Citation: Lourdes Franco, Luís J. del Valle, Jordi Puiggalí. Smart systems related to polypeptide sequences[J]. AIMS Materials Science, 2016, 3(1): 289-323. doi: 10.3934/matersci.2016.1.289
[1] | Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857 |
[2] | Honghua Bin, Daifeng Duan, Junjie Wei . Bifurcation analysis of a reaction-diffusion-advection predator-prey system with delay. Mathematical Biosciences and Engineering, 2023, 20(7): 12194-12210. doi: 10.3934/mbe.2023543 |
[3] | Meiling Zhu, Huijun Xu . Dynamics of a delayed reaction-diffusion predator-prey model with the effect of the toxins. Mathematical Biosciences and Engineering, 2023, 20(4): 6894-6911. doi: 10.3934/mbe.2023297 |
[4] | Guangxun Sun, Binxiang Dai . Stability and bifurcation of a delayed diffusive predator-prey system with food-limited and nonlinear harvesting. Mathematical Biosciences and Engineering, 2020, 17(4): 3520-3552. doi: 10.3934/mbe.2020199 |
[5] | Shunyi Li . Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays. Mathematical Biosciences and Engineering, 2019, 16(6): 6934-6961. doi: 10.3934/mbe.2019348 |
[6] | Kawkab Al Amri, Qamar J. A Khan, David Greenhalgh . Combined impact of fear and Allee effect in predator-prey interaction models on their growth. Mathematical Biosciences and Engineering, 2024, 21(10): 7211-7252. doi: 10.3934/mbe.2024319 |
[7] | Kalyan Manna, Malay Banerjee . Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 2411-2446. doi: 10.3934/mbe.2019121 |
[8] | Xin-You Meng, Yu-Qian Wu . Bifurcation analysis in a singular Beddington-DeAngelis predator-prey model with two delays and nonlinear predator harvesting. Mathematical Biosciences and Engineering, 2019, 16(4): 2668-2696. doi: 10.3934/mbe.2019133 |
[9] | Yue Xing, Weihua Jiang, Xun Cao . Multi-stable and spatiotemporal staggered patterns in a predator-prey model with predator-taxis and delay. Mathematical Biosciences and Engineering, 2023, 20(10): 18413-18444. doi: 10.3934/mbe.2023818 |
[10] | Ting Yu, Qinglong Wang, Shuqi Zhai . Exploration on dynamics in a ratio-dependent predator-prey bioeconomic model with time delay and additional food supply. Mathematical Biosciences and Engineering, 2023, 20(8): 15094-15119. doi: 10.3934/mbe.2023676 |
In ecological systems, the interactions between different species can generate rich phenomena. Many models are derived to illustrate the predator-prey system from the view of both mathematics and biology [2,22,28,32]. Meanwhile, it is well known that the spatial structure may further affect the population dynamics of the species [7,8,15]. The spatially homogeneous reaction-diffusion predator-prey model with classical Lotka-Volterra interaction and no flux boundary conditions has been studied by many scholars, and the unique positive steady state solution is globally asymptotically stable in that case [21]. Our work is based on the important contribution of Yi, Wei and Shi [35] in the bifurcation analysis from the constant coexistence equilibrium solution of the following Rosenzweig-MacArthur model with Holling type-Ⅱ functional response [14,27]:
$(BP)
{Ut−d1ΔU=r1U(1−UK)−m1UVγ+U,x∈Ω, t>0,Vt−d2ΔU=−r2V+m2UVγ+U,x∈Ω, t>0,∂νU=∂νV=0,x∈∂Ω, t>0.U(x,0)=U0(x)≥0, V(x,0)=V0(x)≥0,x∈Ω.
$
|
Here
It is worth noting that the functional responses in two species are the same in the model
The term was invented by Dutch biologist Hans Kruuk [16] after studying spotted hyenas in Africa and red foxes in England. Other than humans, surplus killing has been observed among zooplankton, weasels, honey badgers, wolves, red foxes, leopards, lions, spotted hyenas, spiders[1,5,9,11,17,19,20,31]. The emergence of these phenomena refers to the fact that animals may only partially consume or abandon intact prey they have captured. There are many documented examples of predators exhibiting surplus killing. For example, Samu and Bíró [30] have found that the wandering spider, Pardosa hortensis (Lycosidae), exhibited significant levels of both partial feeding and prey abandonment at high rates of encounter with prey. In Canada's Northwest Territories, the researchers once found the bodies of 34 neonatal caribou calves that had been killed by wolves and scattered-some half-eaten and some completely untouched-over 3 square kilometres. In surplus killing, predators eat only the most-preferred animals and animal parts. Bears engaging in surplus killing of salmon are likelier to eat unspawned fish because of their higher muscle quality, and high-energy parts such as brains and eggs [16]. Surplus killing can deplete the overall food supply, waste predator energy and risk them being injured. Nonetheless, researchers say animals surplus kill whenever they can, in order to procure food for offspring and others, to gain valuable killing experience, and to create the opportunity to eat the carcass later when they are hungry again.
Inspired by their work, in this article, we would like to study the following predator-prey system with the predator exhibiting a "surplus killing" behaviour which can be demonstrated by different functional responses in the equations.
$
{∂u∂t−d1Δu=r1u(1−uK1)−m1uv, x∈Ω, t>0,∂v∂t−d2Δv=r2v(1−vK2)+m2uvγ+u, x∈Ω, t>0,∂u∂ν =∂u∂ν =0, x∈∂Ω, t>0,u(x,0)=u0(x)≥0(≢0), v(x,0)=v0(x)≥0(≢0), x∈Ω.
$
|
(1) |
Here
With a dimensionless change of variables:
$ \tilde{u}=\cfrac{u}{\gamma},~~\tilde{v}=\cfrac{v}{K_2},~~\tilde{t}=r_1 t,~~\tilde{d_1}=\cfrac{d_1}{r_1},~~\tilde{d_2}=\cfrac{d_2}{r_1},\\ $ |
$ ~~\theta=\cfrac{r_2}{r_1},~\widetilde{\gamma}=\cfrac{\gamma}{K_1},~~\widetilde{m}_1=\cfrac{m_1K_2}{r_1},~~\widetilde{m}_2=\cfrac{ m_2}{r_1}, $ |
still denote
$
{∂u∂t−d1Δu=u(1−γu)−m1uv,x∈Ω, t>0,∂v∂t−d2Δv=θv(1−v)+m2uv1+u,x∈Ω, t>0,∂u∂ν = ∂u∂ν =0,x∈∂Ω, t>0.u(x,0)=u0(x)≥0(≢0), v(x,0)=v0(x)≥0(≢0),x∈Ω.
$
|
(2) |
Considering that the biomass that predator consumed cannot convert into the new production for an instant, we add time delay into the functional response of the second equation of (2), and make it conform with natural situation:
$
{∂u(x,t)∂t−d1Δu(x,t)=u(x,t)(1−γu(x,t))−m1u(x,t)v(x,t), x∈Ω, t>0,∂v(x,t)∂t−d2Δv(x,t)=θv(x,t)(1−v(x,t))+m2u(x,t−τ)v(x,t)1+u(x,t−τ), x∈Ω, t>0,∂u∂ν=∂u∂ν =0, x∈∂Ω, t>0,u(x,t)=u0(x,t)≥0(≢0), v(x,t)=v0(x,t)≥0(≢0), x∈Ω, −τ≤t≤0.
$
|
(3) |
Here,
Define the real-valued Sobolev space
$ X:=\{(u,v)\in H^{2}(0,l\pi)\times H^{2}(0,l\pi)|u_{x}=v_{x}=0,x=0,l\pi\}, $ |
with inner product
For sake of discussion, we make the following assumption:
$\left( {H1} \right){m_1} < 1.$ |
The system (3) always has three non-negative constant equilibrium solutions:
$u∗=12γθ[−Γ+√Γ2−4γθ2(m1−1)],v∗=1m1(1−γu∗).
$
|
with
Our main contribution for this article is a detailed and rigorous analysis about the global dynamics of the positive equilibrium of the diffusive predator-prey system (2). Keeping other parameters constant, we use the predation rate
The rest of the paper is organized as follows. In Section 2, the existence and priori bound of a positive solution for the reaction diffusion system are given, and the global asymptotically stability of positive equilibrium is proved. In Section 3, the stability of the positive constant steady state is considered, and the existence of the related Hopf bifurcation at the critical points is investigated with delay as the bifurcation parameter. In Section 4, by applying the normal form theory and center manifold reduction of partial functional differential equations, some detailed results of Hopf bifurcation are derived. Some numerical simulations are presented in Section 5. Throughout the paper, we denote
In this section, we shall investigate the existence of a positive solution for system (3) with delay
Clearly, the system (3) with
$
{∂u(x,t)∂t−d1Δu(x,t)=u(x,t)(1−γu(x,t))−m1u(x,t)v(x,t),x∈Ω, t>0,∂v(x,t)∂t−d2Δv(x,t)=θv(x,t)(1−v(x,t))+m2u(x,t)v(x,t)1+u(x,t),x∈Ω, t>0,∂u∂ν = ∂u∂ν =0,x∈∂Ω, t>0,u(x,0)=u0(x)≥0(≢0), v(x,0)=v0(x)≥0(≢0),x∈Ω,
$
|
(4) |
where
Theorem 2.1. Suppose that
$ 0<u(x,t)\leq u^*(t),~0<v(x,t)\leq v^*(t),~for~t>0~and~x\in\Omega, $ |
where
$
\left\{ {dudt=u(1−γu)dvdt=θv(1−v)+m2uv1+u,u(0)=u0,v(0)=v0, } \right.
