | Mullan DJ, Favis-Mortlock DT, Fealy R (2011) Modelling the impacts of climate change on future rates of soil erosion: Addressing key limitations. In: ASABE - International Symposium on Erosion and Landscape Evolution 2011. pp 486–494. |
[24] | Segura C, Sun G, McNulty S, Zhang Y (2014) Potential impacts of climate change on soil erosion vulnerability across the conterminous United States. J Soil Water Conserv 69: 171–181. doi: 10.2489/jswc.69.2.171 |
[25] | Cilek A, Berberoglu S, Kirkby M, et al. (2015) Erosion Modelling In A Mediterranean Subcatchment Under Climate Change Scenarios Using Pan-European Soil Erosion Risk Assessment (PESERA). ISPRS - Int Arch Photogramm Remote Sens Spat Inf Sci XL-7/W3: 359–365. doi: 10.5194/isprsarchives-XL-7-W3-359-2015 |
[26] | Haregeweyn N, Poesen J, Verstraeten G, et al. (2013) Assessing the performance of a spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM) in northern Ethiopia. Land Degrad Dev 24: 188–204. doi: 10.1002/ldr.1121 |
[27] | Kirkby MJ, Jones RJA, Irvine B, et al. (2004) Pan-European soil erosion risk assessment: the PESERA Map, Version 1 October 2003. Explanation of Special Publication Ispra 2004 No.73 (S.P.I.04.73). European Soil Bureau Research Report No.16, EUR 21176, 18pp. |
[28] | Morgan RPC, Quinton JN, Smith RE, et al. (1998) The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf Process Landforms 23: 527–544. |
[29] | Laflen JM, Elliot WJ, Flanagan DC, et al. (1997) WEPP-predicting water erosion using a process-based model. J Soil Water Conserv 52: 96–102. |
[30] | Renard KG, Foster GR, Weesies GA, et al. (1997) Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). Handb. No. 703, Washington, DC US Dep. Agric. |
[31] | de Vente J, Poesen J, Verstraeten G (2005) The application of semi-quantitative methods and reservoir sedimentation rates for the prediction of basin sediment yield in Spain. J Hydrol 305: 63–86. doi: 10.1016/j.jhydrol.2004.08.030 |
[32] | Nerantzaki SD, Giannakis G V, Efstathiou D, et al. (2015) Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed. Sci Total Environ 538: 288–297. doi: 10.1016/j.scitotenv.2015.07.092 |
[33] | Mullan D (2013) Soil erosion under the impacts of future climate change: Assessing the statistical significance of future changes and the potential on-site and off-site problems. Catena 109: 234–246. doi: 10.1016/j.catena.2013.03.007 |
[34] | Mullan D, Favis-Mortlock D, Fealy R (2012) Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agric For Meteorol 156: 18–30. doi: 10.1016/j.agrformet.2011.12.004 |
[35] | Orwin KH, Stevenson BA, Smaill SJ, et al. (2015) Effects of climate change on the delivery of soil-mediated ecosystem services within the primary sector in temperate ecosystems: a review and New Zealand case study. Glob Chang Biol 21: 2844–2860. doi: 10.1111/gcb.12949 |
[36] | Simonneaux V, Cheggour A, Deschamps C, et al. (2015) Land use and climate change effects on soil erosion in a semi-arid mountainous watershed (High Atlas, Morocco). J Arid Environ 122: 64–75. doi: 10.1016/j.jaridenv.2015.06.002 |
[37] | Ramos MC (2001) Rainfall distribution patterns and their change over time in a Mediterranean area. Theor Appl Climatol 69: 163–170. doi: 10.1007/s007040170022 |
[38] | DAR (2008) Mapa de Sòls (1: 25.000) de l’àmbit geogràfic de la Denominació d’Origen Penedès. Departament d’Agricultura, Alimentació i Acció Rural, Generalitat de Catalunya, Vilafranca del Penedès-Lleida. |
