Citation: Mica Grujicic, S. Ramaswami, Jennifer Snipes. Nacre-like ceramic/polymer laminated composite for use in body-armor applications[J]. AIMS Materials Science, 2016, 3(1): 83-113. doi: 10.3934/matersci.2016.1.83
[1] |
Lopes-Lima M, Rocha A, Goncxalves F, et al. (2010) Microstructural characterization of inner shell layers in the freshwater bivalve Anodonta Cygnea. J Shellfish Res 29: 969–973. doi: 10.2983/035.029.0431
![]() |
[2] |
Sun J and Bhushan B (2012) Hierarchical structure and mechanical properties of nacre: a review. RSC Adv 2: 7617–7632. doi: 10.1039/c2ra20218b
![]() |
[3] |
Hedegaard C, Wenk H (1998) Microstructure and texture patterns of mollusc shells. J Mollus Stud 64: 133–136. doi: 10.1093/mollus/64.1.133
![]() |
[4] |
Barthelat F, Tang H, Zavattieri PD, et al. (2007) On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. J Mech Phys Solids 55: 306–337. doi: 10.1016/j.jmps.2006.07.007
![]() |
[5] |
Schäffer TE, Ionescu-Zanetti C, Proksch R, et al. (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem Mater 9: 1731–1740. doi: 10.1021/cm960429i
![]() |
[6] |
Li XD, Chang WC, Chao YJ, et al. (2004) Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett 4: 613–617. doi: 10.1021/nl049962k
![]() |
[7] |
Jackson AP, Vincent JFV, Turner RM (1988) The mechanical design of nacre. P Roy Soc B 234: 415–440. doi: 10.1098/rspb.1988.0056
![]() |
[8] |
Mohanty B, Katti KS, Katti DR, et al. (2006) Dynamic nanomechanical response of nacre. J Mater Res 21: 2045–2051. doi: 10.1557/jmr.2006.0247
![]() |
[9] |
Sun JY, Tong J (2007) Fracture toughness properties of three different biomaterials measured by nanoindentation. J Bionic Eng 4: 11–17. doi: 10.1016/S1672-6529(07)60007-9
![]() |
[10] |
Currey JD (1977) Mechanical properties of mother of pearl in tension. P Roy Soc Ser B 196: 443–463. doi: 10.1098/rspb.1977.0050
![]() |
[11] |
Browning A, Ortiz C, Boyce MC (2013) Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues. J Mech Behav Biomed 19: 75–86. doi: 10.1016/j.jmbbm.2012.11.003
![]() |
[12] |
Dutta A, Vanderklor A, Tekalur SA (2012) High strain rate mechanical behavior of seashell-mimetic composites: Analytical model formulation and validation. Mech Mater 55: 102–111. doi: 10.1016/j.mechmat.2012.08.003
![]() |
[13] |
Knipprath C, Bond IP, Trask RS (2012) Biologically inspired crack delocalization in a high strain-rate environment. J Roy Soc Interf 9: 665–676. doi: 10.1098/rsif.2011.0442
![]() |
[14] |
Tran P, Ngo TD, Mendis P (2014) Bioinspired composite structures subjected to underwater impulsive loading. Comput Mater Sci 82: 134–139. doi: 10.1016/j.commatsci.2013.09.033
![]() |
[15] |
Flores-Johnson EA, Shen L, Guiamatsia I, et al. (2015) A numerical study of bioinspired nacre-like composite plates under blast loading. Compos Struct 126: 329–336. doi: 10.1016/j.compstruct.2015.02.083
![]() |
[16] | Grujicic M, Pandurangan B, Coutris N (2012) A computational investigation of the multi-hit ballistic-protection performance of laminated transparent armor systems. J Mater Eng Perform 21: 837–848. |
[17] | Grujicic M, Bell WC, Pandurangan B, et al. (2012) Effect of the tin- vs. air-side plate-glass orientation on the impact response and penetration resistance of a laminated transparent-armor structure. J Mater: Des Appl 226: 119–143. |
[18] |
Grujicic M, Snipes JS, Ramaswami S, et al. (2014) Analysis of steel-with-composite material substitution in military-vehicle hull-floors subjected to shallow-buried landmine-detonation loads. Multidisc Model Mater Struct 10: 416–448. doi: 10.1108/MMMS-01-2014-0001