$
|
(5) |
and
$ u_0=\sup\limits_{x\in\overline{\Omega}}u_0(x), ~~~~v_0=\sup\limits_{x\in\overline{\Omega}}v_0(x); $ |
$ \limsup\limits_{t\to\infty} u(x,t)\leq \cfrac{1}{\gamma} ,~~~~\limsup\limits_{t\to\infty} v(x,t)\leq 1+\cfrac{m_2}{\theta}. $ |
Proof. Define
$ f(u,v)=u(1-\gamma u)-m_1 uv,~~~~~~g(u,v)=\theta v(1-v)+\cfrac{m_2 uv}{1+u}. $ |
Obviously, for any
$ \text{D}f_v=-m_1 u\leq 0 ,~~~~ \text{D}g_u=\cfrac{m_2 v}{(1+u)^2}\geq 0, $ |
thus system (4) is a mixed quasi-monotone system(see[23]). Let
$ (\underline{u}(x,t),~\underline{v}(x,t))=(0,~0)~~ \mbox{and} ~~(\bar{u}(x,t),~\bar{v}(x,t))=(u^*(t),~v^*(t)). $ |
Substitute
$ \cfrac{\partial \bar{u}}{\partial t}-d_1\Delta\bar{u}-f(\bar{u},\underline{v})=0\geq 0=\cfrac{\partial\underline{u}}{\partial t}-d_1\Delta \underline{u}-f(\underline{u},\bar{v}), $ |
$ \cfrac{\partial \bar{v}}{\partial t}-d_2\Delta\bar{v}-g(\bar{u},\bar{v})=0\geq 0=\cfrac{\partial\underline{v}}{\partial t}-d_2\Delta \underline{v}-g(\underline{u},\underline{v}), $ |
and
$ 0\leq\ u_0(x)\leq u_0,~~~~0\leq v_0(x)\leq v_0. $ |
Then
$ 0\leq u(x,t)\leq u^*(t),~~0\leq v(x,t)\leq v^*(t),~t\geq0. $ |
Since
Let
${dudt=u(1−γu),u(0)=u0>0. $
|
One can see that
$ u(x,t)\leq 1/\gamma+\varepsilon ,~~~~ \mbox{for}~~t\geq T_0~~\mbox{and}~~x\in\overline{\Omega}, $ |
which implies that
$ \limsup\limits_{t\to\infty}u(x,t)\leq 1/\gamma. $ |
Let
$
{dvdt=θv(1−v)+m2v,v(0)=v0.
$
|
Then we have
$ \theta v(1-v)+\cfrac{m_2 uv}{1+u}\leq\theta v(1-v)+m_2 v, $ |
it follows that
$ v(x,t)\leq 1+\cfrac{m_2}{\theta}+\varepsilon'~~ \mbox{for}~~t\geq T_0'~~\mbox{and}~~x\in\overline{\Omega}, $ |
which implies that
$ \limsup\limits_{t\to\infty}v(x,t)\leq 1+\cfrac{m_2}{\theta}. $ |
The proof is complete.
In this section, we shall give the conditions to ensure that the positive constant equilibrium
Theorem 2.2. Suppose that
$ (H2)m_1\left(1+\cfrac{m_2}{\theta(1+\gamma)}\right)<1 $ |
are satisfied. Then the positive equilibrium
$ \lim\limits_{t\to\infty}u(x,t)=u_*,~\lim\limits_{t\to\infty}v(x,t)=v_*,~~ \mbox{for}~~ x\in\overline{\Omega}. $ |
Proof. In Section 2.1, we get that
$u(x,t)\leq 1/\gamma+\varepsilon, ~~~ \mbox{for}~~ t>T_0,~~x\in\overline{\Omega}.$ |
From
$ m_1+(1+m_1)\varepsilon_0+\cfrac{m_1 m_2(1+\gamma \varepsilon_0)}{\theta(1+\gamma+\gamma \varepsilon_0)}<1. $ | (6) |
Let
$ \cfrac{\partial v}{\partial t}=d_2 \Delta v+\theta v(1-v)+\cfrac{m_2u v}{1+u}\leq d_2 \Delta v+\theta v(1-v)+\cfrac{m_2 \bar{c}_1 v}{1+\bar{c}_1}, $ |
for
$ \bar{c}_2=1+\cfrac{m_2 \bar{c}_1 }{\theta(1+\bar{c}_1)}+\varepsilon_0. $ |
Again we have
$ \cfrac{\partial u}{\partial t}=d_1 \Delta u+u(1-\gamma u)-m_1 uv\geq d_1 \Delta u+u(1-\gamma u)-m_1 u\bar{c}_2, $ |
for
$ 1-m_1 \bar{c}_2>0, ~~ \mbox{and}~~~ 1-m_1 \bar{c}_2-\varepsilon_0>0. $ |
Hence, there exists a
$ \underline{c}_1=\cfrac{1}{\gamma}(1-m_1 \bar{c}_2-\varepsilon_0). $ |
Finally, using the similar method shown above, we have
$ \cfrac{\partial v}{\partial t}=d_2 \Delta v+\theta v(1-v)+\cfrac{m_2u v}{1+u}\geq d_2 \Delta v+\theta v(1-v)+\cfrac{m_2 \underline{c}_1 v}{1+\underline{c}_1}, $ |
for
$ 1+\cfrac{m_2 \underline{c}_1}{\theta(1+\underline{c}_1)}>1,~~\mbox{and}~~1+\cfrac{m_2 \underline{c}_1}{\theta(1+\underline{c}_1)}-\varepsilon_0>1. $ |
Then there exists a
$ \underline{c}_2=1+\cfrac{m_2 \underline{c}_1}{\theta(1+\underline{c}_1)}-\varepsilon_0. $ |
Therefor for
$ \underline{c}_1\leq u(x,t)\leq \bar{c}_1,~~~~\underline{c}_2\leq v(x,t)\leq \bar{c}_2, $ |
and
$ 1-\gamma \bar{c}_1-m_1 \underline{c}_2\leq 0,~~ 1-\bar{c}_2+\cfrac{m_2 \bar{c}_1}{\theta(1+\bar{c}_1)}\leq 0, $ |
$ 1-\gamma \underline{c}_1-m_1 \bar{c}_2\geq 0,~~ 1-\underline{c}_2+\cfrac{m_2 \underline{c}_1}{\theta(1+\underline{c}_1)}\geq 0. $ |
Then
To investigate the asymptotic behavior of the positive equilibrium, we define two sequences of constant vectors
$
{ˉu(m)=ˉu(m−1)+1L1[ˉu(m−1)(1−γˉu(m−1))−m1ˉu(m−1)v_(m−1)],u_(m)=u_(m−1)+1L1[u_(m−1)(1−γu_(m−1))−m1u_(m−1)ˉv(m−1)],ˉv(m)=ˉv(m−1)+1L2[θˉv(m−1)(1−ˉv(m−1))+m2ˉu(m−1)ˉv(m−1)1+ˉu(m−1)],v_(m)=v_(m−1)+1L2[θv_(m−1)(1−v_(m−1))+m2u_(m−1)v_(m−1)1+u_(m−1)],
$
|
(7) |
where
Then for
$(u_(0),v_(0))≤(u_(m),v_(m))≤(u_(m+1),v_(m+1))≤(ˉu(m+1), ˉv(m+1))≤(ˉu(m), ˉv(m))≤(ˉu(0), ˉv(0)), $
|
and
$ (\bar{u}^{(m)},~\bar{v}^{(m)})\rightarrow(\bar{u},\bar{v}), ~(\underline{u}^{(m)},~\underline{v}^{(m)})\rightarrow(\underline{u},\underline{v}),~~\mbox{as}~~m\rightarrow\infty. $ |
From the recursion (7), we can obtain that
$
ˉu(1−γˉu)−m1ˉuv_=0, θˉv(1−ˉv)+m2ˉuˉv1+ˉu=0,u_(1−γu_)−m1u_ˉv=0, θv_(1−v_)+m2u_ v_1+u_=0.
$
|
(8) |
Simplify the equations, we get
$ \gamma (\bar{u}-\underline{u})=m_1(\bar{v}-\underline{v}),~m_2(\bar{u}-\underline{u})=\theta(1+\bar{u})(1+\underline{u})(\bar{v}-\underline{v}). $ |
Then we obtain
$ \cfrac{\gamma}{m_1}(\bar{u}-\underline{u})=\cfrac{m_2(\bar{u}-\underline{u})}{\theta(1+\bar{u})(1+\underline{u})}. $ | (9) |
If we assume that
$ \cfrac{\underline{u}}{1+\underline{u}}=1-\cfrac{\theta \gamma(1+\bar{u})}{m_1 m_2}. $ | (10) |
From Eq.(8), we can also have
$ \underline{v}=\frac{1}{m_1}(1-\gamma \bar{u}) ~~ \mbox{and}~~ 1-\underline{v}+\frac{m_2 \underline{u}}{\theta (1+\underline{u})}=0. $ | (11) |
Substituting the first equation of Eq.(11) and Eq.(10) into the second equation of Eq.(11), it follows that
$ 1-\cfrac{1}{m_1}(1-\gamma \bar{u})+\cfrac{m_2}{\theta}\left(1-\cfrac{\theta \gamma(1+\bar{u})}{m_1 m_2}\right)=0, $ |
that is
$ \cfrac{1}{m_1}=\cfrac{m_2}{\theta(1+\gamma)}+\cfrac{1}{1+\gamma}. $ | (12) |
This is a contraction to the condition
Now we investigate the local stability of positive equilibrium
$ U(t):=(u(t),v(t))^T. $ |
Then the system (4) can be rewritten as
$ \dot{U}(t)=D\Delta U(t)+F(U), $ | (13) |
where
$ D=\text{diag}\{d_1,d_2\},~~\mbox{and}~~F:X\to \mathbb{R}^2, $ |
is defined by
$
F(U)=\left(u(t)(1−γu(t))−m1u(t)v(t)θv(t)(1−v(t))−m2u(t)v(t)1+u(t) \right).
$
|
We consider the linearization at
$ \dot{U}(t)=D\Delta U(t)+L_{E_*}(U), $ | (14) |
where
$
L_{E_*}=\left(−γu∗−m1u∗m2v∗(1+u∗)2−θv∗ \right),\\
$
|
and its characteristic equation satisfies
$ \lambda\xi-D\Delta \xi-L_{E_*}\xi=0. $ | (15) |
It is well known that the eigenvalue problem
$ -\Delta \varphi = \mu \varphi, \quad x\in (0,l\pi), \quad \quad \varphi_x|_{x=0, l\pi}=0, $ |
has eigenvalues
$ \mu_n=n^2/l^2, n\in\mathbb{N}_0=\mathbb{N}\cup\{0\}, $ |
with corresponding eigenfunctions
$
\left(ϕψ \right)=\sum\limits_{n=0}^\infty\left(anbn \right)\cos(nx/l),~~a_n,~b_n\in \mathbb{C},
$
|
be an eigenfunction for (15). Then from a straightforward computation, we obtain that the eigenvalues of (15) can be given by the following equations
$ \text{det}(\lambda I+D\cfrac{n^2}{l^2}-L_{E_1})=0,~~~~~~~~~n\in\mathbb{N}_0, $ |
where
$ \lambda^2-T_n\lambda+D_n+B_*=0, ~~n\in\mathbb{N}_0. $ | (16) |
For all
$
Tn=−(d1+d2)n2l2−(γu∗+θv∗)<0,Dn+B∗=(d1n2l2+γu∗)(d2n2l2+θv∗)+m1m2u∗v∗(1+u∗)2>0.
