Citation: Chenwei Li, John A. Williams. Regulation of CCK-induced ERK1/2 activation by PKC epsilon in rat pancreatic acinar cells[J]. AIMS Molecular Science, 2017, 4(4): 463-477. doi: 10.3934/molsci.2017.4.463
[1] | Roskoski R Jr (2012) ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res 66: 105-143. doi: 10.1016/j.phrs.2012.04.005 |
[2] | Krishna M, Narang H (2008) The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65: 3525-3544. doi: 10.1007/s00018-008-8170-7 |
[3] | Yao Z, Seger R (2009) The ERK signaling cascade–views from different subcellular compartments. Biofactors 35: 407-416. doi: 10.1002/biof.52 |
[4] | Duan RD, Williams JA (1994) Cholecystokinin rapidly activates mitogen-activated protein kinase in rat pancreatic acini. Am J Physiol 267: 401-408. |
[5] | Dabrowski A, Groblewski GE, Schafer C, et al. (1997) Cholecystokinin and EGF activate a MAPK cascade by different mechanisms in rat pancreatic acinar cells. Am J Physiol 273: C1472-C1479. |
[6] | Daulhac L, Kowalski-Chauvel A, Pradayrol L, et al. (1997) Ca2+ and protein kinase C-dependent mechanisms involved in gastrin-induced Shc/Grb2 complex formation and P44-mitogen-activated protein kinase activation. Biochem J 325: 383-389. doi: 10.1042/bj3250383 |
[7] | Piiper A, Gebhardt R, Kronenberger B, et al. (2000) Pertussis Toxin Inhibits Cholecytoskinin- and Epidermal Growth Factor-Induced Mitogen-Activated Protein Kinase Activation by Disinhibitation of the cAMP Signaling Pathway and Inhibition of c-Raf-1. Mol Pharmacol 58: 608-613. |
[8] | Piiper A, Elez R, You S, et al. (2003) Cholecystokinin Stimulates Extracellular Signal-regulated Kinase through Activation of the Epidermal Growth Factor Receptor, Yes, and Protein Kinase C. J Biol Chem 278: 7065-7072. doi: 10.1074/jbc.M211234200 |
[9] | Koh Y, Tamizhselvi R, Bhatia M (2009) Extracellular Signal-Regulated Kinase 1/2 and c-Jun NH2-Terminal Kinase, through Nuclear Factor-kB and Activator Protein-1, Contribute to Caerulein-Induced Expression of Substance P and Neurokinin-1 Receptors in Pancreatic Acinar Cells. JPET 332: 940-948. |
[10] | Williams JA (2008) Receptor-mediated signal transduction pathways and the regulation of pancreatic acinar cell function. Curr Opin Gastroenterol 24: 573-579. doi: 10.1097/MOG.0b013e32830b110c |
[11] | Jacob C, Bunnet NW (2006) Transmembrane Signaling by G Protein-Coupled Receptors, In: Physiology of the Gastrointestinal Tract, 4 Eds., Academic Press, 63-85. |
[12] | Williams JA, Yule DI (2012) Stimulus-secretion Coupling in Pancreatic Acinar Cells, In: Physiology of the Gastrointestinal Tract, 5 Eds., Elsevier, 1361-1398. |
[13] | Ramos JW (2008) The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol 40: 2707-2719. doi: 10.1016/j.biocel.2008.04.009 |
[14] | Nicke B, Tseng MJ, Fenrich M, et al. (1999) Adenovirus-mediated gene transfer of RasN17 inhibits specific CCK actions on pancreatic acinar cells. Am Physiol 276: 499-506. |
[15] | Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258: 607-614. doi: 10.1126/science.1411571 |
[16] | Newton AC (2009) Protein kinase C: poised to signal. Am J Physiol Endocrinol Metab 298: E395-E402. |