![]() |
[19] |
Grujicic M, Galgalikar R, Ramaswami S, et al. (2014) Finite-element analysis of horizontal-axis wind-turbine gearbox failure via tooth-bending fatigue. Int J Mater Mech Eng 3: 6–15. doi: 10.14355/ijmme.2014.0301.02
![]() |
[20] |
Grujicic M, Ramaswami S, Snipes JS, et al. (2014) Computer-aided engineering analysis of tooth-bending fatigue-based failure in horizontal-axis wind-turbine gearboxes. Int J Struct Integr 5: 60–82. doi: 10.1108/IJSI-08-2013-0017
![]() |
[21] | ABAQUS Version 6.14, User Documentation, Dassault Systèmes, 2014. |
[22] |
Grujicic M, Bell WC, Pandurangan B, et al. (2012) Inclusion of material nonlinearity and inelasticity into a continuum-level material model for soda-lime glass. Mater Des 35: 144–155. doi: 10.1016/j.matdes.2011.08.031
![]() |
[23] |
Grujicic M, Yavari R, Snipes JS, et al. (2014) All-atom molecular-level computational simulations of planar longitudinal shockwave interactions with polyurea, soda-lime glass and polyurea/glass interfaces. Multidisc Model Mater Struct 10: 474–510. doi: 10.1108/MMMS-11-2013-0070
![]() |
[24] |
Grujicic M, Yavari R, Snipes JS, et al. (2014) All-atom molecular-level computational analyses of polyurea/fused-silica interfacial decohesion caused by impinging tensile stress-waves. Int J Struct Integr 5: 339–367. doi: 10.1108/IJSI-01-2014-0001
![]() |
[25] | Johnson GR, Holmquist TJ (1994) An improved computational constitutive model for brittle materials. In High-Pressure science and technology, 1993: proceedings of the joint International Association for Research and Advancement of High Pressure Science, American Institute of Physics, New York, pp. 981–984. |
[26] |
Amirkhizi AV, Isaacs J, McGee J, et al. (2006) An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects. Phil Mag 86: 5847–5866. doi: 10.1080/14786430600833198
![]() |
[27] |
Grujicic M, Bell WC, Pandurangan B, et al. (2010) Blast-wave impact-mitigation capability of polyurea when used as helmet suspension pad material. Mater Des 31: 4050–4065. doi: 10.1016/j.matdes.2010.05.002
![]() |
[28] |
Grujicic M, Chenna V, Galgalikar R, et al. (2014) Wind-turbine gear-box roller-bearing premature-failure caused by grain-boundary hydrogen embrittlement. J Mater Eng Perform 23: 3984–4001. doi: 10.1007/s11665-014-1188-0
![]() |
[29] |
Grujicic M, Chenna V, Galgalikar R, et al. (2014) Computational analysis of gear-box roller-bearing white-etch cracking: a multi-physics approach. Int J Struct Integr 5: 290–327. doi: 10.1108/IJSI-10-2013-0028
![]() |
[30] |
Grujicic M, Pandurangan B, d’Entremont BP, et al. (2012) The role of adhesive in the ballistic/structural performance of ceramic/polymer-matrix composite hybrid armor. Mater Des 41: 380–393. doi: 10.1016/j.matdes.2012.05.023
![]() |
[31] | Grujicic M, Snipes JS, Galgalikar R, et al. (2015). Multi-length-scale derivation of the room-temperature material constitutive model for SiC/SiC ceramic-matrix composites (CMCs). J Mater: Des Appl [In press]. DOI: 10.1177/1464420715600002 |
[32] |
Grujicic M, Snipes JS, Galgalikar R, et al. (2014). Material-Model Based Determination of the Shock-Hugoniot Relations in Nanosegregated Polyurea. J Mater Eng Perform 23: 357–371. doi: 10.1007/s11665-013-0769-7
![]() |
[33] |
Grujicic M, Ramaswami S, Snipes JS, et al. (2014). Multi-scale computation-based design of nano-segregated polyurea for maximum shockwave-mitigation performance. AIMS Mater Sci 1: 15–27. doi: 10.3934/matersci.2014.1.15
![]() |