Citation: Rosanna Parlato, Holger Bierhoff. Role of nucleolar dysfunction in neurodegenerative disorders: a game of genes?[J]. AIMS Molecular Science, 2015, 2(3): 211-224. doi: 10.3934/molsci.2015.3.211
[1] | Hongyan Guo . Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29(4): 2673-2685. doi: 10.3934/era.2021008 |
[2] | Agustín Moreno Cañadas, Robinson-Julian Serna, Isaías David Marín Gaviria . Zavadskij modules over cluster-tilted algebras of type $ \mathbb{A} $. Electronic Research Archive, 2022, 30(9): 3435-3451. doi: 10.3934/era.2022175 |
[3] | Youming Chen, Weiguo Lyu, Song Yang . A note on the differential calculus of Hochschild theory for $ A_{\infty} $-algebras. Electronic Research Archive, 2022, 30(9): 3211-3237. doi: 10.3934/era.2022163 |
[4] | Xue Yu . Orientable vertex imprimitive complete maps. Electronic Research Archive, 2024, 32(4): 2466-2477. doi: 10.3934/era.2024113 |
[5] | Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061 |
[6] | Ming Ding, Zhiqi Chen, Jifu Li . The properties on F-manifold color algebras and pre-F-manifold color algebras. Electronic Research Archive, 2025, 33(1): 87-101. doi: 10.3934/era.2025005 |
[7] | Liqian Bai, Xueqing Chen, Ming Ding, Fan Xu . A generalized quantum cluster algebra of Kronecker type. Electronic Research Archive, 2024, 32(1): 670-685. doi: 10.3934/era.2024032 |
[8] | Xiuhai Fei, Haifang Zhang . Additivity of nonlinear higher anti-derivable mappings on generalized matrix algebras. Electronic Research Archive, 2023, 31(11): 6898-6912. doi: 10.3934/era.2023349 |
[9] | Doston Jumaniyozov, Ivan Kaygorodov, Abror Khudoyberdiyev . The algebraic classification of nilpotent commutative algebras. Electronic Research Archive, 2021, 29(6): 3909-3993. doi: 10.3934/era.2021068 |
[10] | Quanguo Chen, Yong Deng . Hopf algebra structures on generalized quaternion algebras. Electronic Research Archive, 2024, 32(5): 3334-3362. doi: 10.3934/era.2024154 |
Existing methods and algorithms appeared in some literatures assume that variables are independent, but it is not plausible. In many stochastic models and statistical applications, those variables involved are dependent. Hence, it is important and meaningful to extend the results of independent variables to dependent cases. One of these dependence structures is weakly dependent (i.e., $ {{\rho }^{*}} $-mixing or $ \tilde{\rho} $-mixing), which has attracted the concern by many researchers.
Definition 1.1. Let $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ be a sequence of random variables defined on a probability space $ \left(\Omega, \mathcal{F}, P \right) $. For any $ S\subset \text{N = }\left\{ 1, 2, \ldots \right\} $, define $ {{\mathcal{F}}_{S}} = \sigma \left({{X}_{i}}, i\in S \right) $. The set $ {{L}_{2}}\left({{\mathcal{F}}_{S}} \right) $ is the class of all $ \mathcal{F} $-measureable random variables with the finite second moment. For some integer $ s\ge 1 $, denote the mixing coefficient by
$ \begin{equation} {{\rho }^{*}}\left( s \right) = \sup \left\{ \rho \left( {{\mathcal{F}}_{S}}, {{\mathcal{F}}_{T}} \right):S, T\subset \text{N}, \text{dist}\left( S, T \right)\ge s \right\}, \end{equation} $ | (1.1) |
where
$ \begin{equation} \rho \left( {{\mathcal{F}}_{S}}, {{\mathcal{F}}_{T}} \right) = \sup \left\{ \frac{\left| EXY-EXEY \right|}{\sqrt{\operatorname{Var}X}\cdot \sqrt{\operatorname{Var}Y}}:X\in {{L}_{2}}\left( {{\mathcal{F}}_{S}} \right), Y\in {{L}_{2}}\left( {{\mathcal{F}}_{T}} \right) \right\}. \end{equation} $ | (1.2) |
Noting that the above fact $ \text{dist}\left(S, T \right)\ge s $ denotes $ \text{dist}\left(S, T \right) = \inf \left\{ \left| i-j \right|:i\in S, j\in T \right\}\ge s $. Obviously, $ 0\le {{\rho }^{*}}\left(s+1 \right)\le {{\rho }^{*}}\left(s \right)\le 1 $ and $ {{\rho }^{*}}\left(0 \right) = 1 $. The sequence $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ is called $ {{\rho }^{*}} $-mixing if there exists $ s\in \text{N} $ such that $ {{\rho }^{*}}\left(s \right) < 1 $. Clearly, if $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ is a sequence of independent random variables, then $ {{\rho }^{*}}\left(s \right) = 0 $ for all $ s\ge 1 $.
$ {{\rho }^{*}} $-mixing seems similarly to another dependent structure: $ \rho $-mixing, but they are quite different from each other. $ {{\rho }^{*}} $-mixing is also a wide range class of dependent structures, which was firstly introduced to the limit theorems by Bradley [4]. From then on, many scholars investigated the limit theory for $ {{\rho }^{*}} $-mixing random variables, and a number of important applications for $ {{\rho }^{*}} $-mixing have been established. For more details, we refer to [12,16,18,19,21,23,24] among others.
The concept of complete convergence was firstly given by Hsu and Robbins[9] as follows: A sequence of random variables $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ converges completely to a constant $ \lambda $ if $ \sum\limits_{n = 1}^{\infty }{P\left(\left| {{X}_{n}}-\lambda \right| > \varepsilon \right)} < \infty $ for all $ \varepsilon > 0 $. By the Borel-Cantelli lemma, the above result implies that $ {{X}_{n}}\to \lambda $ almost surely (a.s.). Thus, the complete convergence plays a crucial role in investigating the limit theory for summation of random variables as well as weighted sums.
