Processing math: 61%
Review Topical Sections

In situ Raman analyses of electrode materials for Li-ion batteries

  • Received: 10 July 2018 Accepted: 07 August 2018 Published: 14 August 2018
  • The purpose of this review is to acknowledge the current state-of-the-art and the progress of in situ Raman spectro-electrochemistry, which has been made on all the elements in lithium-ion batteries: positive (cathode) and negative (anode) electrode materials. This technique allows the studies of structural change at the short-range scale, the electrode degradation and the formation of solid electrolyte interphase (SEI) layer. We also discuss the results in the perspective of spatial and real-time investigations by in situ Raman imaging (mapping) during charge/discharge cycling.

    Citation: Christian M. Julien, Alain Mauger. In situ Raman analyses of electrode materials for Li-ion batteries[J]. AIMS Materials Science, 2018, 5(4): 650-698. doi: 10.3934/matersci.2018.4.650

    Related Papers:

    [1] Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040
    [2] Felisia Angela Chiarello, Paola Goatin . Non-local multi-class traffic flow models. Networks and Heterogeneous Media, 2019, 14(2): 371-387. doi: 10.3934/nhm.2019015
    [3] Jan Friedrich, Oliver Kolb, Simone Göttlich . A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13(4): 531-547. doi: 10.3934/nhm.2018024
    [4] Abraham Sylla . Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks and Heterogeneous Media, 2021, 16(2): 221-256. doi: 10.3934/nhm.2021005
    [5] Christophe Chalons, Paola Goatin, Nicolas Seguin . General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433
    [6] Caterina Balzotti, Simone Göttlich . A two-dimensional multi-class traffic flow model. Networks and Heterogeneous Media, 2021, 16(1): 69-90. doi: 10.3934/nhm.2020034
    [7] Dong Li, Tong Li . Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2011, 6(4): 681-694. doi: 10.3934/nhm.2011.6.681
    [8] Raimund Bürger, Kenneth H. Karlsen, John D. Towers . On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 461-485. doi: 10.3934/nhm.2010.5.461
    [9] Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada . A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks and Heterogeneous Media, 2021, 16(2): 187-219. doi: 10.3934/nhm.2021004
    [10] Alexander Kurganov, Anthony Polizzi . Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2009, 4(3): 431-451. doi: 10.3934/nhm.2009.4.431
  • The purpose of this review is to acknowledge the current state-of-the-art and the progress of in situ Raman spectro-electrochemistry, which has been made on all the elements in lithium-ion batteries: positive (cathode) and negative (anode) electrode materials. This technique allows the studies of structural change at the short-range scale, the electrode degradation and the formation of solid electrolyte interphase (SEI) layer. We also discuss the results in the perspective of spatial and real-time investigations by in situ Raman imaging (mapping) during charge/discharge cycling.


    Macroscopic traffic flow models based on fluid-dynamics equations have been introduced in the transport engineering literature since the mid-fifties of last century, with the celebrated Lighthill, Whitham [11] and Richards [13] (LWR) model. Since then, the engineering and applied mathematical literature on the subject has considerably grown, addressing the need for more sophisticated models better capturing traffic flow characteristics. Indeed, the LWR model is based on the assumption that the mean traffic speed is a function of the traffic density, which is not experimentally verified in congested regimes. To overcome this issue, the so-called "second order" models (e.g. Payne-Whitham [12,15] and Aw-Rascle-Zhang [3,16]) consist of a mass conservation equation for the density and an acceleration balance law for the speed, thus considering the two quantities as independent.

    More recently, "non-local" versions of the LWR model have been proposed in [5,14], where the speed function depends on a weighted mean of the downstream vehicle density to better represent the reaction of drivers to downstream traffic conditions.

    Another limitation of the standard LWR model is the first-in first-out rule, not allowing faster vehicles to overtake slower ones. To address this and other traffic heterogeneities, "multi-class" models consist of a system of conservation equations, one for each vehicle class, coupled in the speed terms, see [4] and references therein for more details.

    In this paper, we consider the following class of non-local systems of M conservation laws in one space dimension:

    tρi(t,x)+x(ρi(t,x)vi((rωi)(t,x)))=0,i=1,...,M, (1)

    where

    r(t,x):=Mi=1ρi(t,x), (2)
    vi(ξ):=vmaxiψ(ξ), (3)
    (rωi)(t,x):=x+ηixr(t,y)ωi(yx)dy, (4)

    and we assume:

    (H1) The convolution kernels ωiC1([0,ηi];R+), ηi>0, are non-increasing functions such that ηi0ωi(y)dy=Ji. We set W0:=maxi=1,,Mωi(0).

    (H2) vmaxi are the maximal velocities, with 0<vmax1vmax2vmaxM.

    (H3) ψ:R+R+ is a smooth non-increasing function such that ψ(0)=1 and ψ(r)=0 for r1 (for simplicity, we can consider the function ψ(r)=max{1r,0}).

    We couple (1) with an initial datum

    ρi(0,x)=ρ0i(x),i=1,,M. (5)

    Model (1) is obtained generalizing the n-populations model for traffic flow described in [4] and it is a multi-class version of the one dimensional scalar conservation law with non-local flux proposed in [5], where ρi is the density of vehicles belonging to the i-th class, ηi is proportional to the look-ahead distance and Ji is the interaction strength. In our setting, the non-local dependence of the speed functions vi describes the reaction of drivers that adapt their velocity to the downstream traffic, assigning greater importance to closer vehicles, see also [7,9]. We allow different anisotropic kernels for each equation of the system. The model takes into account the distribution of heterogeneous drivers and vehicles characterized by their maximal speeds and look-ahead visibility in a traffic stream.

    Due to the possible presence of jump discontinuities, solutions to (1), (5) are intended in the following weak sense.

    Definition 1.1. A function ρ=(ρ1,,ρM)(L1L)([0,T[×R;RM), T>0, is a weak solution of (1), (5) if

    T0(ρitφ+ρivi(rωi)xφ)(t,x)dxdt+ρ0i(x)φ(0,x)dx=0

    for all φC1c(],T[×R;R), i=1,,M.

    The main result of this paper is the proof of existence of weak solutions to (1), (5), locally in time. We remark that, since the convolution kernels ωi are not smooth on R, the results in [1] cannot be applied due to the lack of L-bounds on their derivatives.

    Theorem 1.2. Let ρ0i(x)(BVL)(R;R+), for i=1,,M, and assumptions (H1) - (H3) hold. Then the Cauchy problem (1), (5) admits a weak solution on [0,T[×R, for some T>0 sufficiently small.

    In this work, we do not address the question of uniqueness of the solutions to (1). Indeed, even if discrete entropy inequalities can be derived as in [5,Proposition 3], in the case of systems this is in general not sufficient to single out a unique solution.

    The paper is organized as follows. Section 2 is devoted to prove uniform L and BV estimates on the approximate solutions obtained through an approximation argument based on a Godunov type numerical scheme, see [8]. We have to point out that these estimates heavily rely on the monotonicity properties of the kernel functions ωi. In Section 3 we prove the existence in finite time of weak solutions applying Helly's theorem and a Lax-Wendroff type argument, see [10]. In Section 4 we present some numerical simulations for M=2. In particular, we consider the case of a mixed flow of cars and trucks on a stretch of road, and the flow of mixed autonomous and non-autonomous vehicles on a circular road. In this latter case, we analyze two cost functionals measuring the traffic congestion, depending on the penetration ratio of autonomous vehicles. The final Appendix contains alternative L and BV estimates, based on approximate solutions constructed via a Lax-Friedrichs type scheme, which is commonly used in the framework of non-local equations, see [1,2,5].