$
|
Then all the roots of Eq.(16) have negative real parts. This implies that the positive equilibrium
The above result indicates that
Remark 1. According to the relationship between the original equation (1) and the dimensionless equation (2), we can illustrate the effect of "surplus killing". There are two different functional responses in equation (1), in order to be consistent with the assumptions, let the consumption rate
Remark 2. If
$ \cfrac{\partial v}{\partial t}=d_2 \Delta v+\theta v(1-v)+\cfrac{m_2u v}{1+u}\geq d_2 \Delta v+\theta v(1-v). $ |
It is well known that the positive solution of latter equation uniformly approach to
$ \cfrac{\partial u}{\partial t}=d_1 \Delta u+u(1-\gamma v)-m_1 uv \leq d_2 \Delta u+u(1-\gamma u-m_1(1-\varepsilon)), $ |
for
In this section, we shall study the stability of the positive constant steady state
The linearization of system (13) at
$ \dot{U}(t)=D\Delta U(t)+L_*(U_t), $ | (17) |
where
$ L_*(\phi_t)=L_1\phi(0)+L_2\phi(-\tau), $ |
and
$\begin{array}{l} L_1=\left( \begin{array}{cc} -\gamma u_*&-m_1 u_*\\ 0 &-\theta v_* \end{array} \right),~~
L_2=\left( 00m2v∗(1+u∗)20 \right),
\end{array}$
|
$ \phi(t)=(\phi_1(t),~\phi_2(t))^T,~~\phi_t(\cdot)=(\phi_1(t+\cdot),~\phi_2(t+\cdot))^T. $ |
The corresponding characteristic equation satisfies
$ \lambda \xi-D\Delta \xi-L(e^{\lambda\,\cdot}\xi)=0, $ | (18) |
where
$\det\left(\lambda I+D\cfrac{n^2}{l^2}-L_1-L_2 e^{-\lambda\tau}\right)=0,~~n\in\mathbb{N}_0.$ |
That is, each characteristic value
$ \lambda^2-T_n\lambda+D_n+B_*e^{-\lambda\tau}=0, ~~n\in\mathbb{N}_0, $ | (19) |
where
$
Tn=−(d1+d2)n2l2−γu∗−θv∗,Dn=(d1n2l2+γu∗)(d2n2l2+θv∗),B∗=m1m2u∗v∗(1+u∗)2.
$
|
Clearly,
Let
$-\omega^2-T_n i\omega+D_n+B_*e^{-i\omega\tau}=0.$ |
Separating the real and imaginary parts, it follows that
$
{B∗cosωτ=ω2−Dn,B∗sinωτ=−Tnω.
$
|
(20) |
Then we have
$ \omega^4-(2D_n-T_n^2)\omega^2+D_n^2-B^2_*=0. $ | (21) |
Denote
$ z^2-(2D_n-T_n^2)z+D_n^2-B_*^2=0, $ | (22) |
where
$ 2D_n-T_n^2=-(d_1^2+d_2^2)\cfrac{n^4}{l^4}-2(d_1\gamma u_*+d_2\theta v_*)-(\gamma^2u_*^2+\theta^2 v_*^2)<0. $ |
Hence Eq.(22) has a unique positive root
$ z_n=\cfrac{2D_n-T_n^2+\sqrt{(2D_n-T_n^2)^2-4(D_n^2-B_*^2)}}{2}, $ |
only if
From the explicit formula of
$ D_n-B_*=d_1d_2\cfrac{n^4}{l^4}+(d_1\theta v_*+d_2\gamma u_*)\cfrac{n^4}{l^4}+D_0-B_* \to\infty,~\text{as}~n\to\infty, $ |
where
$ D_0-B_*=\gamma\theta u_*v_*-\cfrac{m_2m_1 u_*v_*}{(1+u_*)^2}, $ |
and if
$ D_0-B_*= u_*v_*\left(\gamma\theta-\cfrac{m_2 m_1 }{(1+u_*)^2}\right)<0, $ |
we find a constant
$ D_n-B_*<0,~~\mbox{for}~~0\leq n< n_*. $ |
and
$ D_n-B_*\geq0,~~\mbox{for}~~n\geq n_*. $ |
Here we denote the set
$ \mathcal{S}=\{n\in\mathbb{N}_0|~D_n-B_*<0\}. $ |
By Eq.(20), we have
$ \tau_{n,j}=\cfrac{1}{\omega_n}\left(\arccos\cfrac{\omega_n^{2}-D_n}{B_*}+2j\pi\right),~j\in\mathbb{N}_0,~n\in\mathcal{S}. $ | (23) |
Following the work of Cooke and Grassman[6], we have
Lemma 3.1. Suppose that
$ \text{sign}~\alpha'(\tau_{n,j})=1,~~for~j\in\mathbb{N}_0,~n\in\mathcal{S}, $ |
where
$ \alpha(\tau)= ~\textrm{Re}\lambda(\tau). $ |
Proof. Substituting
$ (2\lambda-T_n-\tau B_*e^{-\lambda\tau})\cfrac{\text{d}\lambda}{\text{d}\tau}-\lambda B_*e^{-\lambda\tau}=0. $ |
Thus
$ \left(\cfrac{\text{d}\lambda}{\text{d}\tau}\right)^{-1}=\cfrac{2\lambda-T_n-\tau B_*e^{-\lambda\tau}}{\lambda B_*e^{-\lambda\tau}}. $ |
By Eq.(20), we have
$
Re(dλdτ)−1|τ=τn,j=2ωncosωnτn,j−Tnsinωnτn,jB∗ωn=2ω2n−2Dn+T2nB2∗=√T4n−4T2nDn+4B2∗B2∗.
$
|
Since the sign of
From the Proposition 2.3 of [4], we have that
$ \tau_{n,j}\leq\tau_{n,j+1},~~\mbox{for all}~~~j\in\mathbb{N}_0,n\in\mathcal{S}, $ |
and
$ \tau_{n,j}\leq\tau_{n+1,j},~~\mbox{for all}~~~j\in\mathbb{N}_0,n\in\mathcal{S}. $ |
Then
Lemma 3.2. Assume that
$ T_n^4-4T_n^2D_n+4B_*^2<0, $ |
or
$ T_n^4-4T_n^2D_n+4B_*^2\geq0~~and~~\gamma\theta -\cfrac{m_2 m_1}{(1+u_*)^2}>0, $ |
for all
$ \gamma\theta -\cfrac{m_2 m_1}{(1+u_*)^2}<0, $ |
then for
$ \tau=\tau_{n,j}~~,~~j\in\mathbb{N}_0,~n\in\mathcal{S}, $ |
the
From Lemmas 3.1 and 3.2, we have the following theorem.
Theorem 3.3. Assume that
$ T_n^4-4T_n^2D_n+4B_*^2<0, $ |
or
$ T_n^4-4T_n^2D_n+4B_*^2\geq0~~and~~\gamma\theta -\cfrac{m_2 m_1}{(1+u_*)^2}>0, $ |
for all
$ \gamma\theta-\cfrac{m_2 m_1 }{(1+u_*)^2}<0, $ |
then system (3) undergoes a Hopf bifurcation at the equilibrium
In section 3, we obtained some conditions under which the system (3) undergoes a Hopf bifurcation. In this section, we shall study the direction of Hopf bifurcation near the positive equilibrium and stability of the bifurcating periodic solutions. We are able to show more detailed information of Hopf bifurcation by using the normal form theory and center manifold reduction due to [10,13,33].
Rescaling the time
$
{∂˜u∂t=τ[d1Δ˜u−γu∗˜u−m1u∗˜v−f1(ut,vt)],x∈Ω, t>0,∂˜v∂t=τ[d2Δ˜v−θv∗˜v+m2v∗(1+u∗)2ut(−1)+f2(ut,vt)],x∈Ω, t>0,∂˜u∂ν=0, ∂˜v∂ν=0,x∈∂Ω, t>0,˜u(x,t)=˜u0(x,t), ˜v(x,t)=˜v0(x,t),x∈Ω,−1≤t≤0,
$
|
(24) |
where
$ u_t=u(x,t+\theta),~v_t=v(x,t+\theta),~~\theta\in [-1,0], $ |
$ \tilde{u}_0(x,t)=u_0(x,t)-u_*,~~\tilde{v}_0(x,t)=v_0(x,t)-v_*, $ |
and for
$ f_1(\phi_1,\phi_2)=-\gamma\phi_1(0)^2-m_1 \phi_1(0)\phi_2(0), $ | (25) |
$
f2(ϕ1,ϕ2)=−θϕ2(0)2+m2(1+u∗)2ϕ1(−1)ϕ2(0)−m2v∗(1+u∗)3ϕ1(−1)2−m2(1+u∗)3ϕ1(−1)2ϕ2(0)+m2v∗(1+u∗)4ϕ1(−1)3+O(4).
$
|
(26) |
Let
$ \dot{U}(t)=\tilde{D}\Delta U(t)+L_\epsilon(U_t)+F(\epsilon,U_t), $ | (27) |
where
$ \widetilde{D}=(\tau^*+\epsilon)D~~\mbox{and}~~L_\epsilon:\mathcal{C}\to X,~F:\mathcal{C}\to X $ |
are defined, respectively, by
$ L_\epsilon(\phi(\theta))=(\tau^*+\epsilon)L_1\phi(0)+(\tau^*+\epsilon)L_2\phi(-1), $ |
$ F(\epsilon,\phi(\theta))=(F_1(\epsilon,\phi(\theta)),~F_2(\epsilon,\phi(\theta)))^T, $ |
with
$ (F_1(\epsilon,\phi(\theta)),~F_2(\epsilon,\phi(\theta)))=(\tau^*+\epsilon)(f_1(\phi_1(\theta),\phi_2(\theta)),~f_2(\phi_1(\theta),\phi_2(\theta))), $ |
where
The linearized equation at the origin
$ \dot{U}(t)=\widetilde{D}\Delta U(t)+L_\epsilon(U_t). $ | (28) |
According to the theory of semigroup of linear operator [26], we have the solution operator of (28) is a
$
\mathcal{A}_{\epsilon}\phi={˙ϕ(θ),θ∈[−1,0),˜DΔϕ(0)+Lϵ(ϕ),θ=0,
$
|
(29) |
with
$ \text{dom}(\mathcal{A}_\epsilon):=\{\phi\in\mathcal{C}: \dot{\phi}\in\mathcal{C}, \phi(0)\in\text{dom}(\Delta), \dot{\phi}(0)=\widetilde{D}\Delta\phi(0)+L_{\epsilon}(\phi)\}. $ |
When
Hence, equation (27) can be rewritten as the abstract ODE in
$ \dot{U}_t=\mathcal{A}_\epsilon U_t+X_0 F(\epsilon,U_t), $ | (30) |
where
$
X_0(\theta)={0,θ∈[−1,0),I,θ=0.