Chow [8] introduced the following notion of complete moment convergence: Let $ \left\{ {{Z}_{n}}; n\ge 1 \right\} $ be a sequence of random variables, and $ {{a}_{n}} > 0 $, $ {{b}_{n}} > 0 $, $ q > 0 $. If $ \sum\limits_{n = 1}^{\infty }{{{a}_{n}}E\left(b_{n}^{-1}\left| {{Z}_{n}} \right|-\varepsilon \right)_{+}^{q}} < \infty $ for all $ \varepsilon \ge 0 $, then the sequence $ \left\{ {{Z}_{n}}; n\ge 1 \right\} $ is called to be the complete $ q $-th moment convergence. It will be shown that the complete moment convergence is the more general version of the complete convergence, and is also much stronger than the latter (see Remark 2.1).
According to the related statements of Rosalsky and Thành[14] as well as that of Thành[17], we recall the definition of stochastic domination as follows.
Definition 1.2. A sequence of random variables $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ is said to be stochastically dominated by a random variable $ X $ if for all $ x\ge 0 $ and $ n\ge 1 $,
$ \begin{equation*} {\mathop {\sup }\limits_{n \ge 1} }\, P\left( \left| {{X}_{n}} \right|\ge x \right)\le P\left( \left| X \right|\ge x \right). \end{equation*} $ |
The concept of stochastic domination is a slight generalization of identical distribution. It is clearly seen that stochastic dominance of $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ by the random variable $ X $ implies $ E{{\left| {{X}_{n}} \right|}^{p}}\le E{{\left| X \right|}^{p}} $ if the $ p $-th moment of $ \left| X \right| $ exists, i.e. $ E{{\left| X \right|}^{p}} < \infty $.
As is known to us all, the weighted sums of random variables are used widely in some important linear statistics (such as least squares estimators, nonparametric regression function estimators and jackknife estimates). Based on this respect, many probability statisticians devote to investigate the probability limiting behaviors for weighted sums of random variables. For example, Bai and Cheng[3], Cai[5], Chen and Sung[6], Cheng et al.[7], Lang et al.[11], Peng et al.[13], Sung[15,16] and Wu[20] among others.
Recently, Li et al.[12] extended the corresponding result of Chen and Sung[6] from negatively associated random variables to $ {{\rho }^{*}} $-mixing cases by a total different method, and obtained the following theorem.
Theorem A. Let $ \left\{ X, {{X}_{n}}; n\ge 1 \right\} $ be a sequence of identically distributed $ {{\rho }^{*}} $-mixing random variables with $ E{{X}_{n}} = 0 $, and let $ \left\{ {{a}_{ni}}; 1\le i\le n, n\ge 1 \right\} $ be an array of real constants such that $ \sum\limits_{i = 1}^{n}{{{\left| {{a}_{ni}} \right|}^{\alpha }}} = O\left(n \right) $ for some $ 1 < \alpha \le 2 $. Set $ {{b}_{n}} = {{n}^{1/\alpha }}{{\left(\log n \right)}^{1/\gamma }} $ for $ 0 < \gamma < \alpha $. If $ E{{{\left| X \right|}^{\alpha }}}/{{{\left(\log \left(1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty $, then
$ \begin{equation} \sum\limits_{n = 1}^{\infty }{\frac{1}{n}}P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > \varepsilon {{b}_{n}} \right) < \infty \quad \text{for} \quad\forall \varepsilon > 0. \end{equation} $ | (1.3) |
In addition, Huang et al.[10] proved the following complete $ \alpha $-th moment convergence theorem for weighted sums of $ {{\rho }^{*}} $-mixing random variables under some moment conditions.
Theorem B. Let $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ be a sequence of $ {{\rho }^{*}} $-mixing random variables, which is stochastically dominated by a random variable $ X $, let $ \left\{ {{a}_{ni}}; 1\le i\le n, n\ge 1 \right\} $ be an array of real constants such that $ \sum\limits_{i = 1}^{n}{{{\left| {{a}_{ni}} \right|}^{\alpha }}} = O\left(n \right) $ for some $ 0 < \alpha \le 2 $. Set $ {{b}_{n}} = {{n}^{1/\alpha }}{{\left(\log n \right)}^{1/\gamma }} $ for some $ \gamma > 0 $. Assume further that $ E{{X}_{n}} = 0 $ when $ 1 < \alpha \le 2 $. If
$ \begin{equation} \begin{array}{ll} E{{|X|}^{\alpha }} < \infty, &\;{\rm{for}}\;\quad\alpha > \gamma, \\ E|X|^{\alpha}\log (1+|X|) < \infty, &\;{\rm{for}}\;\quad \alpha = \gamma, \\ E|X|^{\gamma} < \infty, &\;{\rm{for}}\;\quad \alpha < \gamma, \\ \end{array} \end{equation} $ | (1.4) |
then
$ \begin{equation} \sum\limits_{n = 1}^{\infty }{\frac{1}{n}}E\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right|-\varepsilon \right)_{+}^{\alpha } < \infty \quad \text{ for } \forall \varepsilon > 0. \end{equation} $ | (1.5) |
It is interesting to find the optimal moment conditions for (1.5). Huang et al.[10] also posed a worth pondering problem whether the result (1.5) holds for the case $ \alpha > \gamma $ under the almost optimal moment condition $ E{{{\left| X \right|}^{\alpha }}}/{{{\left(\log \left(1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty $?
Mainly inspired by the related results of Li et al.[12], Chen and Sung[6] and Huang et al.[10], the authors will further study the convergence rate for weighted sums of $ {{\rho }^{*}} $-mixing random variables without assumptions of identical distribution. Under the almost optimal moment condition $ E{{{\left| X \right|}^{\alpha }}}/{{{\left(\log \left(1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty $ for $ 0 < \gamma < \alpha $ with $ 1 < \alpha \le 2 $, a version of the complete $ \alpha $-th moment convergence theorem for weighted sums of $ {{\rho }^{*}} $-mixing random variables is established. The main result not only improves the corresponding ones of Li et al.[12], Chen and Sung[6], but also partially settles the open problem posed by Huang et al.[10].
Now, we state the main result as follows. Some important auxiliary lemmas and the proof of the theorem will be detailed in the next section.
Theorem 1.1. Let $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ be a sequence of $ {{\rho }^{*}} $-mixing random variables with $ E{{X}_{n}} = 0 $, which is stochastically dominated by a random variable $ X $, let $ \left\{ {{a}_{ni}}; 1\le i\le n, n\ge 1 \right\} $ be an array of real constants such that $ \sum\limits_{i = 1}^{n}{{{\left| {{a}_{ni}} \right|}^{\alpha }}} = O\left(n \right) $ for some $ 0 < \alpha \le 2 $. Set $ {{b}_{n}} = {{n}^{1/\alpha }}{{\left(\log n \right)}^{1/\gamma }} $ for $ \gamma > 0 $. If $ E{{{\left| X \right|}^{\alpha }}}/{{{\left(\log \left(1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty $ for $ \alpha > \gamma $ with $ 1 < \alpha \le 2 $, then (1.5) holds.