    First of all, we extend ωi(x)=0 for x>ηi. For jZ and nN, let xj+1/2=jΔx be the cell interfaces, xj=(j1/2)Δx the cells centers and tn=nΔt the time mesh. We aim at constructing a finite volume approximate solution ρΔx=(ρΔx1,,ρΔxM), with ρΔxi(t,x)=ρni,j for (t,x)Cnj=[tn,tn+1[×]xj1/2,xj+1/2] and i=1,...,M.

    To this end, we approximate the initial datum ρ0i for i=1,...,M with a piecewise constant function

    ρ0i,j=1Δxxj+1/2xj1/2ρ0i(x)dx,jZ.

    Similarly, for the kernel, we set

    ωki:=1Δx(k+1)ΔxkΔxω0i(x)dx,kN,

    so that Δx+k=0ωki=ηi0ωi(x)dx=Ji (the sum is indeed finite since ωki=0 for kNi sufficiently large). Moreover, we set rnj+k=Mi=1ρni,j+k for kN and

    Vni,j:=vmaxiψ(Δx+k=0ωkirnj+k),i=1,,M,jZ. (6)

    We consider the following Godunov-type scheme adapted to (1), which was introduced in [8] in the scalar case:

    ρn+1i,j=ρni,jλ(ρni,jVni,j+1ρni,j1Vni,j) (7)

    where we have set λ=ΔtΔx.

    We provide here the necessary estimates to prove the convergence of the sequence of approximate solutions constructed via the Godunov scheme (7).

    Lemma 2.1. (Positivity) For any T>0, under the CFL condition

    λ1vmaxMψ, (8)

    the scheme (7) is positivity preserving on [0,T]×R.

    Proof. Let us assume that ρni,j0 for all jZ and i1,...,M. It suffices to prove that ρn+1i,j in (7) is non-negative. We compute

    ρn+1i,j=ρni,j(1λVni,j+1)+λρni,j1Vni,j0 (9)

    under assumption (8).

    Corollary 1. (L1-bound) For any nN, under the CFL condition (8) the approximate solutions constructed via the scheme (7) satisfy

    ρni1=ρ0i1,i=1,,M, (10)

    where ρni1:=Δxj|ρni,j| denotes the L1 norm of the i-th component of ρΔx.

    Proof. Thanks to Lemma 2.1, for all i{1,...,M} we have

    ρn+1i1=Δxjρn+1i,j=Δxj(ρni,jλρni,jVni,j+1+λρni,j1Vni,j)=Δxjρni,j,

    proving (10).

    Lemma 2.2. (L-bound) If ρ0i,j0 for all jZ and i=1,...,M, and (8) holds, then the approximate solution ρΔx constructed by the algorithm (7) is uniformly bounded on [0,T]×R for any T such that

    T<(Mρ0vmaxMψW0)1.

    Proof. Let ˉρ=max{ρni,j1,ρni,j}. Then we get

    ρn+1i,j=ρni,j(1λVni,j+1)+λρni,j1Vni,jˉρ(1+λ(Vni,jVni,j+1)) (11)

    and

    |Vni,jVni,j+1|=vmaxi|ψ(Δx+k=0ωkirnj+k)ψ(Δx+k=0ωkirnj+k+1)|vmaxiψΔx|+k=0ωki(rnj+k+1rnj+k)|=vmaxiψΔx|ω0irnj++k=1(ωk1iωki)rnj+k|vmaxiψΔxMρnωi(0) (12)

    where ρ=(ρ1,,ρM)=maxi,j|ρi,j|. Let now K>0 be such that ρK, =0,,n. From (11) and (12) we get

    ρn+1ρn(1+MKvmaxMψW0Δt),

    which implies

    ρnρ0eCnΔt,

    with C=MKvmaxMψW0. Therefore we get that ρ(t,)K for

    t1MKvmaxMψW0ln(Kρ0)1Meρ0vmaxMψW0,

    where the maximum is attained for K=eρ0.

    Iterating the procedure, at time tm, m1 we set K=emρ0 and we get that the solution is bounded by K until tm+1 such that

    tm+1tm+mMemρ0vmaxMψW0.

    Therefore, the approximate solution remains bounded, uniformly in Δx, at least for tT with

    T1Mρ0vmaxMψW0+m=1mem1Mρ0vmaxMψW0.

    Remark 1. Figure 1 shows that the simplex

    Figure 1.  Numerical simulation illustrating that the simplex S is not an invariant domain for (1). We take M=2 and we consider the initial conditions ρ1(0,x)=0.9χ[0.5,0.3] and ρ2(0,x)=0.1χ],0]+χ]0,+[ depicted in (a), the constant kernels ω1(x)=ω2(x)=1/η, η=0.5, and the speed functions given by vmax1=0.2, vmax2=1, ψ(ξ)=max{1ξ,0} for ξ0. The space and time discretization steps are Δx=0.001 and Δt=0.4Δx. Plots (b) and (c) show the density profiles of ρ1, ρ2 and their sum r at times t=1.8, 2.8. The function maxxRr(t,x) is plotted in (d), showing that r can take values greater than 1, even if r(0,x)=ρ1(0,x)+ρ2(0,x)1.
    S:={ρRM:Mi=1ρi1,ρi0fori=1,,M}

    is not an invariant domain for (1), unlike the classical multi-population model [4]. Indeed, let us consider the system

    tρi(t,x)+x(ρi(t,x)vi(r(t,x)))=0,i=1,...,M, (13)

    where r and vi are as in (2) and (3), respectively. We have the following:

    Lemma 2.3. Under the CFL condition

    λ1vmaxM(ψ+ψ),

    for any initial datum ρ0S the approximate solutions to (13) computed by the upwind scheme

    ρn+1j=ρnjλ[F(ρnj,ρnj+1)F(ρnj1,ρnj)], (14)

    with F(ρnj,ρnj+1)=ρnjψ(rnj+1), satisfy the following uniform bounds:

    ρnjSjZ,nN. (15)

    Proof. Assuming that ρnjS for all jZ, we want to prove that ρn+1jS. Rewriting (14), we get

    ρn+1i,j=ρni,jλ[vmaxiρni,jψ(rnj+1)vmaxiρni,j1ψ(rnj)].

    Summing on the index i=1,,M, gives

    rn+1j=Mi=1ρn+1i,j=Mi=1ρni,jλMi=1[vmaxiρni,jψ(rnj+1)vmaxiρni,j1ψ(rnj)]=rnj+λψ(rnj)Mi=1vmaxiρni,j1λψ(rnj+1)Mi=1vmaxiρni,j.

    Defining the following function of ρnj

    Φ(ρn1,j,,ρnM,j)=rnj+λψ(rnj)Mi=1vmaxiρni,j1λψ(rnj+1)Mi=1vmaxiρni,j,

    we observe that

    Φ(0,,0)=λψ(0)Mivmaxiρni,j1λψvmaxM1

    if λ1/vmaxMψ and

    Φ(ρn1,j,...,ρnM,j)=1λψ(rnj+1)Mi=1vmaxiρni,j1

    for ρnjS such that rnj=Mi=1ρni,j=1. Moreover

    Φρni,j(ρnj)=1+λψ(rnj)Mi=1vmaxiρni,j1λψ(rnj+1)vmaxi0

    if λ1/vmaxM(ψ+ψ). This proves that rn+1j1. To prove the positivity of (14), we observe that

    ρn+1i,j=ρni,j(1λvmaxiψ(rnj+1))+λvmaxiρni,j1ψ(rnj)0

    if λ1/vmaxMψ.