$
|
We denote
$ b_n=\cfrac{\cos (nx/l)}{\|\cos(nx/l)\|},~ ~\beta_n=\{(b_n, 0)^{T}, (0, b_n)^{T}\}, $ |
where
$ \|\cos(nx/l)\|=\left(\int_0^{l\pi}\cos^2(nx/l)\text{d}x\right)^{\frac{1}{2}}. $ |
For
$ \phi_n=\langle \phi,\beta_n\rangle=\left(\langle \phi^{^{(1)}},b_n\rangle, \langle \phi^{^{(2)}},b_n\rangle\right)^{T}. $ |
Define
$
\mathcal{A}_{\epsilon, n}(\phi_n(\theta)b_n)={˙ϕn(θ)bn,θ∈[−1,0),∫0−1dηn(ϵ,θ)ϕn(θ)bn,θ=0,
$
|
(31) |
and
$ L_{\epsilon, n}(\phi_n)=(\tau^*+\epsilon)L_1\phi_n(0)+(\tau^*+\epsilon)L_2\phi_n(-1), $ |
$ \int_{-1}^{0}\text{d}\eta_n(\epsilon,\theta)\phi_n(\theta)=-\cfrac{n^2}{l^2} \widetilde{D}\phi_n(0)+L_{\epsilon,n}(\phi_n), $ |
where
$
\eta_n(\epsilon,\theta)={−(τ∗+ϵ)L2,θ=−1,0,θ∈(−1,0),(τ∗+ϵ)L1−n2l2˜D,θ=0.
$
|
Denote
$
\mathcal{A}^*\psi(s)={−˙ψ(s), s∈(0,1],∞∑n=0∫0−1dηTn(0,θ)ψn(−θ)bn, s=0.
$
|
Following [10], we introduce the bilinear formal
$ (\psi,\phi)=\sum\limits_{k,j=0}^\infty(\psi_k,\phi_j)_c\int_\Omega b_kb_j\text{d}x, $ |
where
$ \psi=\sum\limits_{n=0}^\infty \psi_nb_n\in\mathcal{C}^*,~\phi=\sum\limits_{n=0}^\infty \phi_nb_n\in\mathcal{C}, $ |
and
$ \phi_n\in C:=C([-1,0],\mathbb{R}^2),~~\psi_n\in C^*:=C([0,1],\mathbb{R}^2). $ |
Notice that
$ \int_\Omega b_kb_j\text{d}x=0~~\mbox{for}~~k\neq j, $ |
we have
$ (\psi,\phi)=\sum\limits_{n=0}^\infty(\psi_n,\phi_n)_c|b_n|^2, $ |
where
$ (\psi_n,\phi_n)_c=\overline{\psi}_n^T(0)\phi_n(0)-\int_{-1}^0\int_{\xi=0}^\theta\overline{\psi}_n^T(\xi-\theta) \text{d}\eta_n(0,\theta)\phi_n(\xi)\text{d}\xi. $ |
Let
$ q(\theta)b_{n_0}=q(0)e^{i\omega_{n_0}\tau^*\theta}b_{n_0}, ~q^*(s)b_{n_0}=q^*(0)e^{i\omega_{n_0}\tau^* s}b_{n_0} $ |
be the eigenfunctions of
$ q(0)=(1, q_1)^{T},~q^*(0)=M(q_2, 1)^{T}, $ |
so that
$q1=−iωn0+d1n20/l2+γu∗m1u∗, q2=iωn0−d2n20/l2−θv∗m1u∗,¯M=(1+u∗)2(q1+ˉq2)(1+u∗)2+τ∗m2v∗e−iωn0τ∗. $
|
Then we decompose the space
$ \mathcal{C}=P\oplus Q, $ |
where
$ P=\{zqb_{n_0}+\overline{z}\overline{q}b_{n_0}|z\in\mathbb{C}\}, $ |
$ Q=\{\phi\in\mathcal{C}|(q^*b_{n_0},\phi)=0~\text{and}~(\overline{q}^*b_{n_0},\phi)=0\}. $ |
That is
Thus, system (30) could be rewritten as
$ U_t=z(t)q(\cdot)b_{n_0}+\bar{z}(t)\bar{q}(\cdot)b_{n_0}+W(t,\cdot), $ |
where
$ z(t)=(q^*b_{n_0}, U_t),~~~W(t,\cdot)\in Q, $ | (32) |
and
$ W(t,\theta)=U_t(\theta)-2\text{Re}\{z(t)q(\theta)b_{n_0}\}. $ | (33) |
Then we have
$ \dot{z}(t)=i\omega_0z(t)+\bar{q}^{*T}(0)\langle F(0, U_t), \beta_{n_0}\rangle, $ | (34) |
where
$ \langle F, \beta_{n} \rangle:=(\langle F_1, b_{n}\rangle,\langle F_2, b_{n} \rangle)^T. $ |
It follows from Appendix A of [13](also see [18]), there exists a center manifold
$ W(t,\theta)=W(z(t),\bar{z}(t),\theta)=W_{20}(\theta)\frac{z^2}{2}+W_{11}(\theta)z\bar{z} +W_{02}(\theta)\frac{\bar{z}^2}{2}+\cdots, $ | (35) |
For solution
$ F(0, U_t)\mid _{\mathscr{C}_0}=\tilde{F}(0, z, \bar{z}), $ |
and
$ \tilde{F}(0, z, \bar{z})=\tilde{F}_{20}\frac{z^2}{2}+\tilde{F}_{11}z\bar{z}+\tilde{F}_{02}\frac{\bar{z}^2}{2} +\tilde{F}_{21}\frac{z^2\bar{z}}{2}+\cdots. $ |
Therefore the system restricted to the center manifold is given by
$ \dot{z}(t)=i\omega_0z(t)+g(z,\bar{z}), $ |
and denote
$g(z,\bar{z})=g_{20}\frac{z^2}{2}+g_{11}z\bar{z}+g_{02}\frac{\bar{z}^2}{2} +g_{21}\frac{z^2\bar{z}}{2}+\cdots.$ |
By direct calculation, we get
$g20=τ∗ˉM∫lπ0b3n0dx[ˉq2(−2γ−2m1q1)−2θq21+2m2q1(1+u∗)2e−iωn0τ∗−2m2v∗(1+u∗)3e−i2ωn0τ∗],g11=τ∗ˉM∫lπ0b3n0dx[ˉq2(−2γ−m1(q1+ˉq1))−2θq1ˉq1+m2(1+u∗)2(q1eiωn0τ∗+ˉq1e−iωn0τ∗+)−2m2v∗(1+u∗)3], $
|
$
g02=τ∗ˉM∫lπ0b3n0dx[ˉq2(−2γ−2m1ˉq1)−2θˉq21+2m2ˉq1(1+u∗)2eiωn0τ∗−2m2v∗(1+u∗)3ei2ωn0τ∗],g21=τ∗ˉM(Q1∫lπ0b4n0dx+Q2∫lπ0b2n0dx),
$
|
where
$
Q1=6m2v∗(1+u∗)4e−iωn0τ∗−2m2(1+u∗)3(2q1+ˉq1e−i2ωn0τ∗),Q2=ˉq2{−2γ[W(1)20(0)+2W(1)11(0)]−m1[W(2)20(0)+2W(2)11(0)+ˉq1W(1)20(0)+2q1W(1)11(0)]}−2θ[ˉq1W(2)20(0)+2q1W(2)11(0)]+m2(1+u∗)2[ˉq1W(1)20(−1)+W(2)20(0)eiωn0τ∗+2q1W(1)11(−1)+2W(2)11(0)e−iωn0τ∗]−2m2v∗(1+u∗)3[W(1)20(−1)eiωn0τ∗+2W(1)11(−1)e−iωn0τ∗].
$
|
Since
$
˙W=˙Ut−˙zqbn0−˙ˉzˉqbn0={A0W−2Re{g(z,ˉz)q(θ)}bn0,θ∈[−r,0),A0W−2Re{g(z,ˉz)q(θ)}bn0+˜F,θ=0,≐A0W+H(z,ˉz,θ),
$
|
(36) |
where
$ H(z,\bar{z},\theta)=H_{20}(\theta)\frac{z^2}{2}+H_{11}(\theta)z\bar{z}+H_{02}(\theta)\frac{\bar{z}^2}{2}+\cdots. $ |
Obviously,
$
H20(θ)={−g20q(θ)bn0−ˉg02ˉq(θ)bn0,θ∈[−r,0),−g20q(0)bn0−ˉg02ˉq(0)bn0+˜F20,θ=0,H11(θ)={−g11q(θ)bn0−ˉg11ˉq(θ)bn0,θ∈[−r,0),−g11q(0)bn0−ˉg11ˉq(0)bn0+˜F11,θ=0,⋯.
$
|
Comparing the coefficients of (36) with the derived function of (35), we obtain
$ (A_0 -2i\omega_0 I)W_{20}(\theta)=-H_{20}(\theta), A_0 W_{11}(\theta)=-H_{11}(\theta),~\cdots. $ | (37) |
From (29) and (37), for
$
W20(θ)=−g20iωn0τ∗(1q1)eiωn0τ∗θbn0−ˉg023iωn0τ∗(1ˉq1)e−iωn0τ∗θbn0+E1e2iωn0τ∗θ,W11(θ)=g11iωn0τ∗(1q1)eiωn0τ∗θbn0−ˉg11iωn0τ∗(1ˉq1)e−iωn0τ∗θbn0+E2,
$
|
(38) |
where
$ (A_0 -2i\omega_{n_0}^+\tau^*I)E_1e^{2i\omega_{n_0}^+\tau^*\theta}\mid_{\theta=0}+\tilde{F}_{20}=0, A_0 E_2\mid_{\theta=0}+\tilde{F}_{11}=0. $ | (39) |
The terms
$ \tilde{F}_{20}=\sum\limits_{n=1}^{\infty}\langle \tilde{F}_{20}, \beta_n \rangle b_n, \tilde{F}_{11}=\sum\limits_{n=1}^{\infty}\langle \tilde{F}_{11}, \beta_n \rangle b_n. $ |
Denote
$ E_1=\sum\limits_{n=0}^{\infty}E_1^n b_n,~~E_2=\sum\limits_{n=0}^{\infty}E_2^n b_n, $ |
then from (39) we have
$
(A0−2iωn0τ∗I)En1bne2iωn0τ∗θ∣θ=0=−⟨˜F20,βn⟩bn,A0En2bn∣θ=0=−⟨˜F11,βn⟩bn,n=0,1,⋯.