Throughout this paper, let $ I\left(A \right) $ be the indicator function of the event $ A $ and $ I(A, B) = I(A\bigcap B) $. The symbol $ C $ always presents a positive constant, which may be different in various places, and $ {{a}_{n}} = O\left({{b}_{n}} \right) $ stands for $ {{a}_{n}}\le C{{b}_{n}} $.
To prove our main result of this paper, we need the following important lemmas.
Lemma 2.1. (Utev and Peligrad[18]) Let $ p\ge 2 $, $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ be a sequence of $ {{\rho }^{*}} $-mixing random variables with $ E{{X}_{n}} = 0 $ and $ E{{\left| {{X}_{n}} \right|}^{p}} < \infty $ for all $ n\ge 1 $. Then there exists a positive constant $ C $ depending only on $ p $, $ s $ and $ {{\rho }^{*}}\left(s \right) $ such that
$ \begin{equation} E\left( {\mathop {\max }\limits_{1 \le j \le n} }\, {{\left| \sum\limits_{i = 1}^{j}{{{X}_{i}}} \right|}^{p}} \right)\le C\left( \sum\limits_{i = 1}^{n}{E{{\left| {{X}_{i}} \right|}^{p}}}+{{\left( \sum\limits_{i = 1}^{n}{EX_{i}^{2}} \right)}^{p/2}} \right). \end{equation} $ | (2.1) |
In particular, if $ p = 2 $,
$ \begin{equation} E\left( {\mathop {\max }\limits_{1 \le j \le n} }\, {{\left| \sum\limits_{i = 1}^{j}{{{X}_{i}}} \right|}^{2}} \right)\le C\sum\limits_{i = 1}^{n}{EX_{i}^{2}}. \end{equation} $ | (2.2) |
The following one is a basic property for stochastic domination. For the details, one refers to Adler and Rosalsky[1] and Adler et al.[2], or Wu[22]. In fact, we can remove the constant $ C $ in those of Adler and Rosalsky[1] and Adler et al.[2], or Wu[22], since it was proved in Reference [[14], Theorem 2.4] (or [[17], Corollary 2.3]) that this is indeed equivalent to $ C = 1 $.
Lemma 2.2. Let $ \left\{ {{X}_{n}}, n\ge 1 \right\} $ be a sequence of random variables which is stochastically dominated by a random variable $ X $. For all $ \beta > 0 $ and $ b > 0 $, the following statements hold:
$ \begin{equation} E{{\left| {{X}_{n}} \right|}^{\beta }}I\left( \left| {{X}_{n}} \right|\le b \right)\le \left( E{{\left| X \right|}^{\beta }}I\left( \left| X \right|\le b \right)+{{b}^{\beta }}P\left( \left| X \right| > b \right) \right), \end{equation} $ | (2.3) |
$ \begin{equation} E{{\left| {{X}_{n}} \right|}^{\beta }}I\left( \left| {{X}_{n}} \right| > b \right)\le E{{\left| X \right|}^{\beta }}I\left( \left| X \right| > b \right). \end{equation} $ | (2.4) |
Consequently, $ E{{\left| {{X}_{n}} \right|}^{\beta }}\le E{{\left| X \right|}^{\beta }} $.
Lemma 2.3. Under the conditions of Theorem 1.1, if $ E{{{\left| X \right|}^{\alpha }}}/{{{\left(\log \left(1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty $ for $ 0 < \gamma < \alpha $ with $ 0 < \alpha \le 2 $, then
$ \begin{equation} \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}dt}} < \infty. \end{equation} $ | (2.5) |
Proof. By Definition 1.2, noting that
$ \begin{eqnarray} \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}dt}}&\le& \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}dt}} \\ &\le& \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{0}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \frac{{{\left| {{a}_{ni}}X \right|}^{\alpha }}}{b_{n}^{\alpha }} > t \right)}dt}} \\ &\le& \sum\limits_{n = 1}^{\infty }{{{n}^{-1}}b_{n}^{-\alpha }\sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{\alpha }}}}. \end{eqnarray} $ | (2.6) |
It is easy to show that
$ \begin{eqnarray} \sum\limits_{n = 1}^{\infty }{{{n}^{-1}}b_{n}^{-\alpha }\sum\limits_{i = 1}^{n}{{{\left| {{a}_{ni}} \right|}^{\alpha }}E{{\left| X \right|}^{\alpha }}I\left( \left| X \right|\le {{b}_{n}} \right)}}&\le& C\sum\limits_{n = 1}^{\infty }{b_{n}^{-\alpha }E{{\left| X \right|}^{\alpha }}I\left( \left| X \right|\le {{b}_{n}} \right)} \\ &\le& C\sum\limits_{n = 1}^{\infty }{b_{n}^{-\alpha }\sum\limits_{k = 1}^{n}{E{{\left| X \right|}^{\alpha }}I\left( {{b}_{k}} < \left| X \right|\le {{b}_{k+1}} \right)}} \\ &\le& C\sum\limits_{k = 1}^{\infty }{E{{\left| X \right|}^{\alpha }}I\left( {{b}_{k}} < \left| X \right|\le {{b}_{k+1}} \right){{\left( \log k \right)}^{1-\left( \alpha /\gamma \right)}}} \\ &\le& CE{{{\left| X \right|}^{\alpha }}}/{{{\left( \log \left( 1+\left| X \right| \right) \right)}^{\left( \alpha /\gamma \right)-1}}}\; < \infty, \end{eqnarray} $ | (2.7) |
and
$ \begin{eqnarray} \sum\limits_{n = 1}^{\infty }{{{n}^{-1}}b_{n}^{-\alpha }\sum\limits_{i = 1}^{n}{{{\left| {{a}_{ni}} \right|}^{\alpha }}E{{\left| X \right|}^{\alpha }}I\left( \left| X \right| > {{b}_{n}} \right)}}&\le& C\sum\limits_{n = 1}^{\infty }{b_{n}^{-\alpha }E{{\left| X \right|}^{\alpha }}I\left( \left| X \right| > {{b}_{n}} \right)} \\ & = &C\sum\limits_{n = 1}^{\infty }{b_{n}^{-\alpha }\sum\limits_{j = n}^{\infty }{E{{\left| X \right|}^{\alpha }}I\left( {{b}_{j}} < \left| X \right|\le {{b}_{j+1}} \right)}} \\ & = &C\sum\limits_{j = 1}^{\infty }{E{{\left| X \right|}^{\alpha }}I\left( {{b}_{j}} < \left| X \right|\le {{b}_{j+1}} \right)\sum\limits_{n = 1}^{j}{{{n}^{-1}}{{\left( \log n \right)}^{-\alpha /\gamma }}}} \\ &\le& C\sum\limits_{j = 1}^{\infty }{{{\left( \log j \right)}^{1-\left( \alpha /\gamma \right)}}E{{\left| X \right|}^{\alpha }}I\left( {{b}_{j}} < \left| X \right|\le {{b}_{j+1}} \right)} \\ &\le& CE{{{\left| X \right|}^{\alpha }}}/{{{\left( \log \left( 1+\left| X \right| \right) \right)}^{\left( \alpha /\gamma \right)-1}}}\; < \infty. \end{eqnarray} $ | (2.8) |
Hence, (2.5) holds by (2.6)–(2.8).