    Lemma 2.4. (Spatial BV-bound) Let ρ0i(BVL)(R,R+) for all i=1,...,M. If (8) holds, then the approximate solution ρΔx(t,) constructed by the algorithm (7) has uniformly bounded total variation for t[0,T], for any T such that

    Tmini=1,,M 1H(TV(ρ0i)+1), (16)

    where H=ρvmaxMW0M(6MJ0ρψ+ψ).

    Proof. Subtracting the identities

    ρn+1i,j+1=ρni,j+1λ(ρni,j+1Vni,j+2ρni,jVni,j+1), (17)
    ρn+1i,j=ρni,jλ(ρni,jVni,j+1ρni,j1Vni,j), (18)

    and setting Δni,j+1/2=ρni,j+1ρni,j, we get

    Δn+1i,j+1/2=Δni,j+1/2λ(ρni,j+1Vni,j+22ρni,jVni,j+1+ρni,j1Vni,j).

    Now, we can write

    Δn+1i,j+1/2=(1λVni,j+2)Δni,j+1 (19)
    +λVni,jΔni,j1/2λρni,j(Vni,j+22Vni,j+1+Vni,j). (20)

    Observe that assumption (8) guarantees the positivity of (19). The term (20) can be estimated as

    Vni,j+22Vni,j+1+Vni,j==vmaxi(ψ(Δx+k=0ωkirnj+k+2)2ψ(Δx+k=0ωkirnj+k+1)+ψ(Δx+k=0ωkirnj+k))=vmaxiψ(ξj+1)Δx(+k=0ωkirnj+k+2+k=0ωkirnj+k+1)+vmaxiψ(ξj)Δx(+k=0ωkirnj+k+k=0ωkirnj+k+1)=vmaxiψ(ξj+1)Δx(+k=1(ωk1iωki)rnj+k+1ω0irnj+1)+vmaxiψ(ξj)Δx(+k=1(ωkiωk1i)rnj+k+ω0irnj)=vmaxi(ψ(ξj+1)ψ(ξj))Δx(+k=1(ωk1iωki)rnj+k+1ω0irnj+1)+vmaxiψ(ξj)Δx(+k=1(ωk1iωki)(rnj+k+1rnj+k)+ω0i(rnjrnj+1))=vmaxiψ(˜ξj+1/2)(ξj+1ξj)Δx(+k=1Mβ=1ωkiΔnβ,j+k+3/2)+vmaxiψ(ξj)Δx(Mβ=1N1k=1(ωk1iωki)Δnβ,j+k+1/2ω0iΔnβ,j+1/2),

    with ξjI(Δx+k=0ωkirnj+k,Δx+k=0ωkirnj+k+1) and ˜ξj+1/2I(ξj,ξj+1), where we set I(a,b)=[min{a,b},max{a,b}]. For some ϑ,μ[0,1], we compute

    ξj+1ξj=ϑΔx+k=0ωkiMβ=1ρnβ,j+k+2+(1ϑ)Δx+k=0ωkiMβ=1ρnβ,j+k+1μΔx+k=0ωkiMβ=1ρnβ,j+k+1(1μ)Δx+k=0ωkiMβ=1ρnβ,j+k=ϑΔx+k=1ωk1iMβ=1ρnβ,j+k+1+(1ϑ)Δx+k=0ωkiMβ=1ρnβ,j+k+1μΔx+k=0ωkiMβ=1ρnβ,j+k+1(1μ)Δx+k=1ωk+1iMβ=1ρnβ,j+k+1=Δx+k=1[ϑωk1i+(1ϑ)ωkiμωki(1μ)ωk+1i]Mβ=1ρnβ,j+k+1+(1ϑ)Δxω0iMβ=1ρnβ,j+1μΔxω0iMβ=1ρnβ,j+1(1μ)Δx(ω0iMβ=1ρnβ,j+ω1iMβ=1ρnβ,j+1).

    By monotonicity of ωi we have

    ϑωk1i+(1ϑ)ωkiμωki(1μ)ωk+1i0.

    Taking the absolute values we get

    |ξj+1ξj|Δx{+k=2[ϑωk1i+(1ϑ)ωkiμωki(1μ)ωk+1i]+4ω0i}MρnΔx{+k=2[ωk1iωk+1i]+4ω0i}MρnΔx6W0Mρn.

    Let now K1>0 be such that j|Δβ,j|K1 for β=1,,M, =0,,n. Taking the absolute values and rearranging the indexes, we have

    j|Δn+1i,j+1/2|j|Δni,j+1/2|(1λ(Vni,j+2Vni,j+1))+ΔtHK1,

    where H=ρvmaxMW0M(6MJ0ρψ"+ψ). Therefore, by (12) we get

    j|Δn+1i,j+1/2|j|Δni,j+1/2|(1+ΔtG)+ΔtHK1,

    with G=vmaxMψW0Mρ. We thus obtain

    j|Δni,j+1/2|eGnΔtj|Δ0i,j+1/2|+eHK1nΔt1,

    that we can rewrite as

    TV(ρΔxi)(nΔt,)eGnΔtTV(ρ0i)+eHK1nΔt1eHK1nΔt(TV(ρ0i)+1)1,

    since HG and it is not restrictive to assume K11. Therefore, we have that TV(ρΔxi)K1 for

    t1HK1ln(K1+1TV(ρ0i)+1),

    where the maximum is attained for some K1<e(TV(ρ0i)+1)1 such that

    ln(K1+1TV(ρ0i)+1)=K1K1+1.

    Therefore the total variation is uniformly bounded for

    \begin{align*} &t\leq \frac{1}{\mathcal{H}e\left( \mathinner{{\rm{TV}}}(\rho^0_i)+1\right)}\, . \end{align*}

    Iterating the procedure, at time t^m , m\geq 1 we set K_1 = e^{m } \left( \mathinner{{\rm{TV}}}(\rho^0_i)+1\right)-1 and we get that the solution is bounded by K_1 until t^{m+1} such that

    \begin{equation} t^{m+1}\leq t^m + \frac{m}{\mathcal{H}e^{m } \left( \mathinner{{\rm{TV}}}(\rho^0_i)+1\right)\, } . \end{equation} (21)

    Therefore, the approximate solution has bounded total variation for t\leq T with

    \begin{align*} T\leq \frac{1}{\mathcal{H} \left( \mathinner{{\rm{TV}}}(\rho^0_i)+1\right)\, }. \end{align*}

    Corollary 2. Let \rho_i^0\in \left( \mathbf{BV}\cap{{\mathbf{L}}^\infty }\right)( \mathbb{R}; \mathbb{R}^+) . If (8) holds, then the approximate solution \boldsymbol{\rho}^{\Delta x} constructed by the algorithm (7) has uniformly bounded total variation on [0, T]\times \mathbb{R} , for any T satisfying (16).