[39] | IDESCAT. Anuario estadístico de Cataluña. Agricultura Ganadería y Pesca. 2013. Available from: http: //idescat.cat/pub/aec/es. |
[40] | Gee GW, Bauder JW (1986) Particle-size Analysis. P. 383 – 411. In A.L. Page (ed.). Methods of soil analysis, Part1, Physical and mineralogical methods. Second Edition, Agronomy Monograph 9, American Society of Agronomy, Madison, WI. |
[41] | Cresswell HP and Hamilton (2002) Particle Size Analysis. In: Soil Physical Measurement and Interpretation For Land Evaluation. (Eds. NJ McKenzie, HP Cresswell and KJ Coughlan) CSIRO Publishing: Collingwood, Victoria, 224-239. |
[42] | Allison LE (1965) Organic Carbon. In: Methods of Soil Analysis, Black, C.A. (Ed.). American Society of Agronomy, USA, 1367-1378. |
[43] | Pieri L, Bittelli M, Wu JQ, et al. (2007) Using the Water Erosion Prediction Project (WEPP) model to simulate field-observed runoff and erosion in the Apennines mountain range, Italy. J Hydrol 336: 84–97. doi: 10.1016/j.jhydrol.2006.12.014 |
[44] | Mein RG, Larson CL (1973) Modelling infiltration during a steady rain. Water Resour Res 9: 384-394 doi: 10.1029/WR009i002p00384 |
[45] | Chu ST (1978) Infiltration during an unsteady rain. Water Resour Res 14: 461–466. doi: 10.1029/WR014i003p00461 |
[46] | Ritchie JT (1972) Model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8: 1204–1213. doi: 10.1029/WR008i005p01204 |
[47] | Allen RG, Pereira LS, Raes D, et al. (1998) FAO Irrigation and Drainage Paper 56. FAO, Rome, Italy. |
[48] | Sloan PG, Moore ID (1984) Modeling subsurface storm flow on steeply sloping forested watersheds. Water Resour Res 20: 1915–1822. |
[49] | Flanagan D C, Livingston SJ (1995) Water Erosion Prediction Project (WEPP) Version 95.7: User summary. NSERL Report No. 11. West Lafayette, Ind.: USDA-ARS National Soil Erosion Research Laboratory. |
[50] | Kliewer WM, Wolpert JA, Benz M (2000) Trellis and vine spacing effects on growth, canopy microclimate, yield and fruit composition of cabernet sauvignon. In: Acta Horticulturae 526: 21–31 |
[51] | Stevens RM, Nicholas PR (1994) Root length and mass densities of Vitis vinifera L. cultivars “Muscat Gordo Blanco” and “Shiraz”. New Zeal J Crop Hortic Sci 22: 381–385. doi: 10.1080/01140671.1994.9513849 |
[52] | Alberts EE, Nearing MA, Weltz MA, et al. (1995) Soil component. In USDA Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation. NSERL Report No. 2. D. C. Flanagan and M. A. Nearing, eds. West Lafayette, Ind.: USDA-ARS. |
[53] | Flanagan DC, Nearing MA, eds (1995) USDA Water Erosion Prediction Project hillslope and watershed model documentation. NSERL Report No. 10. West Lafayette, Ind.: USDA-ARS National Soil Erosion Research Laboratory. |
[54] | Moriasi DN, Arnold JG, Van Liew MW, et al. (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50: 885–900. doi: 10.13031/2013.23153 |
[55] | Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I — A discussion of principles. J Hydrol 10: 282–290. |
[56] | Gupta HV, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J Hydrolc Eng 4: 135–143. doi: 10.1061/(ASCE)1084-0699(1999)4:2(135) |
[57] | Ramos MC, Porta J (1997) Analysis of design criteria for vineyard terraces in the mediterranean area of North East Spain. Soil Technol 10: 155–166. doi: 10.1016/S0933-3630(96)00006-2 |
[58] | Verheijen FGA, Jones RJA, Rickson RJ, et al. (2009) Tolerable versus actual soil erosion rates in Europe. Earth Sci Rev 94: 23–38 doi: 10.1016/j.earscirev.2009.02.003 |