Proof of Theorem 1.1. For any given $ \varepsilon > 0 $, observing that
$ \begin{eqnarray} \sum\limits_{n = 1}^{\infty }{\frac{1}{n}}E\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right|-\varepsilon \right)_{+}^{\alpha} & = & \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{0}^{\infty }{P\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right|-\varepsilon > {{t}^{1/\alpha}} \right)dt}} \\ & = & \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{0}^{1}{P\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > \varepsilon +{{t}^{1/\alpha}} \right)dt}} \\ &&+ \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{P\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > \varepsilon +{{t}^{1/\alpha}} \right)dt}} \\ &\le& \sum\limits_{n = 1}^{\infty }{\frac{1}{n}P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > \varepsilon {{b}_{n}} \right)} \\ &&+ \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > {{b}_{n}}{{t}^{1/\alpha}} \right)dt}} \\ &\triangleq& I+J. \end{eqnarray} $ | (2.9) |
By Theorem A of Li et al.[12] declared in the first section, we get directly $ I < \infty $. In order to prove (1.5), it suffices to show that $ J < \infty $.
Without loss of generality, assume that $ {{a}_{ni}}\ge 0 $. For all $ t\ge 1 $ and $ 1\le i\le n $, $ n\in \text{N} $, define
$ \begin{equation*} {{Y}_{i}} = {{a}_{ni}}{{X}_{i}}I\left( \left| {{a}_{ni}}{{X}_{i}} \right|\le {{b}_{n}}{{t}^{1/\alpha }} \right). \end{equation*} $ |
It is easy to check that
$ \begin{equation*} \left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)\subset \left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{Y}_{i}}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)\bigcup \left( \bigcup\limits_{i = 1}^{n}{\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)} \right), \end{equation*} $ |
which implies
$ \begin{eqnarray} P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)&\le& P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{Y}_{i}}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right) \\ && +P\left( \bigcup\limits_{i = 1}^{n}{\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)} \right). \end{eqnarray} $ | (2.10) |
To prove $ J < \infty $, we need only to show that
$ \begin{equation*} {{J}_{1}} = \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{Y}_{i}}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)dt}} < \infty, \end{equation*} $ |
$ \begin{equation*} {{J}_{2}} = \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{P\left( \bigcup\limits_{i = 1}^{n}{\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)} \right)dt}} < \infty. \end{equation*} $ |
Since
$ P\left( \bigcup\limits_{i = 1}^{n}{\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)} \right)\le \sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}, $ |
it follows from Lemma 2.3 that
$ \begin{equation*} {{J}_{2}}\le \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}dt}} < \infty. \end{equation*} $ |
Next, we prove that
$ \begin{equation} {\mathop {\sup }\limits_{t \ge 1} }\, \frac{1}{{{b}_{n}}{{t}^{1/\alpha }}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{E{{Y}_{i}}} \right|\to 0. \end{equation} $ | (2.11) |
By $ E{{X}_{n}} = 0 $ and (2.4) of Lemma 2.2, it follows that
$ \begin{array}{l} {\mathop {\sup }\limits_{t \ge 1} }\, \frac{1}{{{b}_{n}}{{t}^{1/\alpha }}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{E{{Y}_{i}}} \right| = {\mathop {\sup }\limits_{t \ge 1} }\, \frac{1}{{{b}_{n}}{{t}^{1/\alpha }}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{E{{a}_{ni}}{{X}_{i}}I\left( \left| {{a}_{ni}}{{X}_{i}} \right|\le {{b}_{n}}{{t}^{1/\alpha }} \right)} \right|\\ = {\mathop {\sup }\limits_{t \ge 1} }\, \frac{1}{{{b}_{n}}{{t}^{1/\alpha }}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{E{{a}_{ni}}{{X}_{i}}I\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)} \right|\\ \le C{\mathop {\sup }\limits_{t \ge 1} }\, \frac{1}{{{b}_{n}}{{t}^{1/\alpha }}}\sum\limits_{i = 1}^{n}{E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}. \end{array} $ |
Observe that,
$ \begin{eqnarray} E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)& = &E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }}, \left| X \right|\le {{b}_{n}} \right) \\ &&+E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }}, \left| X \right| > {{b}_{n}} \right). \end{eqnarray} $ | (2.12) |
For $ 0 < \gamma < \alpha $ and $ 1 < \alpha \le 2 $, it is clearly shown that
$ \begin{align} & E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }}, \left| X \right|\le {{b}_{n}} \right) \le {{C}}b_{n}^{1-\alpha }{{t}^{\left( 1/\alpha \right)-1}}{{\left| {{a}_{ni}} \right|}^{\alpha }}E{{\left| X \right|}^{\alpha }}I\left( \left| X \right|\le {{b}_{n}} \right) \\ & \le {{C}}b_{n}^{1-\alpha }{{t}^{\left( 1/\alpha \right)-1}}{{\left| {{a}_{ni}} \right|}^{\alpha }}E\left( \frac{{{\left| X \right|}^{\alpha }}}{{{\left( \log \left( 1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}{{\left( \log \left( 1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}} \right)I\left( \left| X \right|\le {{b}_{n}} \right) \\ & \le {{C}}{{t}^{\left( 1/\alpha \right)-1}}{{n}^{-1+\left( 1/\alpha \right)}}{{\left| {{a}_{ni}} \right|}^{\alpha }}{{(\log n)}^{\left( 1/\gamma \right)-1}}, \end{align} $ | (2.13) |
and
$ \begin{eqnarray} E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }}, \left| X \right| > {{b}_{n}} \right)&\le& {{C}}\left| {{a}_{ni}} \right|E\left| X \right|I\left( \left| X \right| > {{b}_{n}} \right) \\ &\le& {{C}}b_{n}^{1-\alpha }{{\left( \log \left( 1+{{b}_{n}} \right) \right)}^{\left( \alpha /\gamma \right)-1}}\left| {{a}_{ni}} \right| \\ &\le& {{C}}{{n}^{-1+\left( 1/\alpha \right)}}{{(\log n)}^{-1+\left( 1/\gamma \right)}}\left| {{a}_{ni}} \right|. \end{eqnarray} $ | (2.14) |