    Proof. If T\leq \Delta t, then \mathinner{{\rm{TV}}} (\rho_i^{\Delta x}; [0, T] \times \mathbb{R} )\leq T \mathinner{{\rm{TV}}}(\rho_i^0). Let us assume now that T> \Delta t. Let n_T\in \mathbb{N} \backslash \{0\} such that n_T \Delta t< T \leq (n_T+1) \Delta t . Then

    \begin{equation*} \begin{split} & \mathinner{{\rm{TV}}} (\rho_i^{\Delta x};[0, T]\times \mathbb{R})\\ & = \underbrace{\sum\limits_{n = 0}^{n_T-1}\sum\limits_{j\in \mathbb{Z}}\Delta t {\left|{\rho_{i, j+1}^n-\rho_{i, j}^n}\right|}+\left(T-n_T \Delta t\right) \sum\limits_{j\in \mathbb{Z}} {\left|{\rho_{i, j+1}^{n_T}-\rho_{i, j}^{n_T}}\right|}}_{\leq\, T \, \sup\limits_{t\in [0, T]} \mathinner{{\rm{TV}}}(\rho_i^{\Delta x})(t, \cdot)}\\ &+\sum\limits_{n = 0}^{n_T-1}\sum\limits_{j\in \mathbb{Z}}\Delta x {\left|{\rho_{i, j}^{n+1}-\rho_{i, j}^n}\right|}. \end{split} \end{equation*}

    We then need to bound the term

    \sum\limits_{n = 0}^{n_T-1}\sum\limits_{j\in \mathbb{Z}}\Delta x {\left|{\rho_{i, j}^{n+1}-\rho_{i, j}^n}\right|}.

    From the definition of the numerical scheme (7), we obtain

    \begin{align*} \rho_{i, j}^{n+1}-\rho_{i, j}^n& = \lambda \left(\rho_{i, j-1}^n V_{i, j}^n-\rho_{i, j}^n V_{i, j+1}^n\right)\\ & = \lambda\left(\rho_{i, j-1}^n\left(V_{i, j}^n-V_{i, j+1}^n\right)+V_{i, j+1}^n\left(\rho_{i, j-1}^n-\rho_{i, j}^n\right)\right). \end{align*}

    Taking the absolute values and using (12) we obtain

    \begin{align*} {\left|{\rho_{i, j}^{n+1}-\rho_{i, j}^n}\right|}\leq \lambda \left(v_i^{\max} {\left\|{\psi'}\right\|}_\infty M {\left\|{ \boldsymbol{\rho}^n}\right\|}_{\infty} \omega_i(0)\Delta x {\left|{\rho_{i, j-1}^n}\right|}+ v_i^{\max} {\left\|{\psi}\right\|}_\infty {\left|{\rho_{i, j-1}^n-\rho_{i, j}^n}\right|}\right). \end{align*}

    Summing on j , we get

    \begin{align*} \sum\limits_{j\in \mathbb{Z}} \Delta x {\left|{\rho_{i, j}^{n+1}-\rho_{i, j}^n}\right|} = &\; v_i^{\max} {\left\|{\psi'}\right\|}_\infty M {\left\|{ \boldsymbol{\rho}^n}\right\|}_{\infty} \omega_i(0)\, \Delta t \sum\limits_{j\in \mathbb{Z}} \Delta x {\left|{\rho_{i, j-1}^n}\right|} \\ &+v_i^{\max} {\left\|{\psi}\right\|}_\infty \Delta t\sum\limits_{j\in \mathbb{Z}} {\left|{\rho_{i, j-1}^n-\rho_{i, j}^n}\right|} , \end{align*}

    which yields

    \begin{align*} &\sum\limits_{n = 0}^{n_T-1}\sum\limits_{j\in \mathbb{Z}} \Delta x {\left|{\rho_{i, j}^{n+1}-\rho_{i, j}^n}\right|}\\ \leq& v_M^{\max} {\left\|{\psi}\right\|}_\infty T \sup\limits_{t\in [0, T]} \mathinner{{\rm{TV}}}(\rho_i^{\Delta x})(t, \cdot)\\ &+ v_M^{\max} {\left\|{\psi'}\right\|}_\infty M W_0 T \sup\limits_{t\in [0, T]} {\left\|{\rho_i^{\Delta x}(t, \cdot)}\right\|}_{1}{\left\|{\rho_i^{\Delta x}(t, \cdot)}\right\|}_{\infty} \end{align*}

    that is bounded by Corollary 1, Lemma 2.2 and Lemma 2.4.

    To complete the proof of the existence of solutions to the problem (1), (5), we follow a Lax-Wendroff type argument as in [5], see also [10], to show that the approximate solutions constructed by scheme (7) converge to a weak solution of (1). By Lemma 2.2, Lemma 2.4 and Corollary 2, we can apply Helly's theorem, stating that for i = 1, \ldots, M , there exists a subsequence, still denoted by \rho_i^{\Delta x} , which converges to some \rho_i\in ({{\mathbf{L}}^{\mathbf{1}}}\cap \mathbf{BV})([0, T]\times \mathbb{R}; \mathbb{R}^+) in the \mathbf{L^{{1}}_{loc}} -norm. Let us fix i\in\{1, \ldots, M\}. Let \varphi\in\mathbf{C}_c^{{1}}([0, T[\, \times \mathbb{R}) and multiply (7) by \varphi(t^n, x_j). Summing over j\in \mathbb{Z} and n\in\{0, \ldots, n_T\} we get

    \begin{align*} &\sum\limits_{n = 0}^{n_T-1} \sum\limits_j \varphi(t^n, x_j) \left(\rho^{n+1}_{i, j}-\rho^{n}_{i, j}\right)\\ & = -\lambda \sum\limits_{n = 0}^{n_T-1} \sum\limits_j \varphi(t^n, x_j) \left(\rho^n_{i, j} V^n_{i, j+1}-\rho^n_{i, j-1}V^n_{i, j}\right). \end{align*}

    Summing by parts we obtain

    \begin{equation} \begin{split} & -\sum\limits_j \varphi((n_T-1)\Delta t, x_j) \rho^{n_T}_{i, j}+\sum\limits_j \varphi(0, x_j) \rho^0_{i, j}\\ &+ \sum\limits_{n = 1}^{n_T-1} \sum\limits_j \left(\varphi(t^n, x_j)-\varphi(t^{n-1}, x_j)\right)\rho^{n}_{i, j}\\ &+\lambda \sum\limits_{n = 0}^{n_T-1} \sum\limits_j \left(\varphi(t^n, x_{j+1})-\varphi(t^{n}, x_j)\right)V^n_{i, j+1}\rho^n_{i, j} = 0. \end{split} \end{equation} (22)

    Multiplying by \Delta x we get

    \begin{align} & -\Delta x\sum\limits_j \varphi((n_T-1)\Delta t, x_j) \rho^{n_T}_{i, j}+\Delta x\sum\limits_j \varphi(0, x_j) \rho^0_{i, j} \end{align} (23)
    \begin{align} &+\Delta x \Delta t \sum\limits_{n = 1}^{n_T-1} \sum\limits_j \frac{\left(\varphi(t^n, x_j)-\varphi(t^{n-1}, x_j)\right)}{\Delta t }\rho^{n}_{i, j} \end{align} (24)
    \begin{align} &+\Delta x \Delta t \sum\limits_{n = 0}^{n_T-1} \sum\limits_j \frac{\left(\varphi(t^n, x_{j+1})-\varphi(t^{n}, x_j)\right)}{\Delta x}V^n_{i, j+1}\rho^n_{i, j} = 0. \end{align} (25)