[59] | Troeh FR, Hobbs JA, Donahue RL (1999) Soil and Water Conservation: Productivity and Environmental Protection, 3rd Edition. Prentice Hall. Upper Saddle River, New Jersey. 610 p |
[60] | Mannering JV. The use of soil loss tolerances as a strategy for soil conservation. In: Editor, RPC Morgan. Soil Conservation Problems and Prospects; 1980 July 21st-25th; Silsoe, Beford, UK. Wiley. |
[61] | Licciardello F, Taguas EV, Barbagallo S, et al. (2013) Application of the Water Erosion Prediction Project (WEPP) in Olive Orchards on Vertic Soil with Different Management Conditions. Trans ASABE 56: 951–961. doi: 10.13031/trans.56.9880 |
[62] | Routschek A, Schmidt J, Kreienkamp F (2014) Impact of climate change on soil erosion—A high-resolution projection on catchment scale until 2100 in Saxony/Germany. Catena 121: 99–109. doi: 10.1016/j.catena.2014.04.019 |
[63] | Ramos MC, Martínez-Casasnovas JA (2007) Soil loss and soil water content affected by land levelling in Penedès vineyards, NE Spain. Catena 71: 210–217. doi: 10.1016/j.catena.2007.03.001 |
[64] | Favis-Mortlock DT, Savabi MR (1996) Shifts in rates and spatial distributions of soil erosion and deposition under climate change. Adv Hillslope Process 1: 529-560 |
[65] | Nearing MA, Pruski FF, O'Neal MR (2004) Expected climate change impacts on soil erosion rates: A review. J Soil Water Conserv 59: 43–50. |
[66] | Pruski FF, Nearing MA (2002) Climate-induced changes in erosion during the 21st century for eight U.S. locations. Water Resour Res 38: 341–3411. |
[67] | García-Díaz A, Bienes R, Sastre B (2015) Study of Climatic Variations and its Influence on Erosive Processes in Recent Decades in One Location of Central Spain. Engineering Geology for Society and Territory - Volume 1: Climate Change and Engineering Geology, 105-108. doi: 10.1007/978-3-319-09300-0_20 |
[68] | Shiono T, Ogawa S, Miyamoto T, et al. (2013) Expected impacts of climate change on rainfall erosivity of farmlands in Japan. Ecol Eng 61: 678–689. doi: 10.1016/j.ecoleng.2013.03.002 |
[69] | Klik A, Konecny F (2013) Rainfall erosivity in northeastern Austria. Trans ASABE 56: 719–725. doi: 10.13031/2013.42677 |
[70] | Fiener P, Auerswald K, Winter F, et al. (2013) Statistical analysis and modelling of surface runoff from arable fields in central Europe. Hydrol Earth Syst Sci 17: 4121–4132. doi: 10.5194/hess-17-4121-2013 |
[71] | Ramos MC, Benito C, Martínez-Casasnovas JA (2015) Simulating soil conservation measures to control soil and nutrient losses in a small, vineyard dominated basin. Agric Ecosyst Environ 213: 194-208. doi: 10.1016/j.agee.2015.08.004 |
[72] | Yang Q, Meng F-R, Zhao Z, et al. (2009) Assessing the impacts of flow diversion terraces on stream water and sediment yields at a watershed level using SWAT model. Agric Ecosyst Environ 132: 23–31. doi: 10.1016/j.agee.2009.02.012 |
[73] | Mwangi HM. Evaluation of the impacts of soil and water conservation practices on ecosystem services in Sasumua watershed, Kenya, using SWAT model. 2013. Available from: http://ir.jkuat.ac.ke/handle/123456789/994 |
[74] | Chow TL, Rees HW, Daigle JL (1999) Effectiveness of terraces/grassed waterway systems for soil and water conservation: A field evaluation. J Soil Water Conserv 54: 577–583. |
[75] | Dumbrovský M, Sobotková V, Šarapatka B, et al. (2014) Cost-effectiveness evaluation of model design variants of broad-base terrace in soil erosion control. Ecol Eng 68: 260–269. doi: 10.1016/j.ecoleng.2014.03.082 |