Thus,
$ \begin{eqnarray} {\mathop {\sup }\limits_{t \ge 1} }\, \frac{1}{{{b}_{n}}{{t}^{1/\alpha }}}\sum\limits_{i = 1}^{n}{E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }}, \left| X \right|\le {{b}_{n}} \right)}&\le& Cb_{n}^{-1}{{n}^{-1+\left( 1/\alpha \right)}}{{(\log n)}^{\left( 1/\gamma \right)-1}}\sum\limits_{i = 1}^{n}{{{\left| {{a}_{ni}} \right|}^{\alpha }}} \\ &\le& C{{(\log n)}^{-1}}\to 0, \end{eqnarray} $ | (2.15) |
and
$ \begin{eqnarray} {\mathop {\sup }\limits_{t \ge 1} }\, \frac{1}{{{b}_{n}}{{t}^{1/\alpha }}}\sum\limits_{i = 1}^{n}{E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }}, \left| X \right| > {{b}_{n}} \right)}&\le& Cb_{n}^{-1}{{n}^{-1+\left( 1/\alpha \right)}}{{(\log n)}^{-1+\left( 1/\gamma \right)}}\sum\limits_{i = 1}^{n}{\left| {{a}_{ni}} \right|} \\ &\le& C{{(\log n)}^{-1}}\to 0. \end{eqnarray} $ | (2.16) |
Then, (2.11) holds by the argumentation of (2.12)–(2.16).
Hence, for $ n $ sufficiently large, we have that $ {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{E{{Y}_{i}}} \right|\le \frac{{{b}_{n}}{{t}^{1/\alpha }}}{2} $ holds uniformly for all $ t\ge 1 $. Therefore,
$ \begin{equation} {{J}_{1}} = \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{\left( {{Y}_{i}}-E{{Y}_{i}} \right)} \right| > \frac{{{b}_{n}}{{t}^{1/\alpha }}}{2} \right)dt}}. \end{equation} $ | (2.17) |
By the Markov's inequality, (2.2) of Lemma 2.1 and (2.3) of Lemma 2.2, we get that
$ \begin{eqnarray} {{J}_{1}}&\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}E\left( {\mathop {\max }\limits_{1 \le j \le n} }\, {{\left| \sum\limits_{i = 1}^{j}{\left( {{Y}_{i}}-E{{Y}_{i}} \right)} \right|}^{2}} \right)dt}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{Y}_{i}}-E{{Y}_{i}} \right|}^{2}}} \right)dt}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}{{X}_{i}} \right|}^{2}}I\left( \left| {{a}_{ni}}{{X}_{i}} \right|\le {{b}_{n}}{{t}^{1/\alpha }} \right)} \right)dt}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( \left| {{a}_{ni}}X \right|\le {{b}_{n}}{{t}^{1/\alpha }} \right)} \right)dt}} \\ &&+C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}dt}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( \left| {{a}_{ni}}X \right|\le {{b}_{n}} \right)} \right)dt}} \\ &&+C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}} < \left| {{a}_{ni}}X \right|\le {{b}_{n}}{{t}^{1/\alpha }} \right)} \right)dt}} \\ &&+C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}dt}} \\ & = &{{J}_{11}}+{{J}_{12}}+{{J}_{13}}. \end{eqnarray} $ | (2.18) |
Based on the formula (2.2) of Lemma 2.2 in Li et al.[10], we get that
$ \begin{eqnarray} {{J}_{11}}& = &\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( \left| {{a}_{ni}}X \right|\le {{b}_{n}} \right)} \right)dt}} \\ &\le& \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\frac{1}{b_{n}^{\alpha }}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{\alpha }}I\left( \left| {{a}_{ni}}X \right|\le {{b}_{n}} \right)} \right)} < \infty. \end{eqnarray} $ | (2.19) |
Denoting $ t = {{x}^{\alpha }} $, by (2.3) of Lemma 2.2, the Markov's inequality and Lemma 2.3, we also get that
$ \begin{eqnarray} {{J}_{12}}& = &\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}} < \left| {{a}_{ni}}X \right|\le {{b}_{n}}{{t}^{1/\alpha }} \right)} \right)dt}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{nb_{n}^{2}}\int_{1}^{\infty }{{{x}^{\alpha -3}}\sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}} < \left| {{a}_{ni}}X \right|\le {{b}_{n}}x \right)}dx}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{nb_{n}^{2}}\sum\limits_{m = 1}^{\infty }{\int_{m}^{m+1}{{{x}^{\alpha -3}}\sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}} < \left| {{a}_{ni}}X \right|\le {{b}_{n}}x \right)}dx}}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{nb_{n}^{2}}\sum\limits_{m = 1}^{\infty }{{{m}^{\alpha -3}}\sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}} < \left| {{a}_{ni}}X \right|\le {{b}_{n}}\left( m+1 \right) \right)}}} \\ & = &C\sum\limits_{n = 1}^{\infty }{\frac{1}{nb_{n}^{2}}\sum\limits_{i = 1}^{n}{\sum\limits_{m = 1}^{\infty }{\sum\limits_{s = 1}^{m}{{{m}^{\alpha -3}}E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}}s < \left| {{a}_{ni}}X \right|\le {{b}_{n}}\left( s+1 \right) \right)}}}} \\ & = &C\sum\limits_{n = 1}^{\infty }{\frac{1}{nb_{n}^{2}}\sum\limits_{i = 1}^{n}{\sum\limits_{s = 1}^{\infty }{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}}s < \left| {{a}_{ni}}X \right|\le {{b}_{n}}\left( s+1 \right) \right)\sum\limits_{m = s}^{\infty }{{{m}^{\alpha -3}}}}}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{nb_{n}^{2}}\sum\limits_{i = 1}^{n}{\sum\limits_{s = 1}^{\infty }{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}}s < \left| {{a}_{ni}}X \right|\le {{b}_{n}}\left( s+1 \right) \right){{s}^{\alpha -2}}}}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{nb_{n}^{\alpha }}\sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{\alpha }}I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}} \right)}} \\ &\le& CE{{{\left| X \right|}^{\alpha }}}/{{{\left( \log \left( 1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty. \end{eqnarray} $ | (2.20) |
Analogous to the argumentation of Lemma 2.3, it is easy to show that
$ \begin{equation} {{J}_{13}} = \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}dt}}\le CE{{{\left| X \right|}^{\alpha }}}/{{{\left( \log \left( 1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty. \end{equation} $ | (2.21) |
Hence, the desired result $ {{J}_{1}} < \infty $ holds by the above statements. The proof of Theorem 1.1 is completed.