    By \mathbf{L^{{1}}_{loc}} convergence of \rho_i^{\Delta x}\to \rho_i, it is straightforward to see that the terms in (23), (24) converge to

    \begin{equation} \int_ \mathbb{R} \left(\rho_{i}^0(x) \varphi(0, x)-\rho_{i}(T, x) \varphi(T, x) \right)\mathinner{{\rm{d}}{x}}+ \int_0^T \int_ \mathbb{R} \rho_{i}(t, x) \partial_t\varphi(t, x) \mathinner{{\rm{d}}{x}} \mathinner{{\rm{d}}{t}}, \end{equation} (26)

    as \Delta x \to 0. Concerning the last term (25), we can rewrite

    \begin{align} &\Delta x \Delta t \sum\limits_{n = 0}^{n_T-1} \sum\limits_j \frac{\varphi(t^n, x_{j+1})-\varphi(t^{n}, x_j)}{\Delta x}V^n_{i, j+1}\rho^n_{i, j}\\ = &\; \Delta x \Delta t \sum\limits_{n = 0}^{n_T-1} \sum\limits_j \frac{\varphi(t^n, x_{j+1})-\varphi(t^{n}, x_j)}{\Delta x}\left(\rho^n_{i, j}V^n_{i, j+1}-\rho^n_{i, j}V^n_{i, j}\right)\\ &+\Delta x \Delta t \sum\limits_{n = 0}^{n_T-1} \sum\limits_j \frac{\varphi(t^n, x_{j+1})-\varphi(t^{n}, x_j)}{\Delta x}\rho^n_{i, j}V^n_{i, j}. \end{align} (27)

    By (12) we get the estimate

    \begin{align*} \rho^n_{i, j} V^n_{i, j+1}- \rho^n_{i, j} V^n_{i, j} \leq v_i^{\max} {\left\|{\psi'}\right\|}_\infty \Delta x M {\left\|{ \boldsymbol{\rho}}\right\|}^2_{\infty} \omega_i(0). \end{align*}

    Set R>0 such that \varphi(t, x) = 0 for {\left|{x}\right|}>R and j_0, \, j_1\in \mathbb{Z} such that -R\in \, ]x_{j_0-\frac{1}{2}}, x_{j_0+\frac{1}{2}}] and R\in\, ]x_{j_1-\frac{1}{2}}, x_{j_1+\frac{1}{2}}], then

    \begin{align*} &\Delta x \Delta t \sum\limits_{n = 0}^{n_T} \sum\limits_j \frac{\varphi(t^n, x_{j+1})-\varphi(t^{n}, x_j)}{\Delta x} (\rho_{i, j}^n V^n_{i, j+1}-\rho_{i, j}^n V^n_{i, j})\\ &\leq \Delta x \Delta t {\left\|{\partial_x\varphi}\right\|}_\infty \sum\limits_{n = 0}^{n_T} \sum\limits_{j = j_0}^{j_1} v_i^{\max} {\left\|{\psi'}\right\|}_\infty M {\left\|{ \boldsymbol{\rho}}\right\|}^2_{\infty} \omega_i(0)\, \Delta x\\ &\leq {\left\|{\partial_x\varphi}\right\|}_\infty\, \, v_i^{\max} {\left\|{\psi'}\right\|}_\infty M {\left\|{ \boldsymbol{\rho}}\right\|}^2_{\infty} \omega_i(0)\, \Delta x\, 2\, R\, T \, , \end{align*}

    which goes to zero as \Delta x \to 0.

    Finally, again by the \mathbf{L^{{1}}_{loc}} convergence of \rho_i^{\Delta x} \to \rho_i , we have that

    \begin{align*} \Delta x \Delta t \sum\limits_{n = 0}^{n_T-1} \sum\limits_j \frac{\left(\varphi(t^n, x_{j+1})-\varphi(t^{n}, x_j)\right)}{\Delta x} &\rho^n_{i, j} V^n_{i, j-\frac{1}{2}} \to\\ &\int_0^T \int_ \mathbb{R} \partial_x\varphi(t, x) \rho_i(t, x)v_i(r\ast \omega_i) \mathinner{{\rm{d}}{x}} \mathinner{{\rm{d}}{t}}. \end{align*}

    In this section we perform some numerical simulations to illustrate the behaviour of solutions to (1) for M = 2 modeling two different scenarios. In the following, the space mesh is set to \Delta x = 0.001 .

    In this example, we consider a stretch of road populated by cars and trucks. The space domain is given by the interval [-2, 3] and we impose absorbing conditions at the boundaries, adding N_1 = \eta_1/\Delta x ghost cells for the first population and N_2 = \eta_2/\Delta x for the second one at the right boundary, and just one ghost cell for both populations at the left boundary, where we extend the solution constantly equal to the last value inside the domain. The dynamics is described by the following 2\times 2 system

    \begin{equation} \begin{cases} \partial_t \rho_{1}(t, x)+\partial_x\left(\rho_1(t, x)v_1^{\max}\psi((r\ast \omega_1)(t, x))\right) = 0, \\ \partial_t \rho_{2}(t, x)+\partial_x\left(\rho_2(t, x)v_2^{\max}\psi((r\ast \omega_2)(t, x))\right) = 0, \end{cases} \end{equation} (28)

    with

    \begin{align*} &\omega_1(x) = \frac{2}{\eta_1}\left(1-\frac{x}{\eta_1}\right), \quad &\eta_1 = 0.3, \\ &\omega_2 (x) = \frac{2}{\eta_2}\left(1-\frac{x}{\eta_2}\right), \quad &\eta_2 = 0.1, \\ &\psi(\xi) = \max\left\{1-\xi, 0\right\}, \quad &\xi\geq 0, \\ & v_{1}^{max} = 0.8, \quad v_{2}^{max} = 1.3. \end{align*}

    In this setting, \rho_1 represents the density of trucks and \rho_2 is the density of cars on the road. Trucks moves at lower maximal speed than cars and have grater view horizon, but of the same order of magnitude. Figure 2 describes the evolution in time of the two population densities, correspondent to the initial configuration

    Figure 2.  Density profiles of cars and trucks at increasing times corresponding to the non-local model (28).
    \begin{cases} \rho_1(0, x) = 0.5 \chi_{[-1.1, -1.6]}, \\ \rho_2(0, x) = 0.5 \chi_{[ -1.6, -1.9]}, \end{cases}

    in which a platoon of trucks precedes a group of cars. Due to their higher speed, cars overtake trucks, in accordance with what observed in the local case [4].

    The aim of this test is to study the possible impact of the presence of Connected Autonomous Vehicles (CAVs) on road traffic performances. Let us consider a circular road modeled by the space interval [-1, 1] with periodic boundary conditions at x = \pm 1 . In this case, we assume that autonomous and non-autonomous vehicles have the same maximal speed, but the interaction radius of CAVs is two orders of magnitude grater than the one of human-driven cars. Moreover, we assume CAVs have constant convolution kernel, modeling the fact that they have the same degree of accuracy on information about surrounding traffic, independent from the distance. In this case, model (1) reads

    \begin{equation} \begin{cases} \partial_t \rho_{1}(t, x)+\partial_x\left(\rho_1(t, x)v_1^{\max}\psi((r\ast \omega_1)(t, x))\right) = 0, \\ \partial_t \rho_{2}(t, x)+\partial_x\left(\rho_2(t, x)v_2^{\max}\psi((r\ast \omega_2)(t, x))\right) = 0, \\ \rho_1(0, x) = \beta\, (0.5+0.3\sin(5\pi x)), \\ \rho_2(0, x) = (1-\beta)\, (0.5+0.3\sin(5\pi x)), \end{cases} \end{equation} (29)

    with

    \begin{align*} &\omega_1(x) = \frac{1}{\eta_1}, \quad &\eta_1 = 1, \\ &\omega_2 (x) = \frac{2}{\eta_2}\left(1-\frac{x}{\eta_2}\right), \quad &\eta_2 = 0.01, \\ &\psi(\xi) = \max\left\{1-\xi, 0\right\}, &\xi\geq 0, \\ & v_{1}^{max} = v_{2}^{max} = 1. \end{align*}

    Above \rho_1 represents the density of autonomous vehicles, \rho_2 the density of non-autonomous vehicles and \beta\in [0, 1] is the penetration rate of autonomous vehicle. Figure 3 displays the traffic dynamics in the case \beta = 0.9 .