[17] | Mochly-Rosen D (1995) Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science 268: 247-251. doi: 10.1126/science.7716516 |
[18] | Mochly-Rosen D, Wu G, Hahn H, et al. (2000) Cardiotrophic effects of protein kinase C-analysis in vivo modulation of PKCε Translocation. Circ Res 86: 1172-1179. |
[19] | Wu-Zhang AX, Newton AC (2013) Protein kinase C pharmacology: refining the toolbox. Biochem J 452: 195-209. doi: 10.1042/BJ20130220 |
[20] | Churchill EN, Qvit N, Mochly-Rosen D (2009) Rationally designed peptide regulators of protein kinase C. Trends Endocrinol Metab 20: 25-33. doi: 10.1016/j.tem.2008.10.002 |
[21] | Bastani B, Yang L, Baldassare JJ, et al. (1995) Cellular distribution of isoforms of protein kinase C (PCK) in pancreatic acini. Biochimica et Biophysica Acta 1269: 307-315. doi: 10.1016/0167-4889(95)00120-0 |
[22] | Kim MJ, Lee YS, Lee KH, et al. (2001) Site-specific localization of protein kinase C isoforms in rat pancreas. Pancreatology 1: 36-42 doi: 10.1159/000055790 |
[23] | Li C, Chen X, Williams JA (2004) Regulation of CCK-induced amylase release by PKC-δ in rat pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 287: G764-G771. doi: 10.1152/ajpgi.00111.2004 |
[24] | Rodriguez-Martin E, Boyano-Adanex MC, Bodega G, et al. (1999) Redistribution of protein kinase C isoforms in rat pancreatic acini during lactation and weaning. FEBS Lett 445: 356-360. doi: 10.1016/S0014-5793(99)00133-7 |
[25] | Fleming AK, Storz P (2017) Protein kinase C isoforms in the normal pancreas and in pancreatic disease. Cell Signal 40: 1-9 doi: 10.1016/j.cellsig.2017.08.005 |
[26] | Braz JC, Bueno OF, De Windt LJ, et al. (2002) PKC alpha regulates the hypertrophic growth of cardiomyocytes through extracellular signal-regulated kinase1/2 (ERK1/2). J Cell Biol 156: 905-919. doi: 10.1083/jcb.200108062 |
[27] | Chen X, Edwards JA, Logsdon CD, et al. (2002) Dominant negative Rab3D inhibits amylase release from mous pancreatic acini. J Biol Chem 277: 18002-18009. doi: 10.1074/jbc.M201248200 |
[28] | Besson A, Davy A, Robbins SM, et al. (2001) Differential activation of ERKs to focal adhesions by PKC epsilon is required for PMA-induced adhesion and migration of human glioma cells. Oncogene 20: 7398-7407. doi: 10.1038/sj.onc.1204899 |
[29] | Ginnan R, Pfleiderer PJ, Pumiglia K, et al. (2004) PKC-delta and CaMKII-delta 2 mediate ATP-dependent activation of ERK1/2 in vascular smooth muscle. Am J Physiol Cell Physiol 286: C1281-C1289. doi: 10.1152/ajpcell.00202.2003 |
[30] | Kampfer S, Windegger M, Hochholdinger F, et al. (2001) Protein kinase C isoforms involved in the transcriptional activation of cyclin D1 by transforming Ha-Ras. J Biol Chem 276: 42834-42842. doi: 10.1074/jbc.M102047200 |
[31] | Torricelli C, Valacchi G, Maioli E (2001) Novel PKCs activate ERK through PKD1 in MCF-7 cells. In Vitro Cell Dev Bio-Animal 47: 73-81. |
[32] | Olson ER, Shamhart PE, Naugle JE, et al. (2008) Angiotensin II-induced extracellular signal-regulated kinase 1/2 activation is mediated by protein kinase Cdelta and intracellular calcium in adult rat cardiac fibroblasts. Hypertension 51: 704-711. doi: 10.1161/HYPERTENSIONAHA.107.098459 |