Remark 2.1. Under the conditions of Theorem 1.1, noting that
$ \begin{eqnarray} \infty & > & \sum\limits_{n = 1}^{\infty }{\frac{1}{n}}E\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right|-\varepsilon \right)_{+}^{\alpha} \\ & = & \sum\limits_{n = 1}^{\infty }{\frac{1}{n}}\int_{0}^{\infty }{P\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right|-\varepsilon > {{t}^{1/\alpha}} \right)d}t \\ &\ge& C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{0}^{{{\varepsilon }^{\alpha }}}{P\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > \varepsilon +{{t}^{1/\alpha }} \right)}dt} \\ &\ge& C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}}P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > 2\varepsilon{{b}_{n}} \right)\quad \text{for} \quad\forall \varepsilon > 0. \end{eqnarray} $ | (2.22) |
Since $ \varepsilon > 0 $ is arbitrary, it follows from (2.22) that the complete moment convergence is much stronger than the complete convergence. Compared with the corresponding results of Li et al.[12], Chen and Sung[6], it is worth pointing out that Theorem 1.1 of this paper is an extension and improvement of those of Li et al.[12], Chen and Sung[6] under the same moment condition. In addition, the main result partially settles the open problem posed by Huang et al.[10] for the case $ 0 < \gamma < \alpha $ with $ 1 < \alpha \le 2 $.
In this work, we consider the problem of complete moment convergence for weighted sums of weakly dependent (or $ {{\rho }^{*}} $-mixing) random variables. The main results of this paper are presented in the form of the main theorem and a remark as well as Lemma 2.3, which plays a vital role to prove the main theorem. The presented main theorem improves and generalizes the corresponding complete convergence results of Li et al.[12] and Chen and Sung[6].
The authors are most grateful to the Editor as well as the anonymous referees for carefully reading the manuscript and for offering some valuable suggestions and comments, which greatly enabled them to improve this paper. This paper is supported by the Doctor and Professor Natural Science Foundation of Guilin University of Aerospace Technology.
All authors declare no conflicts of interest in this paper.
[1] |
Boulon S, Westman BJ, Hutten S, et al. (2010) The nucleolus under stress. Mol Cell 40: 216-227. doi: 10.1016/j.molcel.2010.09.024
![]() |
[2] |
Mayer C, Grummt I (2005) Cellular stress and nucleolar function. Cell Cycle 4: 1036-1038. doi: 10.4161/cc.4.8.1925
![]() |
[3] |
Grummt I (2013) The nucleolus-guardian of cellular homeostasis and genome integrity. Chromosoma 122: 487-497. doi: 10.1007/s00412-013-0430-0
![]() |
[4] |
Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. Embo J 22: 6068-6077. doi: 10.1093/emboj/cdg579
![]() |
[5] |
Hetman M, Pietrzak M (2012) Emerging roles of the neuronal nucleolus. Trends Neurosci 35: 305-314. doi: 10.1016/j.tins.2012.01.002
![]() |
[6] |
Parlato R, Kreiner G (2013) Nucleolar activity in neurodegenerative diseases: a missing piece of the puzzle? J Mol Med (Berl) 91: 541-547. doi: 10.1007/s00109-012-0981-1
![]() |
[7] |
Haeusler AR, Donnelly CJ, Periz G, et al. (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507: 195-200. doi: 10.1038/nature13124
![]() |
[8] | Chan HY (2014) RNA-mediated pathogenic mechanisms in polyglutamine diseases and amyotrophic lateral sclerosis. Front Cell Neurosci 8: 431. |
[9] |
Rohrer JD, Isaacs AM, Mizielinska S, et al. (2015) C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurol 14: 291-301. doi: 10.1016/S1474-4422(14)70233-9
![]() |
[10] |
Kwon I, Xiang S, Kato M, et al. (2014) Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345: 1139-1145. doi: 10.1126/science.1254917
![]() |
[11] |
Wen X, Tan W, Westergard T, et al. (2014) Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 84: 1213-1225. doi: 10.1016/j.neuron.2014.12.010
![]() |
[12] |
Tao Z, Wang H, Xia Q, et al. (2015) Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. Hum Mol Genet 24: 2426-2441. doi: 10.1093/hmg/ddv005
![]() |
[13] | Riancho J, Ruiz-Soto M, Villagra NT, et al. (2014) Compensatory Motor Neuron Response to Chromatolysis in the Murine hSOD1(G93A) Model of Amyotrophic Lateral Sclerosis. Front Cell Neurosci 8: 346. |
[14] |
Palanca A, Casafont I, Berciano MT, et al. (2014) Reactive nucleolar and Cajal body responses to proteasome inhibition in sensory ganglion neurons. Biochim Biophys Acta 1842: 848-859. doi: 10.1016/j.bbadis.2013.11.016
![]() |
[15] |
Cong R, Das S, Ugrinova I, et al. (2012) Interaction of nucleolin with ribosomal RNA genes and its role in RNA polymerase I transcription. Nucleic Acids Res 40: 9441-9454. doi: 10.1093/nar/gks720
![]() |
[16] |
Tsoi H, Lau TC, Tsang SY, et al. (2012) CAG expansion induces nucleolar stress in polyglutamine diseases. Proc Natl Acad Sci U S A 109: 13428-13433. doi: 10.1073/pnas.1204089109
![]() |
[17] |
Tsoi H, Chan HY (2013) Expression of expanded CAG transcripts triggers nucleolar stress in Huntington's disease. Cerebellum 12: 310-312. doi: 10.1007/s12311-012-0447-6
![]() |
[18] |