    Figure 3.  Density profiles corresponding to the non-local problem (29) with \beta = 0.9 at different times.

    As a metric of traffic congestion, given a time horizon T>0 , we consider the two following functionals:

    \begin{align} J(\beta) & = \int_0^T \text{d}|{\partial_x r}|\mathinner{{\rm{d}}{t}} , \end{align} (30)
    \begin{align} \Psi(\beta) & = \int_0^T \left[\rho_1(t, \bar x)v_1^{\max}\psi((r\ast \omega_1)(t, \bar x))+\rho_2(t, \bar x)v_2^{\max}\psi((r\ast \omega_2)(t, \bar x))\right] \mathinner{{\rm{d}}{t}}, \end{align} (31)

    where \bar x = x_0\approx 0. The functional J measures the integral with respect to time of the spatial total variation of the total traffic density, see [6]. The functional \Psi measures the integral with respect to time of the traffic flow at a given point \bar x , corresponding to the number of cars that have passed through \bar x in the studied time interval. Figure 4 displays the values of the functionals J and \Psi for different values of \beta = 0, \; 0.1, \; 0.2, \ldots, \; 1. We can notice that the functionals are not monotone and present minimum and maximum values. The traffic evolution patterns corresponding these stationary values are reported in Figure 5, showing the (t, x) -plots of the total traffic density r(t, x) corresponding to these values of \beta .

    Figure 4.  Functional J (left) and \Psi (right).
    Figure 5.  (t, x)-plots of the total traffic density r(t, x) = \rho_1(t, x)+\rho_2(t, x) in (29) corresponding to different values of \beta: (a) no autonomous vehicles are present; (b) point of minimum for \Psi; (c) point of minimum for J; (d) point of maximum for J.

    The authors are grateful to Luis M. Villada for suggesting the non-local multi-class traffic model studied in this paper.

    We provide here alternative estimates for (1), based on approximate solutions constructed via the following adapted Lax-Friedrichs scheme:

    \begin{equation} \rho_{i, j}^{n+1} = \rho_{i, j}^n-\lambda \left(F^n_{i, j+1/2}-F^n_{i, j-1/2}\right), \end{equation} (32)

    with

    \begin{equation} F^n_{i, j+1/2}: = \frac{1}{2}\rho^n_{i, j} V^n_{i, j}+\frac{1}{2}\rho^n_{i, j+1} V^n_{i, j+1}+\frac{\alpha}{2}\left(\rho_{i, j}^n-\rho_{i, j+1}^n\right) , \\ \end{equation} (33)

    where \alpha\geq 1 is the viscosity coefficient and \lambda = \frac{\Delta t}{\Delta x}. The proofs are very similar to those exposed for Godunov approximations.

    Lemma A.1. For any T>0, under the CFL conditions

    \begin{align} \lambda \alpha < 1, \end{align} (34)
    \begin{align} \alpha \geq v_M^{\max} {\left\|{\psi}\right\|}_\infty, \end{align} (35)

    the scheme (33)-(32) is positivity preserving on [0, T]\times \mathbb{R}.

    Lemma A.2. ( {{\mathbf{L}}^\infty } -bound) If \rho_{i, j}^0\geq 0 for all j\in \mathbb{Z} and i = 1, ..., M , and the CFL conditions (34)- (35) hold, the approximate solution \boldsymbol{\rho}^{\Delta x} constructed by the algorithm (33)- (32) is uniformly bounded on [0, T]\times \mathbb{R} for any T such that

    \begin{equation} T < \left(M {\left\|{ \boldsymbol{\rho}^0}\right\|}_\infty v_M^{\max} {\left\|{\psi'}\right\|}_\infty W_0\right)^{-1}. \end{equation} (36)

    Lemma A.3. ( \mathbf{BV} estimates) Let \rho_{i}^0\in \left( \mathbf{BV}\cap{{\mathbf{L}}^\infty }\right)( \mathbb{R}, \mathbb{R}^+) for all i = 1, ..., M . If (35) holds and

    \begin{align} \Delta t &\leq \frac{2}{2 \alpha +\Delta x \, {\left\|{\psi'}\right\|}_\infty \, W_0 \, v_M^{\max}{\left\|{ \boldsymbol{\rho}}\right\|}_\infty} \, \Delta x , \end{align} (37)

    then the solution constructed by the algorithm (33)-(32) has uniformly bounded total variation for any T such that

    \begin{equation} T \leq {\min\limits_{i = 1, ..., M}}\, \frac{1}{\mathcal{D} \left( \mathinner{{\rm{TV}}}(\rho^0_i)+1\right)\, }, \end{equation} (38)

    where \mathcal{D} = {\left\|{{ \boldsymbol{\rho}}}\right\|}_\infty\, \, v_M^{\max} W_0 M\left(3M J_0 {\left\|{{ \boldsymbol{\rho}}}\right\|}_\infty{\left\|{\psi"}\right\|}_\infty +2{\left\|{\psi'}\right\|}_\infty\right) .