[33] | Gschwendt M, Muller HJ, Kielbassa K, et al. (1994) Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun 199: 93-98. doi: 10.1006/bbrc.1994.1199 |
[34] | Martiny-Baron G, Kazanietz MG, Mischak H, et al. (1993) Selective inhibition of protein kinase C isozymes by the indolocarbazol Go 6976. J Biol Chem 268: 9194-9197. |
[35] | Tapia JA, Jensen RT, Garcia-Marin LJ (2006) Rottlerin inhibits stimulated enzymatic secretion and several intracellular signaling transduction pathways in pancreatic acinar cells by a non-PKC-delta-dependent mechanism. Biochim Biophys Acta 1763: 25-38. doi: 10.1016/j.bbamcr.2005.10.007 |
[36] | Chen L, Hahn H, Wu G, et al. (2001) Opposing cardioprotective actions and parallel hypertrophic effects of δPKC and εPKC. PNAS 98: 11114-11119. doi: 10.1073/pnas.191369098 |
[37] | Churchill E, Budas G, Vallentin A, et al. (2008) PKC isozymes in chronic cardiac disease: possible therapeutic targets. Annu Rev Pharmacol Toxicol 48: 569-599. doi: 10.1146/annurev.pharmtox.48.121806.154902 |
[38] | Chen L, Mochly-Rosen D (2001) Opposing effects δ of ξ and PKC in ethanol-induced cardioprotection. J Mol Cell Cardiol 33: 581-585. doi: 10.1006/jmcc.2000.1330 |
[39] | Budas GR, Churchill EN, Mochly-Rosen D (2007) Cardioprotective mechanisms of PKC isozyme-selective activators and inhibitors in the treatment of ischemia-reperfusion injury. Pharm Res 55: 523-536. doi: 10.1016/j.phrs.2007.04.005 |
[40] | Sabbatini ME, Chen X, Ernst SA, et al. (2008) Rap1 activation plays a regulatory role in pancreatic amylase secretion. J Biol Chem 283: 23884-23894. doi: 10.1074/jbc.M800754200 |
[41] | Corbit KC, Trakul N, Eves EM, et al. (2003) Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf Kinase Inhibitory Protein. J Biol Chem 278: 13061-13068. doi: 10.1074/jbc.M210015200 |
[42] | Han B, Ji B, Logsdon CD (2001) CCK independently activates intracellular trypsinogen and NF-kappaB in rat pancreatic acinar cells. Am J Physiol Cell Physiol 180: C465-C472. |
[43] | Satoh A, Gukovskaya AS, Nieto JM, et al. (2004) PKC-delta and -epsilon regulate NF-kappaB activation induced by cholecystokinin and TNF-alpha in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 387: G582-G591. |
[44] | Thrower EC, Osgood S, Shugrue CA, et al. (2008) The novel protein kinase C isoforms -delta and -epsilon modulate caerulein-induced zymogen activation in pancreatic acinar cells. Am J Physicol Gastrointest Liver Physiol 294: G1344-1353. doi: 10.1152/ajpgi.00020.2008 |
[45] | Uchida T, Iwashita N, Ohara-Imaizumi M, et al. (2007) Protein kinase Cδ plays a non-redundant role in insulin secretion in pancreatic beta cells. J Biol Chem 282: 2707-2716. doi: 10.1074/jbc.M610482200 |
[46] | Thrower EC, Wang J, Cheriyan S, et al. (2009) Protein kinase C δ-mediated processes in cholecystokinin-8-stimulated pancreatic acini. Pancreas 38: 930-935. doi: 10.1097/MPA.0b013e3181b8476a |
[47] | Cosen-Binker LI, Lam PP, Binker MG, et al. (2007) Alcohol/cholecystokinin-evoked pancreatic acinar basolateral exocytosis is mediated by protein kinase C alpha phosphorylation of Munc18c. J Biol Chem 282: 13047-13058. doi: 10.1074/jbc.M611132200 |