Ross CA, Tabrizi SJ (2011) Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10: 83-98. doi: 10.1016/S1474-4422(10)70245-3
![]() |
[19] |
Lee J, Hwang YJ, Ryu H, et al. (2014) Nucleolar dysfunction in Huntington's disease. Biochim Biophys Acta 1842: 785-790. doi: 10.1016/j.bbadis.2013.09.017
![]() |
[20] |
Kreiner G, Bierhoff H, Armentano M, et al. (2013) A neuroprotective phase precedes striatal degeneration upon nucleolar stress. Cell Death Differ 20: 1455-1464. doi: 10.1038/cdd.2013.66
![]() |
[21] |
Lee J, Hwang YJ, Boo JH, et al. (2011) Dysregulation of upstream binding factor-1 acetylation at K352 is linked to impaired ribosomal DNA transcription in Huntington's disease. Cell Death Differ 18: 1726-1735. doi: 10.1038/cdd.2011.38
![]() |
[22] |
Hwang YJ, Han D, Kim KY, et al. (2014) ESET methylates UBF at K232/254 and regulates nucleolar heterochromatin plasticity and rDNA transcription. Nucleic Acids Res 42: 1628-1643. doi: 10.1093/nar/gkt1041
![]() |
[23] |
Lee J, Hwang YJ, Kim KY, et al. (2013) Epigenetic mechanisms of neurodegeneration in Huntington's disease. Neurotherapeutics 10: 664-676. doi: 10.1007/s13311-013-0206-5
![]() |
[24] |
Ammal Kaidery N, Tarannum S, Thomas B (2013) Epigenetic landscape of Parkinson's disease: emerging role in disease mechanisms and therapeutic modalities. Neurotherapeutics 10: 698-708. doi: 10.1007/s13311-013-0211-8
![]() |
[25] |
Masliah E, Dumaop W, Galasko D, et al. (2013) Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics 8: 1030-1038. doi: 10.4161/epi.25865
![]() |
[26] |
Healy-Stoffel M, Ahmad SO, Stanford JA, et al. (2013) Altered nucleolar morphology in substantia nigra dopamine neurons following 6-hydroxydopamine lesion in rats. Neurosci Lett 546: 26-30. doi: 10.1016/j.neulet.2013.04.033
![]() |
[27] |
Healy-Stoffel M, Omar Ahmad S, Stanford JA, et al. (2014) Differential effects of intrastriatal 6-hydroxydopamine on cell number and morphology in midbrain dopaminergic subregions of the rat. Brain Res 1574: 113-119. doi: 10.1016/j.brainres.2014.05.045
![]() |
[28] |
Rieker C, Engblom D, Kreiner G, et al. (2011) Nucleolar disruption in dopaminergic neurons leads to oxidative damage and parkinsonism through repression of mammalian target of rapamycin signaling. J Neurosci 31: 453-460. doi: 10.1523/JNEUROSCI.0590-10.2011
![]() |
[29] | Kang H, Shin JH (2014) Repression of rRNA transcription by PARIS contributes to Parkinson's disease. Neurobiol Dis 73C: 220-228. |
[30] |
Vilotti S, Codrich M, Dal Ferro M, et al. (2012) Parkinson's Disease DJ-1 L166P Alters rRNA Biogenesis by Exclusion of TTRAP from the Nucleolus and Sequestration into Cytoplasmic Aggregates via TRAF6. PLoS One 7: e35051. doi: 10.1371/journal.pone.0035051
![]() |
[31] |
Vilotti S, Biagioli M, Foti R, et al. (2012) The PML nuclear bodies-associated protein TTRAP regulates ribosome biogenesis in nucleolar cavities upon proteasome inhibition. Cell Death Differ 19: 488-500. doi: 10.1038/cdd.2011.118
![]() |
[32] |
Iacono D, O'Brien R, Resnick SM, et al. (2008) Neuronal hypertrophy in asymptomatic Alzheimer disease. J Neuropathol Exp Neurol 67: 578-589. doi: 10.1097/NEN.0b013e3181772794
![]() |
[33] |
Pietrzak M, Rempala G, Nelson PT, et al. (2011) Epigenetic Silencing of Nucleolar rRNA Genes in Alzheimer's Disease. PLoS One 6: e22585. doi: 10.1371/journal.pone.0022585
![]() |
[34] |
da Silva AM, Payao SL, Borsatto B, et al. (2000) Quantitative evaluation of the rRNA in Alzheimer's disease. Mech Ageing Dev 120: 57-64. doi: 10.1016/S0047-6374(00)00180-9
![]() |
[35] |
McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol 24: 131-157. doi: 10.1146/annurev.cellbio.24.110707.175259
![]() |
[36] |
Strohner R, Nemeth A, Jansa P, et al. (2001) NoRC--a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J 20: 4892-4900. doi: 10.1093/emboj/20.17.4892
![]() |
[37] |
Mayer C, Schmitz KM, Li J, et al. (2006) Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell 22: 351-361. doi: 10.1016/j.molcel.2006.03.028
![]() |
[38] |
Santoro R, Li J, Grummt I (2002) The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 32: 393-396. doi: 10.1038/ng1010
![]() |
[39] | Gu L, Frommel SC, Oakes CC, et al. (2015) BAZ2A (TIP5) is involved in epigenetic alterations in prostate cancer and its overexpression predicts disease recurrence. Nat Genet 47: 22-30. |
[40] |
Wu P, Zuo X, Deng H, et al. (2013) Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull 97: 69-80. doi: 10.1016/j.brainresbull.2013.06.001
![]() |
[41] |
Santoro R, Schmitz KM, Sandoval J, et al. (2010) Intergenic transcripts originating from a subclass of ribosomal DNA repeats silence ribosomal RNA genes in trans. EMBO Rep 11: 52-58. doi: 10.1038/embor.2009.254
![]() |
[42] |
Wan J, Yourshaw M, Mamsa H, et al. (2012) Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat Genet 44: 704-708. doi: 10.1038/ng.2254
![]() |
[43] |
Bierhoff H, Dammert MA, Brocks D, et al. (2014) Quiescence-induced LncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol Cell 54: 675-682. doi: 10.1016/j.molcel.2014.03.032
![]() |
[44] |