$
|
Thus,
$
En1=(2iωn0τ∗I−∫0−1e2iωn0τ∗θdηn(0,θ))−1⟨˜F20,βn⟩,En2=−(∫0−1dηn(0,θ))−1⟨˜F11,βn⟩,n=0,1,⋯,
$
|
where
$\langle \tilde{F}_{20}, \beta_n \rangle={1√lπˆF20,n0≠0, n=0,1√2lπˆF20,n0≠0, n=2n0,1√lπˆF20,n0=0, n=0,0,other, $
|
$\langle \tilde{F}_{11}, \beta_n \rangle={1√lπˆF11,n0≠0, n=0,1√2lπˆF11,n0≠0, n=2n0,1√lπˆF11,n0=0, n=0,0,other, $
|
$\hat{F}_{20}=\left[−2γ−2m1q1−2θq21+2m2q1(1+u∗)2e−iωn0τ∗−2m2v∗(1+u∗)3e−i2ωn0τ∗ \right],$
|
$\hat{F}_{11}=\left[−2γ−m1(q1+ˉq1)−2θq1ˉq1+m2(1+u∗)2(q1eiωn0τ∗+ˉq1e−iωn0τ∗)−m2v∗(1+u∗)3 \right].$
|
Hence,
Denote
$
c1(0)=i2ωn0τ∗(g20g11−2|g11|2−13|g02|2)+12g21,μ2=−Re(c1(0))τ∗Re(λ′(τ∗)), β2=2Re(c1(0)),T2=−1ωn0τ∗(Im(c1(0))+μ2(ωn0+τ∗Im(λ′(τ∗))).
$
|
(40) |
Then by the general result of Hopf bifurcation theory (see [13]), we know that the parameters in (40) determine the properties of Hopf bifurcation which we can describe specifically:
From 3.1 in Section 4, we know that
Theorem 4.1. If
In this section, we make some simulations to support and extend our analytical results. Taking
$ \gamma=0.01 ,~~~\theta=0.05 ,~~~m_1=0.20 ,~~~m_2=0.30 ,~~~d_1=1 ,~~~d_2=0.50. $ |
Since
$ \omega\approx 0.2074,~~~~ \tau^*\approx 4.6242. $ |
Furthermore, we have
If we choose
$ \gamma=0.01 ,~~~\theta=0.05 ,~~~m_1=2 ,~~~m_1=0.30 ,~~~d_1=1 ,~~~d_2=0.50, ~~~\tau=1. $ |
Here we chose
The initial conditions in all simulations are given by
Remark 3.
Fig. 2 and Fig. 3 come into being on the precondition of
The authors greatly appreciate the anonymous referees' careful reading and valuable comments. Their critical comments and helpful suggestions greatly improve the presentation of the manuscript.
[1] | Deming TJ (2014) Preparation and development of block copolypeptide vesicles and hydrogels for biological and medical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6: 283–297. |
[2] |
Crucho CIC (2015) Stimuli-Responsive Polymeric Nanoparticles for Nanomedicine. Chem Med Chem 10: 24–38. doi: 10.1002/cmdc.201402290
![]() |
[3] |
Hamidi M, Shahbazi MA, Rostamizadeh K (2012) Copolymers: efficient carriers for intelligent nanoparticulate drug targeting and gene therapy. Macromol Biosci 12: 144–164. doi: 10.1002/mabi.201100193
![]() |
[4] |
Kamaly N, Xiao Z, Valencia PM, et al (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41: 2971–3010. doi: 10.1039/c2cs15344k
![]() |
[5] |
Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64: 866–884. doi: 10.1016/j.addr.2012.01.020
![]() |
[6] |
Motornov M, Roiter, Y, Tokarev I, et al. (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35: 174–211. doi: 10.1016/j.progpolymsci.2009.10.004
![]() |
[7] | Gong J, Chen M, Zheng Y, et al (2012) Polymeric micelles drug delivery system in oncology. J Control Release 159: 312–323. |
[8] |
Kowalczuk A, Trzcinska R, Trzebicka B, et al. (2014) Loading of polymer nanocarriers: factors, mechanisms and applications. Prog Polym Sci 39: 43–86. doi: 10.1016/j.progpolymsci.2013.10.004
![]() |
[9] | Zhang Y, Wang C, Huang Y, et al. (2015) Core-crosslinked polymeric micelles with high doxorubicin loading capacity and intracellular pH- and redox-triggered payload release. Eur Polym J 68: 104–114. |
[10] |
Aluri S, Janib SM, Mackay JA (2009) Environmentallyresponsivepeptides as anticancer drug carriers. Adv Drug Deliver Rev 61: 940–952. doi: 10.1016/j.addr.2009.07.002
![]() |
[11] | Doty P, Yang JT (1956) Polypeptides VII. Poly-gamma-benzyl-L-glutamate—the helix-coil transition in solution. J Am Chem Soc 78:498–500. |
[12] |
Blout ER, Lenormant H (1957) Reversible configurational changes in poly-L-lysine hydrochloride induced by water. Nature 179: 960–963. doi: 10.1038/179960a0
![]() |
[13] |
Applequist J (1963) On helix-coil equilibrium in polypeptides. J Chem Phys 38: 934–941. doi: 10.1063/1.1733787
![]() |
[14] |
Soliman M, Allen S, Davies MC, et al. (2010) Responsive polyelectrolyte complexes for triggered release of nucleic acid therapeutics. Chem Commun 46: 5421–5433. doi: 10.1039/c0cc00794c
![]() |
[15] |
Rosu C, Selcuk S, Soto-Cantu E, et al. (2014) Progress in silica polypeptide composite colloidal hybrids: from silica cores to fuzzy shells. Colloid Polym Sci 292: 1009-1040. doi: 10.1007/s00396-014-3170-7
![]() |
[16] | Holowka EP, Sun VZ, Kamei DT, et al. (2007) Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. Nat Mater 6 :52–57. |
[17] | Battaglia G, Ryan AJ (2005) Bilayers and Interdigitation in Block Copolymer Vesicles. J Am Chem Soc 127: 8757–8764. |
[18] | Won YY, Davis HT, Bates FS (1999) Giant Wormlike Rubber Micelles. Science 283: 960–963. |
[19] |
Geng Y, Dalhaimer P, Cai S, et al. (2007) Shape Effects of Filaments versus Spherical Particles in Flow and Drug Delivery. Nat Nanotechnol 2: 249–255. doi: 10.1038/nnano.2007.70
![]() |
[20] |
Robertson JD, Yealland G, Avila-Olias, et al. (2014) pH-sensitive tubular polymersomes: Formation and applications in cellular delivery. ACS Nano 8: 4650–4661. doi: 10.1021/nn5004088
![]() |
[21] |
Quadir MA, Martin M, Hammond PT (2014) Clickable Synthetic Polypeptides—Routes to New Highly Adaptive Biomaterials. Chem Mater 26: 461–476. doi: 10.1021/cm4023997
![]() |
[22] |
Such GK, Yan Y, Johnston APR, et al. (2015) Interfacing Materials Science and Biology for Drug Carrier Design. Adv Mater 27: 2278–2297. doi: 10.1002/adma.201405084
![]() |
[23] | Van Sluis R,Bhujwalla ZM,Raghunand N, et al. (1999) In Vivo Imaging of Extracellular pH Using 1H MRSI. Magnet Reson Med 41:743–750. |
[24] | Brahimi-Horn MC,Pouyssegur J (2007)Hypoxia in cancer cell metabolism and pH regulation. Essays Biochem 43: 165–178. |
[25] |
Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53: 321–39. doi: 10.1016/S0169-409X(01)00203-4
![]() |
[26] | Majedi FS, Hasani-Sadrabadi MM, VanDersarl JJ, et al. (2013) On-Chip Fabrication of Paclitaxel-Loaded Chitosan Nanoparticles for Cancer Therapeutics. Adv Funct Mater 24: 432–41. |
[27] |
Bajaj I, Singhal R (2011) Poly (glutamic acid)—an emerging biopolymer of commercial interest. Bioresource Technol 102: 5551–5561. doi: 10.1016/j.biortech.2011.02.047
![]() |
[28] |
Kim W, Yamasaki Y, Jang WD, at al. (2010) Thermodynamics of DNA condensation induced by poly (ethylene glycol)-block-polylysine through polyion complex micelle formation. Biomacromolecules 11: 1180–1186. doi: 10.1021/bm901305p
![]() |
[29] | Bellomo E, Wyrsta MD, Pakstis L, et al. (2004) Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nat Mater 3: 244−248. |
[30] | Nowak AP, Breedveld V, Pakstis L, et al. (2002) Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417: 424−428. |
[31] |
Holowka EP, Pochan DJ, Deming TJ (2005) Charged Polypeptide Vesicles with Controllable Diameter. J Am Chem Soc 127: 12423–12428. doi: 10.1021/ja053557t
![]() |
[32] |
Carlsen A, Lecommandoux S (2009) Self-assembly of polypeptide-based block copolymer amphiphiles. Curr Opin Colloid In 14: 329–339. doi: 10.1016/j.cocis.2009.04.007
![]() |
[33] | Quadir MA, Morton SW, Deng ZJ, et al. (2014) PEG–Polypeptide Block Copolymers as pH-Responsive Endosome-Solubilizing Drug Nanocarriers. Mol Pharmaceutics11: 2420–2430. |
[34] |
Yin H, Kang SW, Bae YH (2009) Polymersome Formation from AB2 Type 3-Miktoarm Star Copolymers. Macromolecules 42: 7456–7464. doi: 10.1021/ma901701w
![]() |
[35] | Yin H, Kang HC, Huh KM, et al. (2012) Biocompatible, pH-sensitive AB2 miktoarm polymer-based polymersomes: preparation, characterization, and acidic pH-activated nanostructural transformation. J Mater Chem 22: 19168–19178. |
[36] |
Kragh-Hansen H, Chuang VT, Otagiri M (2002) Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Bio Pharm Bull 25: 695–704 doi: 10.1248/bpb.25.695
![]() |
[37] |
Ming X, Carver K, Wu L (2013) Albumin-Based Nanoconjugates for Targeted Delivery of Therapeutic Oligonucleotides. Biomaterials 34: 7939–7949. doi: 10.1016/j.biomaterials.2013.06.066
![]() |
[38] |
Du C, Deng D, Shan L, at al. (2013) A pH-sensitive doxorubicin prodrug based on folate-conjugated BSA for tumor-targeted drug delivery. Biomaterials 34: 3087–3097. doi: 10.1016/j.biomaterials.2013.01.041
![]() |
[39] |
Xia W, Low PS (2010) Folate-targeted therapies for cancer. J Med Chem 53: 6811–6824. doi: 10.1021/jm100509v
![]() |
[40] |
Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41: 147–162. doi: 10.1016/S0169-409X(99)00062-9
![]() |
[41] |
Lu Y, Low PS (2002) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 54: 675–693. doi: 10.1016/S0169-409X(02)00042-X
![]() |
[42] |
Nistor MT, Chiriac AP, Nita LE, et al. (2013) Semi-interpenetrated polymer networks of hyaluronic acid modified with poly(aspartic acid). J Polym Res 20: 86. doi: 10.1007/s10965-013-0086-8
![]() |
[43] |
Mackay JA, Chilkoti A (2008) Temperature sensitive peptides: engineering hyperthermia-directed therapeutics. Int J Hypertherm 24: 483–495. doi: 10.1080/02656730802149570
![]() |
[44] |
Aluri S, Janib SM, Mackay JA (2009) Environmentally responsive peptides as anticancer drug carriers. Adv Drug Deliver Rev 61: 940–952. doi: 10.1016/j.addr.2009.07.002
![]() |
[45] |
Ruszczak Z (2003) Effect of collagen matrices on dermal wound healing. Adv Drug Deliv Rev 55: 1595–1611. doi: 10.1016/j.addr.2003.08.003
![]() |
[46] |
Lupas A (1996) Coiled coils: new structures and new functions. Trends Biochem Sci 21: 375–382. doi: 10.1016/S0968-0004(96)10052-9
![]() |
[47] | Petka WA, Harden JL, McGrath KP, et al. (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281: 389–392. |
[48] |
Al-Ahmady ZS, Al-Jamal WT, Bossche JV, et al. (2012) Lipid–Peptide Vesicle Nanoscale Hybrids for Triggered Drug Release by Mild Hyperthermia in Vitro and in Vivo. ACS Nano 6: 9335–9346. doi: 10.1021/nn302148p
![]() |
[49] |
Banta S, Wheeldon IR, Blenner M (2010) Protein engineering in the development of functional hydrogels. Annu Rev Biomed Eng 12:167–186. doi: 10.1146/annurev-bioeng-070909-105334
![]() |
[50] |
Huang HC, Koria P, Parker S, et al. (2008) Optically responsive gold nanorod-polypeptide assemblies. Langmuir 24: 14139–14144. doi: 10.1021/la802842k
![]() |
[51] | Lin Y, Xia X, Wang M, et al. (2014) Genetically programmable thermoresponsive plasmonic gold/silk-elastin protein core/shell nanoparticles. Langmuir 30: 4406–4414. |
[52] |
Chilkoti A, Dreher MR, Meyer DE, et al. (2002) Targeted drug delivery by thermally responsive polymers. Adv Drug Deliver Rev 54: 613–630. doi: 10.1016/S0169-409X(02)00041-8
![]() |
[53] |
Maeda H, Seymour LW, Miyamoto Y (1992) Conjugates of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo. Bioconjug Chem 3: 351–362. doi: 10.1021/bc00017a001
![]() |
[54] | Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliver Rev 58: 1655–1670. |
[55] |
Raucher D, Massodi I, Bidwell GL (2008) Thermally targeted delivery of chemotherapeutics and anti-cancer peptides by elastin like polypeptide. Expert Opin Drug Deliver 5: 353–369. doi: 10.1517/17425247.5.3.353
![]() |
[56] |
Massodi I, Thomas E, Raucher D (2009) Application of thermally responsive elastin-like polypeptide fused to a lactoferrin-derived peptide for treatment of pancreatic cancer. Molecules 14: 1999–2015. doi: 10.3390/molecules14061999
![]() |
[57] |
MacEwan SR, Chilkoti A (2010) Elastin-like polypeptides: biomedical applications of tunable biopolymers. Biopolymers 94: 60–77. doi: 10.1002/bip.21327
![]() |
[58] |
Liu W, Dreher MR, Furgeson DY, et al (2006) Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in nude mice. J Control Release 116: 170–178. doi: 10.1016/j.jconrel.2006.06.026
![]() |
[59] |
McDaniel JR, Callahan DJ, Chilkoti A, et al. (2010) Drug delivery to solid tumors by elastin-like polypeptides. Adv Drug Deliver Rev 62: 1456–1467. doi: 10.1016/j.addr.2010.05.004
![]() |
[60] |
Moktan S, Ryppa C, Kratz F, et al. (2012) A thermally responsive biopolymer conjugated to an acid-sensitive derivative of paclitaxel stabilizes microtubules, arrests cell cycle, and induces apoptosis. Invest New Drugs 30: 236–248. doi: 10.1007/s10637-010-9560-x
![]() |
[61] | Rousselle C, Smirnova M, Clair P, et al. (2001) Enhanced delivery of doxorubicin into the brain via a peptide-vector-mediated strategy: saturation kinetics and specificity. J Pharmacol Exp Ther 296: 124–13. |
[62] | Jiang C, Tsukruk VV, et al. (2006) Freestanding Nanostructures via Layer-by-Layer Assembly. Adv Mater 18: 829–840. |
[63] | Johnston APR, Cortez C, Angelatos AS, et al. (2006) Layer-by-layer engineered capsules and their applications. Curr Opin Colloid Interface Sci 11: 203–209. |
[64] | Wattendorf U, Kreft O, Textor M, et al. (2008) Stable stealth function for hollow polyelectrolyte microcapsules through a poly(ethylene glycol) grafted polyelectrolyte adlayer. Biomacromolecules 9: 100–108. |
[65] | Kamphuis MM, Johnston AP, Such GK, et al. (2010) Targeting of cancer cells using click-functionalized polymer capsules. J Am Chem Soc 132: 15881–15883. |
[66] |
Golonka M, Bulwan M, Nowakowska M, et al. (2011) Thermoresponsive multilayer films based on ionic elastin-like recombinamers. Soft Matter 7: 9402–9409. doi: 10.1039/c1sm06276j
![]() |
[67] |
Chen X, Zhang W, Li K, et al. (2012) Thermoresponsive oligoprolines. Soft Matter 8: 4869–4872. doi: 10.1039/c2sm25451d
![]() |
[68] |
Chen C, Wang Z, Li Z (2011) Thermoresponsive Polypeptides from Pegylated Poly-l-glutamate. Biomacromolecules 12: 2859–2863. doi: 10.1021/bm200849m
![]() |
[69] | Fu X, Shen Y, Fu W (2013) Thermoresponsive Oligo(ethylene glycol) Functionalized Poly-l-cysteine. Macromolecules46: 3753–3760. |
[70] |
Zhang X, Li W, Zhao X, et al. (2013) Thermoresponsive Dendronized Polyprolines via the “Grafting to” Route. Macromol Rapid Commun 34: 1701–1707. doi: 10.1002/marc.201300605
![]() |
[71] |
Yan J, Liu K, Zhang X, at al. (2015) Dynamic covalent polypeptides showing tunable secondary structures and thermoresponsiveness. J Polym Sci A 53: 33–41. doi: 10.1002/pola.27433
![]() |
[72] |
Lam RTS, Belenguer A, Roberts SL (2005) Amplification of Acetylcholine-Binding Catenanes from Dynamic Combinatorial Libraries. Science 308: 667–669. doi: 10.1126/science.1109999
![]() |
[73] |
Carnall JMA, Waudby CA, Belenguer AM, et al (2010) Mechanosensitive Self-Replication Driven by Self-Organization. Science 327: 1502–1506. doi: 10.1126/science.1182767
![]() |
[74] |
Li J, Nowak P, Otto S (2013) Dynamic Combinatorial Libraries: From Exploring Molecular Recognition to Systems Chemistry. J Am Chem Soc 135: 9222–9239. doi: 10.1021/ja402586c
![]() |
[75] | Matanović MR, Kristl J, Grabnar PA (2014) Thermoresponsive polymers: Insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int J Pharm 472: 262–275. |
[76] | Joly-Duhamel C, Hellio D, Djabourov M (2002) All gelatin networks: 1. Biodiversity and physical chemistry. Langmuir 18: 7208–7217. |
[77] | Yang H, Kao W (2006) Thermoresponsive gelatin/monomethoxy poly(ethylene glycol)–poly(d,l-lactide) hydrogels: formulation, characterization, and antibacterial drug delivery. Pharm Res 23: 205–214. |
[78] | Ohya S, Matsuda T (2005) Poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: molecular and formulation parameters vs. cell proliferation potential. J Biomat Sci-Polym 16: 809–827. |
[79] |
Huang J, Hastings CL, Duffy GP, et al. (2013) Supramolecular Hydrogels with Reverse Thermal Gelation Properties from (Oligo)tyrosine Containing Block Copolymers. Biomacromolecules 14: 200–206. doi: 10.1021/bm301629f
![]() |
[80] |
Cheng Y, He C, Xiao C, et al. (2012) Decisive Role of Hydrophobic Side Groups of Polypeptides in Thermosensitive Gelation. Biomacromolecules 13: 2053–2059. doi: 10.1021/bm3004308
![]() |
[81] | Park MH, Joo MK, Choi BG, et al. (2012) Biodegradable Thermogels. Acc Chem Res 45: 424–433. |
[82] | Oh HJ, Joo MK, Sohn YS, et al. (2008) Secondary Structure Effect of Polypeptide on Reverse Thermal Gelation and Degradation of l/dl-Poly(alanine)–Poloxamer–l/dl-Poly(alanine) Copolymers. Macromolecules 41:8204–8209. |
[83] | Zhang S, Fu W, Li Z (2014) Supramolecular hydrogels assembled from nonionic poly(ethylene glycol)-b-polypeptide diblocks containing OEGylated poly-L-glutamate. Polym Chem 5: 3346–3351. |
[84] | Zhang DJ, Alvarez MV, Sofroniew TJ (2015) Deming. Design and Synthesis of Nonionic Copolypeptide Hydrogels with Reversible Thermoresponsive and Tunable Physical Properties. Biomacromolecules16: 1331–1340. |
[85] |
Huang J, Bonduelle C, Thévenot J, et al. (2012) Biologically Active polymersomes from Amphiphilic Glycopeptides. J Am Chem Soc 134: 119–122. doi: 10.1021/ja209676p