    [1] Julien CM, Mauger A, Vijh A, et al. (2016) Principles of Intercalation, In: Julien CM, Mauger A, Vijh A, et al., Lithium Batteries: Science and Technology, Cham, Switzerland: Springer, 69–91.
    [2] Novák P, Panitz JC, Joho F, et al. (2000) Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries. J Power Sources 90: 52–58. doi: 10.1016/S0378-7753(00)00447-X
    [3] Shao M (2014) In situ microscopic studies on the structural and chemical behaviors of lithium-ion battery materials. J Power Sources 270: 475–486. doi: 10.1016/j.jpowsour.2014.07.123
    [4] Harks PPRML, Mulder FM, Notten PHL (2015) In situ methods for Li-ion battery research: A review of recent developments. J Power Sources 288: 92–105. doi: 10.1016/j.jpowsour.2015.04.084
    [5] Weatherup RS, Bayer BC, Blume R, et al. (2011) In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett 11: 4154–4160. doi: 10.1021/nl202036y
    [6] Yang Y, Liu X, Dai Z, et al. (2017) In situ electrochemistry of rechargeable battery materials: Status report and perspectives. Adv Mater 29: 1606922. doi: 10.1002/adma.201606922
    [7] Shu J, Ma R, Shao L, et al. (2014) In-situ X-ray diffraction study on the structural evolutions of LiNi0.5Co0.3Mn0.2O2 in different working potential windows. J Power Sources 245: 7–18.
    [8] Membreño N, Xiao P, Park KS, et al. (2013) In situ Raman study of phase stability of α-Li3V2(PO4)3 upon thermal and laser heating. J Phys Chem C 117: 11994–12002. doi: 10.1021/jp403282a
    [9] Kong F, Kostecki R, Nadeau G, et al. (2001) In situ studies of SEI formation. J Power Sources 97–98: 58–66. doi: 10.1016/S0378-7753(01)00588-2
    [10] Mehdi BL, Qian J, Nasybulin E, et al. (2015) Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett 15: 2168–2173. doi: 10.1021/acs.nanolett.5b00175
    [11] Kerlau M, Marcinek M, Srinivasan V, et al. (2007) Studies of local degradation phenomena in composite cathodes for lithium-ion batteries. Electrochim Acta 52: 5422–5429. doi: 10.1016/j.electacta.2007.02.085
    [12] Hausbrand R, Cherkashinin G, Ehrenberg H, et al. (2015) Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches. Mater Sci Eng B-Adv 192: 3–25. doi: 10.1016/j.mseb.2014.11.014
    [13] Julien C (2000) Local environment in 4-volt cathode materials for Li-ion batteries, In: Julien C, Stoynov Z, Materials for Lithium-ion Batteries, NATO Science Series (Series 3. High Technology), Dordrecht: Springer, 309–326.
    [14] Itoh T, Sato H, Nishina T, et al. (1997) In situ Raman spectroscopic study of LixCoO2 electrodes in propylene carbonate solvent systems. J Power Sources 68: 333–337. doi: 10.1016/S0378-7753(97)02539-1
    [15] Song SW, Han KS, Fujita H, et al. (2001) In situ visible Raman spectroscopic study of phase change in LiCoO2 film by laser irradiation. Chem Phys Lett 344: 299–304. doi: 10.1016/S0009-2614(01)00677-7
    [16] Julien C (2000) Local cationic environment in lithium nickel–cobalt oxides used as cathode materials for lithium batteries. Solid State Ionics 136–137: 887–896. doi: 10.1016/S0167-2738(00)00503-8
    [17] Julien CM, Gendron F, Amdouni N, et al. (2006) Lattice vibrations of materials for lithium rechargeable batteries. VI: Ordered spinels. Mater Sci Eng B-Adv 130: 41–48. doi: 10.1016/j.mseb.2006.02.003
    [18] Ramana CV, Smith RJ, Hussain OM, et al. (2004) Growth and surface characterization of V2O5 thin films made by pulsed-laser deposition. J Vac Sci Technol A 22: 2453–2458. doi: 10.1116/1.1809123
    [19] Zhang X, Frech R (1998) In situ Raman spectroscopy of LixV2O5 in a lithium rechargeable battery. J Electrochem Soc 145: 847–851. doi: 10.1149/1.1838356
    [20] Inaba M, Iriyama Y, Ogumi Z, et al. (1997) Raman study of layered rock‐salt LiCoO2 and its electrochemical lithium deintercalation. J Raman Spectrosc 28: 613–617. doi: 10.1002/(SICI)1097-4555(199708)28:8<613::AID-JRS138>3.0.CO;2-T
    [21] Battisti D, Nazri GA, Klassen B, et al. (1993) Vibrational studies of lithium perchlorate in propylene carbonate solutions. J Phys Chem 97: 5826–5830. doi: 10.1021/j100124a007
    [22] Yamanaka T, Nakagawa H, Tsubouchi S, et al. (2017) In situ Raman spectroscopic studies on concentration of electrolyte salt in lithium-ion batteries by using ultrafine multifiber probes. ChemSusChem 10: 855–861. doi: 10.1002/cssc.201601473
    [23] Yang Y, Liu X, Dai Z, et al. (2017) In situ electrochemistry of rechargeable battery materials: Status report and perspectives. Adv Mater 29: 1606922. doi: 10.1002/adma.201606922
    [24] Lei J, McLarnon F, Kostecki R (2005) In situ Raman microscopy of individual LiNi0.8Co0.15Al0.05O2 particles in a Li-ion battery composite cathode. J Phys Chem B 109: 952–957.
    [25] Nakagawa H, Dom Yi, Doi T, et al. (2014) In situ Raman study of graphite negative-electrodes in electrolyte solution containing fluorinated phosphoric esters. J Electrochem Soc 161: A480–A485. doi: 10.1149/2.007404jes
    [26] Zhang X, Cheng F, Zhang K, et al. (2012) Facile polymer-assisted synthesis of LiNi0.5Mn1.5O4 with a hierarchical micro–nano structure and high rate capability. RSC Adv 2: 5669–5675. doi: 10.1039/C2RA20669B
    [27] Amaraj SF, Aurbach D (2011) The use of in situ techniques in R&D of Li and Mg rechargeable batteries. J Solid State Electr 15: 877–890. doi: 10.1007/s10008-011-1324-9
    [28] Stancovski V, Badilescu S (2014) In situ Raman spectroscopic–electrochemical studies of lithium-ion battery materials: a historical overview. J Appl Electrochem 44: 23–43. doi: 10.1007/s10800-013-0628-0
    [29] Baddour-Hadjean R, Pereira-Ramos JP (2010) Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev 110: 1278–1319. doi: 10.1021/cr800344k
    [30] Burba CM, Frech R (2006) Modified coin cells for in situ Raman spectro-electrochemical measurements of LixV2O5 for lithium rechargeable batteries. Appl Spectrosc 60: 490–493. doi: 10.1366/000370206777412167
    [31] Gross T, Giebeler L, Hess C (2013) Novel in situ cell for Raman diagnostics of lithium-ion batteries. Rev Sci Instrum 84: 073109. doi: 10.1063/1.4813263
    [32] Gross T, Hess C (2014) Raman diagnostics of LiCoO2 electrodes for lithium-ion batteries. J Power Sources 256: 220–225. doi: 10.1016/j.jpowsour.2014.01.084
    [33] Sole C, Drewett NE, Hardwick LJ (2014) In situ Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday Discuss 172: 223–237. doi: 10.1039/C4FD00079J
    [34] Novák P, Goers D, Hardwick L, et al. (2005) Advanced in situ characterization methods applied to carbonaceous materials. J Power Sources 146: 15–20. doi: 10.1016/j.jpowsour.2005.03.129
    [35] Fang S, Yan M, Hamers RJ (2017) Cell design and image analysis for in situ Raman mapping of inhomogeneous state-of-charge profiles in lithium-ion batteries. J Power Sources 352: 18–25. doi: 10.1016/j.jpowsour.2017.03.055
    [36] Ghanty C, Markovsky B, Erickson EM, et al. (2015) Li+-ion extraction/insertion of Ni-rich Li1+x(NiyCozMnz)wO2 (0.005 < x < 0.03; y:z = 8:1, w ≈ 1) electrodes: in situ XRD and Raman spectroscopy study. ChemElectroChem 2: 1479–1486. doi: 10.1002/celc.201500160
    [37] Huang JX, Li B, Liu B, et al. (2016) Structural evolution of NM (Ni and Mn) lithium-rich layered material revealed by in-situ electrochemical Raman spectroscopic study. J Power Sources 310: 85–90. doi: 10.1016/j.jpowsour.2016.01.065