Evertts AG, Manning AL, Wang X, et al. (2013) H4K20 methylation regulates quiescence and chromatin compaction. Mol Biol Cell 24: 3025-3037. doi: 10.1091/mbc.E12-07-0529
![]() |
[45] |
Sarg B, Koutzamani E, Helliger W, et al. (2002) Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem 277: 39195-39201. doi: 10.1074/jbc.M205166200
![]() |
[46] |
Shumaker DK, Dechat T, Kohlmaier A, et al. (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103: 8703-8708. doi: 10.1073/pnas.0602569103
![]() |
[47] |
Bierhoff H, Schmitz K, Maass F, et al. (2010) Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes. Cold Spring Harb Symp Quant Biol 75: 357-364. doi: 10.1101/sqb.2010.75.060
![]() |
[48] |
Murayama A, Ohmori K, Fujimura A, et al. (2008) Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133: 627-639. doi: 10.1016/j.cell.2008.03.030
![]() |
[49] |
Donmez G, Outeiro TF (2013) SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 5: 344-352. doi: 10.1002/emmm.201302451
![]() |
[50] |
Herskovits AZ, Guarente L (2014) SIRT1 in neurodevelopment and brain senescence. Neuron 81: 471-483. doi: 10.1016/j.neuron.2014.01.028
![]() |
[51] |
Li Y, Xu W, McBurney MW, et al. (2008) SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 8: 38-48. doi: 10.1016/j.cmet.2008.05.004
![]() |
[52] |
Zhang F, Wang S, Gan L, et al. (2011) Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol 95: 373-395. doi: 10.1016/j.pneurobio.2011.09.001
![]() |
[53] |
Smith MR, Syed A, Lukacsovich T, et al. (2014) A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington's disease. Hum Mol Genet 23: 2995-3007. doi: 10.1093/hmg/ddu010
![]() |
[54] | Schnapp A, Pfleiderer C, Rosenbauer H, et al. (1990) A growth-dependent transcription initiation factor (TIF-IA) interacting with RNA polymerase I regulates mouse ribosomal RNA synthesis. EMBO J 9: 2857-2863. |
[55] |
Grewal SS, Evans JR, Edgar BA (2007) Drosophila TIF-IA is required for ribosome synthesis and cell growth and is regulated by the TOR pathway. J Cell Biol 179: 1105-1113. doi: 10.1083/jcb.200709044
![]() |
[56] |
Mayer C, Bierhoff H, Grummt I (2005) The nucleolus as a stress sensor: JNK2 inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis. Genes Dev 19: 933-941. doi: 10.1101/gad.333205
![]() |
[57] |
Hoppe S, Bierhoff H, Cado I, et al. (2009) AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply. Proc Natl Acad Sci U S A 106: 17781-17786. doi: 10.1073/pnas.0909873106
![]() |
[58] |
DuRose JB, Scheuner D, Kaufman RJ, et al. (2009) Phosphorylation of eukaryotic translation initiation factor 2alpha coordinates rRNA transcription and translation inhibition during endoplasmic reticulum stress. Mol Cell Biol 29: 4295-4307. doi: 10.1128/MCB.00260-09
![]() |
[59] |
Nguyen le XT, Mitchell BS (2013) Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA. Proc Natl Acad Sci U S A 110: 20681-20686. doi: 10.1073/pnas.1313097110
![]() |
[60] | Kiryk A, Sowodniok K, Kreiner G, et al. (2013) Impaired rRNA synthesis triggers homeostatic responses in hippocampal neurons. Front Cell Neurosci 7: 207. |
[61] |
Shamsi F, Parlato R, Collombat P, et al. (2014) A genetic mouse model for progressive ablation and regeneration of insulin producing beta-cells. Cell Cycle 13: 3948-3957. doi: 10.4161/15384101.2014.952176
![]() |
[62] |
Parlato R, Kreiner G, Erdmann G, et al. (2008) Activation of an endogenous suicide response after perturbation of rRNA synthesis leads to neurodegeneration in mice. J Neurosci 28: 12759-12764. doi: 10.1523/JNEUROSCI.2439-08.2008
![]() |
[63] |
Domanskyi A, Geissler C, Vinnikov IA, et al. (2011) Pten ablation in adult dopaminergic neurons is neuroprotective in Parkinson's disease models. FASEB J 25: 2898-2910. doi: 10.1096/fj.11-181958
![]() |
[64] |
Yuan X, Zhou Y, Casanova E, et al. (2005) Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53-mediated apoptosis. Mol Cell 19: 77-87. doi: 10.1016/j.molcel.2005.05.023
![]() |
[65] |
Erickson JD, Bazan NG (2013) The nucleolus fine-tunes the orchestration of an early neuroprotection response in neurodegeneration. Cell Death Differ 20: 1435-1437. doi: 10.1038/cdd.2013.107
![]() |
[66] |
Plotkin JL, Day M, Peterson JD, et al. (2014) Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington's disease. Neuron 83: 178-188. doi: 10.1016/j.neuron.2014.05.032
![]() |
[67] |
Lee JH, Tecedor L, Chen YH, et al. (2015) Reinstating aberrant mTORC1 activity in Huntington's disease mice improves disease phenotypes. Neuron 85: 303-315. doi: 10.1016/j.neuron.2014.12.019
![]() |
[68] |
Ravikumar B, Vacher C, Berger Z, et al. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36: 585-595. doi: 10.1038/ng1362
![]() |
[69] |
Hamdane N, Stefanovsky VY, Tremblay MG, et al. (2014) Conditional inactivation of Upstream Binding Factor reveals its epigenetic functions and the existence of a somatic nucleolar precursor body. PLoS Genet 10: e1004505. doi: 10.1371/journal.pgen.1004505
![]() |
1. | Yukun Xiao, Jianzhi Han, Cocommutative connected vertex (operator) bialgebras, 2025, 212, 03930440, 105461, 10.1016/j.geomphys.2025.105461 |