![]() |
[86] |
Schatz C, Louguet S, Meins JFL, et al. (2009) Polysaccharide block polypeptide copolymers vesicles towards synthetic viral capsids. Angew Chem Int Ed 48: 2572–2575. doi: 10.1002/anie.200805895
![]() |
[87] |
Zhang A, Zhang Z, Shi F, et al. (2013) Redox-Sensitive Shell-Crosslinked Polypeptide-block-Polysaccharide Micelles for Efficient Intracellular Anticancer Drug Delivery. Macromol Biosci 13: 1249–1258. doi: 10.1002/mabi.201300175
![]() |
[88] |
Liu L, Liu P (2015) Synthesis strategies for disulfide bond-containing polymer-based drug delivery system for reduction-responsive controlled release. Front Mater Sc 9: 211–226. doi: 10.1007/s11706-015-0283-y
![]() |
[89] |
Wang K, Luo GF, Liu Y, et al. (2012) Redox-sensitive shell cross-linked PEG-polypeptidehybrid micelles for controlled drug release. Polym Chem 3: 1084–1090. doi: 10.1039/c2py00600f
![]() |
[90] |
Beloor J, Ramakrishna S, Nam K, et al. (2015) Effective Gene Delivery into Human Stem Cells with a Cell-Targeting Peptide-Modified Bioreducible Polymer. Small 11: 2069–2079. doi: 10.1002/smll.201402933
![]() |
[91] |
Burnett JC, Rossi JJ (2012) RNA-Based Therapeutics: Current Progress and Future Prospects. Chem Biol 19: 60–71. doi: 10.1016/j.chembiol.2011.12.008
![]() |
[92] |
Cavalieri F, Beretta G, Cui J, et al. (2015) Redox-Sensitive PEG–Polypeptide Nanoporous Particles for Survivin Silencing in Prostate Cancer Cells. Biomacromolecules 16: 2168–2178. doi: 10.1021/acs.biomac.5b00562
![]() |
[93] |
Wang Y, Yu A, Caruso F (2005) Nanoporous Polyelectrolyte Spheres Prepared by Sequentially Coating Sacrificial Mesoporous Silica Spheres. Angew Chem Int Ed 44: 2888–2892. doi: 10.1002/anie.200462135
![]() |
[94] | Manickam DS, Oupický D (2006) Multiblock Reducible Copolypeptides Containing Histidine-Rich and Nuclear Localization Sequences for Gene Delivery. Bioconjugate Chem17: 1395–1403. |
[95] | Rosengart AJ, Kaminski MD, Chen HT, et al. (2005) Magnetizable implants and functionalized magnetic carriers: a novel approach for noninvasive yet targeted drug delivery. J Magn Magn Mater 293: 633–638 |
[96] |
Mornet S, Vasseur S, Grasset F, et al. (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Ch 34: 237–47. doi: 10.1016/j.progsolidstchem.2005.11.010
![]() |
[97] | Lee H, Shao HP, Huang YQ, et al. (2005) Synthesis of MRI contrast agent by coating superparamagnetic iron oxide with chitosan. IEEE T Magn 41:4102–4. |
[98] |
Liu XQ, Kaminski MD, Riffle JS, et al. (2007) Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation. J Magn Magn Mater 311: 84–7. doi: 10.1016/j.jmmm.2006.10.1170
![]() |
[99] |
Ju XJ, Xie R, Yang L (2009) Biodegradable ‘intelligent’ materials in response to physical stimuli for biomedical applications. Expert Opin Ther Pat 19: 493–507. doi: 10.1517/13543770902771282
![]() |
[100] |
Aili D, Stevens MM (2010) Bioresponsive peptide-inorganic hybrid nanomaterials. Chem Soc Rev 39: 3358–3370. doi: 10.1039/b919461b
![]() |
[101] |
Pan BF, Cui DX, Sheng Y, et al. (2007) Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 67: 8156–8163. doi: 10.1158/0008-5472.CAN-06-4762
![]() |
[102] | Digigow RG, Dechézelles JF, Dietsch H, et al. (2014) Preparation and characterization of functional silica hybrid magnetic nanoparticles. J Magn Magn Mater 362: 72–79. |
[103] | Digigow RG, Vanhecke D, Rothen-Rutishauser B, et al. (2015)Uptake and Intracellular Fate of Peptide Surface-Functionalized Silica Hybrid Magnetic Nanoparticles In Vitro. Part Part Syst Char 33: 188–196. |
[104] | Lerche MH, Jensen PR, Karlsson M, et al. (2015) NMR Insights into the Inner Workings of Living Cells. Anal Chem 87: 119–132. |
[105] |
Boutin C, Desvaux H, Carrière M, et al. (2011) Hyperpolarized129Xe NMR signature of living biological cells. NMR Biomed 24: 1264–1269. doi: 10.1002/nbm.1686
![]() |
[106] |
Kotera N, Dubost E, Milanole G, et al. (2015) A doubly responsive probe for the detection of Cys4-tagged proteins. Chem Commun 51: 11482–11484. doi: 10.1039/C5CC04721H
![]() |
[107] |
Kwon S, Kim BJ, Lim HK, et al. (2015) Magnetotactic molecular architectures from self-assembly of β-peptide foldamers. Nat Commun 6: 8747. doi: 10.1038/ncomms9747
![]() |
[108] |
Goodman CM, Choi S, Shandler S, et al. (2007) Foldamers as versatile frameworks for the design and evolution of function. Nat Chem Biol 3: 252–262. doi: 10.1038/nchembio876
![]() |
[109] |
Kwon S, Jeon A, Yoo S, et al. (2010) Unprecedented Molecular Architectures by the Controlled Self-Assembly of a β-Peptide Foldamer. Angew Chem Int Ed 49: 8232–8236. doi: 10.1002/anie.201003302
![]() |
[110] | Lefèvre CT, Abreu F, Lins U, et al. (2011) A bacterial backbone: magnetosomes in magnetotactic bacteria. M. Rai, N. Duran (Eds.) in Metal nanoparticles in microbiology, Springer-Verlag, Berlin (2011), 75–102. |
[111] |
Unger E, Metzger P, Krupinski E, et al. (2000) The use of a thrombus-specific ultrasound contrast agent to detect thrombus in arteriovenous fistulae. Invest Radiol 35: 86–89. doi: 10.1097/00004424-200001000-00010
![]() |
[112] | Weller GER, Wong MKK, Modzelewski RA, et al. (2005) Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine. Cancer Res 65: 533–539. |
[113] | Linker RA, Reinhardt M, Bendszus M, et al. (2005) In vivo molecular imaging of adhesion molecules in experimental autoimmune encephalomyelitis (EAE). J Autoimmun 25:199–205. |
[114] |
Sirsi S, Borden M (2009) Microbubble compositions, properties and biomedical applications. Bubble Sci Eng Technol 1: 3–17. doi: 10.1179/175889709X446507
![]() |
[115] |
Cochran MC, Eisenbrey J, Ouma RO, et al. (2011) Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery. Int J Pharm 414:161–170. doi: 10.1016/j.ijpharm.2011.05.030
![]() |
[116] | Borden MA, Sarantos MR, Stieger SM (2006) Ultrasound radiation force modulates ligand availability on targeted contrast agents. Mol Imag 5:139–147. |
[117] |
Lum AFH, Borden MA, Dayton PA (2006) Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release 111: 128–134. doi: 10.1016/j.jconrel.2005.11.006
![]() |
[118] |
Borden MA,Zhang H, Gillies RJ, et al. (2008) A stimulus-responsive contrast agent for ultrasound molecular imaging. Biomaterials 29: 597–606. doi: 10.1016/j.biomaterials.2007.10.011
![]() |
[119] |
Bloch M, Jablonowski L, Yavin E, et al. (2015) Multi-modal detection of colon malignancy by NIR-tagged recognition polymers and ultrasound contrast agents. Int J Pharm 478: 504–516. doi: 10.1016/j.ijpharm.2014.11.066
![]() |
[120] |
Eisenbrey JR, Burstein OM, Kambhampati R, et al. (2010) Development and optimization of a doxorubicin loaded poly(lactic acid) contrast agent for ultrasound directed drug delivery. J Control Release 143: 38–44. doi: 10.1016/j.jconrel.2009.12.021
![]() |
[121] |
Eisenbrey JR, Soulen MC, Wheatley MA (2010) Delivery of encapsulated doxorubicin by ultrasound-mediated size reduction of drug-loaded polymer contrast agents. IEEE Trans Biomed Eng 57: 24–28. doi: 10.1109/TBME.2009.2030497
![]() |
[122] |
Duncan R, Gac-Breton S, Keane R (2001) Polymer-drug conjugates, PDEPT and PELT: basic principles for design and tranfer from the laboratory to clinic. J Control Release 74: 135–46. doi: 10.1016/S0168-3659(01)00328-5
![]() |
[123] | Terada T, Iwai M, Kawakami S (2006) Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J Control Release 111: 333–42. |
[124] | Lee SJ, Jeong YI, Park HK, et al. (2015) Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancerdrug delivery. Int J Nano 10: 5489–550. |
[125] |
Secret E, Kelly SJ, Crannell KE, et al. (2014) Enzyme-Responsive Hydrogel Microparticles for Pulmonary Drug Delivery. ACS Appl Mater Interfaces 6: 10313–10321. doi: 10.1021/am501754s
![]() |
[126] |
Secret E, Crannell KE, Kelly SJ, et al. (2015) Matrix metalloproteinase-sensitive hydrogel microparticles for pulmonary drug delivery of small molecule drugs or proteins. J Mater Chem B 3: 5629–5634. doi: 10.1039/C5TB00443H
![]() |
[127] | Angelos S, Khashab NM, Yang YW, et al. (2009) pH clock-operated mechanized nanoparticles. J Am Chem Soc 131: 12912–12914. |
[128] |
Luo Z, Ding X, Hu Y, et al. (2013) Engineering a hollow nanocontainer platform with multifunctional molecular machines for tumor-targeted therapy in vitro and in vivo. ACS Nano 7: 10271–10284. doi: 10.1021/nn404676w
![]() |
[129] |
Li J, Liu F, Shao Q, et al. (2014) Enzyme-Responsive Cell-Penetrating Peptides Conjugated Mesoporous Silica Quantum Dots Nanocarriers for Controlled Release of Nucleus-Targeted Drug Molecules and Real-Time Intracellular Fluorescence Imaging of Tumor Cells. Adv Healthcare Mater 3: 1230–123. doi: 10.1002/adhm.201300613
![]() |
[130] | Cheng YJ, Luo GF, Zhu JY, et al. (2015) Enzyme-Induced and Tumor-Targeted Drug Delivery System Based on Multifunctional Mesoporous Silica Nanoparticles. ACS Appl Mater Interfaces7: 9078–9087. |
[131] |
Liu J, Zhang B, Luo Z, et al. (2015) Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo. Nanoscale 7: 3614–3626. doi: 10.1039/C5NR00072F
![]() |
[132] |
del Mercato LL, Ferraro MM, Baldassarre F, et al. (2014) Biological applications of LbL multilayer capsules: From drug delivery to sensing. Adv Colloid Interface Sci 207: 139–154. doi: 10.1016/j.cis.2014.02.014
![]() |
[133] |
De Geest BG, Vandenbroucke RE, Guenther AM, et al. (2006) Intracellularly degradable polyelectrolyte microcapsules. Adv Mater 18: 1005–1009. doi: 10.1002/adma.200502128
![]() |
[134] |
Ochs CJ, Such GK, Yan Y, et al. (2010) Biodegradable click capsules with engineered drug-loaded multilayers. Acs Nano 4: 1653–1663. doi: 10.1021/nn9014278
![]() |
[135] |
Aller SG, Yu J, Ward A, et al. (2009) Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding. Science 323: 1718–1722. doi: 10.1126/science.1168750
![]() |
[136] |
Yan Y, Ochs C, Such G, et al. (2010) Bypassing multidrug resistance in cancer cells with biodegradable polymer capsules. Adv Mater 22: 5398–5403. doi: 10.1002/adma.201003162
![]() |
[137] |
Zhao Y (2007) Rational design of light-controllable polymer micelles. Chem Rec 7: 286–294. doi: 10.1002/tcr.20127
![]() |
[138] | Alatorre-Meda M, Alvarez-Lorenzo C, Concheiro A, et al. (2013) UV and Near-IR Triggered Release from Polymeric Micelles and Nanoparticles, in Smart Materials for Drug Delivery (Eds.: C. Alvarez-Lorenzo, A. Concheiro), RSC Publishing,Cambridge 304–348. |
[139] |
Hernanz D, Nunez V, Sancho A, et al. (2001) Hydroxycinnamic acids and ferulic acid dehydrodimers in barley and processed barley. J Agric Food Chem 49: 4884–4888. doi: 10.1021/jf010530u
![]() |
[140] |
Hoff WD, Dux P, Hard K, et al. (1994) Thiol ester-linked p-coumaric acid as a new photoactive prosthetic group in a protein with rhodopsin-like photochemistry. Biochemistry 33: 13959–13962. doi: 10.1021/bi00251a001
![]() |
[141] |
Wang G, Tong X, Zhao Y (2004) Preparation of Azobenzene-Containing Amphiphilic Diblock Copolymers for Light-Responsive Micellar Aggregates. Macromolecules 37: 8911–8917. doi: 10.1021/ma048416a
![]() |
[142] |
Shi D, Matsusaki M, Kaneko T, et al. (2008) Photo-Cross-Linking and Cleavage Induced Reversible Size Change of Bio-Based Nanoparticles. Macromolecules 41: 8167–8172. doi: 10.1021/ma800648e
![]() |
[143] |
Zhao Y (2012) Light-Responsive Block Copolymer Micelles. Macromolecules 45: 3647–3657. doi: 10.1021/ma300094t
![]() |
[144] |
Kotharangannagari VK, Sánchez-Ferrer A, Ruokolainen J, et al. (2011) Photo-Responsive Reversible Aggregation and Dissolution of Rod-Coil Polypeptide Diblock Copolymers. Macromolecules 44: 4569–4573. doi: 10.1021/ma2008145
![]() |
[145] |
Kumar S, Allard JF, Morris D, et al. (2012) Near-infrared light sensitive polypeptide block copolymer micelles for drug delivery. J Mater Chem 22: 7252–7257. doi: 10.1039/c2jm16380b
![]() |
[146] |
Li Y, Qian Y, Liu T, et al. (2012) Light-triggered concomitant enhancement of magnetic resonance imaging contrast performance and drug release rate of functionalized amphiphilic diblock copolymer micelles. Biomacromolecules 13: 3877–3886. doi: 10.1021/bm301425j
![]() |
[147] | Liu G, Liu N, Zhou L, et al. (2015) NIR-responsive polypeptide copolymer upconversion composite nanoparticles for triggered drug release and enhanced cytotoxicity. Polym Chem 6: 4030–4039 |
[148] |
Martinez-Cuezva A, Valero-Moya S, Alajarin M, et al. (2015) Light-responsive peptide [2]rotaxanes as gatekeepers of mechanised nanocontainers. Chem Commun 51: 14501–14504. doi: 10.1039/C5CC04365D
![]() |
[149] | Stoddart JF (ed) (2001) Special issue on molecular machines. Acc Chem Res 34: 410 (2001). |
[150] |
Cavallini M, Biscarini F, Leon S (2003) Information Storage Using Supramolecular Surface Patterns.Science 299: 531–531. doi: 10.1126/science.1078012
![]() |
[151] | Bottari G, Leigh DA, Pérez EM (2003) Chiroptical Switching in a Bistable Molecular Shuttle. J Am Chem.Soc125: 13360–13361. |
[152] |
Pernites RB, Santos CM, Maldonado M, et al. (2012) Tunable Protein and Bacterial Cell Adsorption on Colloidally Templated Superhydrophobic Polythiophene Films. Chem Mater 24: 870–880. doi: 10.1021/cm2007044
![]() |
[153] | Gomez N, Schmidt CE (2007) Nerve growth factor-immobilized polypyrrole: Bioactive electrically conducting polymer for enhanced neurite extension. J Biomed Mater Res 81: 135–149. |
[154] |
Green RA, Lovell NH, Poole-Warren LA (2009) Cell attachment functionality of bioactive conducting polymers for neural interfaces. Biomaterials 30: 3637–3644. doi: 10.1016/j.biomaterials.2009.03.043
![]() |
[155] | Zhong Y, Yu X, Gilbert R, et al (2001) Stabilizing electrode-host interfaces: a tissue engineering approach. J Rehabil Res Dev 38: 627–632. |
[156] |
Fabregat G, Ballano G, Armelin E (2013) An electroactive and biologically responsive hybrid conjugate based on chemical similarity. Polym Chem 4: 1412–1424. doi: 10.1039/C2PY20894F
![]() |
[157] |
Maione S, Gil AM, Fabregat G, et al. (2015) Electroactive polymer–peptide conjugates for adhesive biointerfaces. Biomater Sci 3: 1395–1405. doi: 10.1039/C5BM00160A
![]() |
[158] |
Jeon G, Yang SY, Byun J, et al. (2011) Electrically actuatable smart nanoporous membrane for pulsatile drug release. Nano Lett 11: 1284–1288. doi: 10.1021/nl104329y
![]() |
[159] |
Ge J, Neofytou E, Cahill TJ, et al. (2012) Drug release from electric-field-responsive nanoparticles. ACS Nano 6: 227–233. doi: 10.1021/nn203430m
![]() |
[160] |
Wu L, Wang J, Gao N, et al. (2015) Electrically pulsatile responsive drug delivery platform for treatment of Alzheimer’s disease. Nano Res 8: 2400–2414. doi: 10.1007/s12274-015-0750-x
![]() |
[161] | Santos JL, Li Y, Culver HR, et al. (2014) Conducting polymer nanoparticles decorated with collagen mimetic peptides for collagen targeting. Chem Commun 50: 15045–15048. |
[162] |
Cheng R, Meng F, Deng C, et al. (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34: 3647–3657. doi: 10.1016/j.biomaterials.2013.01.084
![]() |
[163] |
Dai J, Lin SD, Cheng D, et al. (2011) Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew Chem Int Ed 50: 9404–9408. doi: 10.1002/anie.201103806
![]() |
[164] |
Yu S, Wu G, Gu X, et al. (2013) Magnetic and pH-sensitive nanoparticles for antitumor drug deliver. Colloids Surf B 103: 15–22. doi: 10.1016/j.colsurfb.2012.10.041
![]() |
[165] | Remant BKC, Thapa B, Xu P (2012) pH and Redox Dual Responsive Nanoparticle for Nuclear Targeted Drug Delivery. Mol Pharmaceutics 9: 2719–2729. |
[166] |
Gupta MK, Lee SH, Crowder SW, et al. (2015) Oligoproline-derived nanocarrier for dual stimuli-responsive gene delivery. J Mater Chem 3: 7271–7280. doi: 10.1039/C5TB00988J
![]() |
1. | Zuolin Shen, Junjie Wei, Bifurcation Analysis in a Diffusive Mussel-Algae Model with Delay, 2019, 29, 0218-1274, 1950144, 10.1142/S021812741950144X | |
2. | Yuying Liu, Junjie Wei, Dynamical analysis in a diffusive predator‐prey system with a delay and strong Allee effect, 2020, 43, 0170-4214, 1590, 10.1002/mma.5987 | |
3. | Yan Zhang, Shujing Gao, Shihua Chen, Modelling and analysis of a stochastic nonautonomous predator-prey model with impulsive effects and nonlinear functional response, 2021, 18, 1551-0018, 1485, 10.3934/mbe.2021077 | |
4. | Yue Zhang, Xue Li, Xianghua Zhang, Guisheng Yin, Lei Chen, Stability and Hopf Bifurcation Analysis of an Epidemic Model with Time Delay, 2021, 2021, 1748-6718, 1, 10.1155/2021/1895764 |