    [38] Dash WC, Newman R (1955) Intrinsic optical absorption in single-crystal germanium and silicon at 77 K and 300 K. Phys Rev 99: 1151–1155. doi: 10.1103/PhysRev.99.1151
    [39] Brodsky MH, Title RS, Weiser K, et al. (1970) Structural, optical, and electrical properties of amorphous silicon films. Phys Rev B 1: 2632–2641. doi: 10.1103/PhysRevB.1.2632
    [40] Pollak E, Salitra G, Baranchugov V, et al. (2007) In situ conductivity, impedance spectroscopy, and ex situ Raman spectra of amorphous silicon during the insertion/extraction of lithium. J Phys Chem C 111: 11437–11444. doi: 10.1021/jp0729563
    [41] Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53: 1126–1130. doi: 10.1063/1.1674108
    [42] Kostecki R, Schnyder B, Alliata D, et al. (2001) Surface studies of carbon films from pyrolyzed photoresist. Thin Solid Films 396: 36–43. doi: 10.1016/S0040-6090(01)01185-3
    [43] Julien CM, Zaghib K, Mauger A, et al. (2006) Characterization of the carbon coating onto LiFePO4 particles used in lithium batteries. J Appl Phys 100: 063511. doi: 10.1063/1.2337556
    [44] Panitz JC, Joho F, Novák P (1999) In situ characterization of a graphite electrode in a secondary lithium-ion battery using Raman microscopy. Appl Spectrosc 53: 1188–1199. doi: 10.1366/0003702991945650
    [45] Panitz JC, Novák P, Haas O (2001) Raman microscopy applied to rechargeable lithium-ion cells -Steps towards in situ Raman imaging with increased optical efficiency. Appl Spectrosc 55: 1131–1137. doi: 10.1366/0003702011953379
    [46] Panitz JC, Novák P (2001) Raman spectroscopy as a quality control tool for electrodes of lithium-ion batteries. J Power Sources 97–98: 174–180. doi: 10.1016/S0378-7753(01)00679-6
    [47] Kostecki R, Lei J, McLarnon F, et al. (2006) Diagnostic evaluation of detrimental phenomena in high-power lithium-ion batteries. J Electrochem Soc 153: A669–A672. doi: 10.1149/1.2170551
    [48] Forster JD, Harris SJ, Urban JJ (2014) Mapping Li+ concentration and transport via in situ confocal Raman microscopy. J Phys Chem Lett 5: 2007–2011. doi: 10.1021/jz500608e
    [49] Nishi T, Nakai H, Kita A (2013) Visualization of the state-of-charge distribution in a LiCoO2 cathode by in situ Raman imaging. J Electrochem Soc 160: A1785–A1788. doi: 10.1149/2.061310jes
    [50] Nanda J, Remillard J, O'Neill A, et al. (2011) Local state-of-charge mapping of lithium-ion battery electrodes. Adv Funct Mater 21: 3282–3290. doi: 10.1002/adfm.201100157
    [51] Slautin B, Alikin D, Rosato D, et al. (2018) Local study of lithiation and degradation paths in LiMn2O4 battery cathodes: confocal Raman microscopy approach. Batteries 4: 21. doi: 10.3390/batteries4020021
    [52] Li J, Shunmugasundaram R, Doig R, et al. (2016) In situ X-ray diffraction study of layered Li–Ni–Mn–Co oxides: Effect of particle size and structural stability of core–shell materials. Chem Mater 28: 162–171. doi: 10.1021/acs.chemmater.5b03500
    [53] Graetz J, Gabrisch H, Julien CM, et al. (2003) Raman evidence of spinel formation in delithiated cobalt oxide. Electrochemical society Proceedings Volume 2003-28; Proceedings-electrochemical Society PV, Symposium, Lithium and lithium-ion battery, 28: 95–100.
    [54] Yu L, Liu H, Wang Y, et al. (2013) Preferential adsorption of solvents on the cathode surface of lithium ion batteries. Angew Chem Int Edit 52: 5753–5756. doi: 10.1002/anie.201209976
    [55] Kuwata N, Ise K, Matsuda Y, et al. (2012) Detection of degradation in LiCoO2 thin films by in situ micro Raman spectroscopy, In: Chowdari BVR, Kawamura J, Mizusaki J, et al. (Eds.), Solid State Ionics: Ionics for Sustainable World, Proceedings of the 13th Asian Conference, Singapore: World Scientific, 138–143.
    [56] Gross T, Hess C (2014) Spatially-resolved in situ Raman analysis of LiCoO2 electrodes. ECS Trans 61: 1–9. doi: 10.1149/06112.0001ecst
    [57] Fukumitsu H, Omori M, Terada K, et al. (2015) Development of in situ cross-sectional Raman imaging of LiCoO2 cathode for Li-ion battery. Electrochemistry 83: 993–996. doi: 10.5796/electrochemistry.83.993
    [58] Heber M, Schilling C, Gross T, et al. (2015) In situ Raman and UV-Vis spectroscopic analysis of lithium-ion batteries. MRS Proceedings 1773: 33–40. doi: 10.1557/opl.2015.634
    [59] Otoyama M, Ito Y, Hayashi A, et al. (2016) Raman imaging for LiCoO2 composite positive electrodes in all-solid-state lithium batteries using Li2S–P2S5 solid electrolytes. J Power Sources 302: 419–425. doi: 10.1016/j.jpowsour.2015.10.040
    [60] Porthault H, Baddour-Hadjean R, Le Cras F, et al. (2012) Raman study of the spinel-to-layered phase transformation in sol–gel LiCoO2 cathode powders as a function of the post-annealing temperature. Vib Spectrosc 62: 152–158. doi: 10.1016/j.vibspec.2012.05.004
    [61] Park Y, Kim NH, Kim JY, et al. (2010) Surface characterization of the high voltage LiCoO2/Li cell by X-ray photoelectron spectroscopy and 2D correlation analysis. Vib Spectrosc 53: 60–63. doi: 10.1016/j.vibspec.2010.01.004
    [62] Zhang X, Mauger A, Lu Q, et al. (2010) Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2 by wet-chemical method. Electrochim Acta 55: 6440–6449. doi: 10.1016/j.electacta.2010.06.040
    [63] Ben-Kamel K, Amdouni N, Mauger A, et al. (2012) Study of the local structure of LiNi0.33+dMn0.33+dCo0.33−2dO2 (0.025 ≤ d ≤ 0.075) oxides. J Alloy Compd 528: 91–98. doi: 10.1016/j.jallcom.2012.03.018
    [64] Hayden C, Talin AA (2014) Raman spectroscopic analysis of LiNi0.5Co0.2Mn0.3O2 cathodes stressed to high voltage.
    [65] Otoyama M, Ito Y, Hayashi A, et al. (2016) Raman spectroscopy for LiNi1/3Mn1/3Co1/3O2 composite positive electrodes in all-solid-state lithium batteries. Electrochemistry 84: 812–816. doi: 10.5796/electrochemistry.84.812
    [66] Lanz P, Villevieille C, Novák P (2014) Ex situ and in situ Raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3·(1 − x)LiMO2 (M = Ni, Co, Mn)· Electrochim Acta 130: 206–212. doi: 10.1016/j.electacta.2014.03.004
    [67] Koga H, Croguennec L, Mannessiez P, et al. (2012) Li1.20Mn0.54Co0.13Ni0.13O2 with different particle sizes as attractive positive electrode materials for lithium-ion batteries: Insights into their structure. J Phys Chem C 116: 13497–13506. doi: 10.1021/jp301879x
    [68] Julien CM, Massot M (2003) Lattice vibrations of materials for lithium rechargeable batteries III. Lithium manganese oxides. Mater Sci Eng B-Adv 100: 69–78. doi: 10.1016/S0921-5107(03)00077-1
    [69] Singh G, West WC, Soler J, et al. (2012) In situ Raman spectroscopy of layered solid solution Li2MnO3–LiMO2 (M = Ni, Mn, Co). J Power Sources 218: 34–38. doi: 10.1016/j.jpowsour.2012.06.083
    [70] Lanz P, Villevieille C, Novák P (2013) Electrochemical activation of Li2MnO3 at elevated temperature investigated by in situ Raman microscopy. Electrochim Acta 109: 426–432. doi: 10.1016/j.electacta.2013.07.130
    [71] Rao CV, Soler J, Katiyar R, et al. (2014) Investigations on electrochemical behavior and structural stability of Li1.2Mn0.54Ni0.13Co0.13O2 lithium-ion cathodes via in-situ and ex-situ Raman spectroscopy. J Phys Chem C 118: 14133–14141. doi: 10.1016/j.jpowsour.2014.10.032
    [72] Hy S, Felix F, Rick J, et al. (2014) Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1−2x)/3Mn(2−x)/3]O2 (0 ≤ x ≤ 0.5). J Am Chem Soc 136: 999–1007. doi: 10.1021/ja410137s
    [73] Shojan J, Rao-Chitturi V, Soler J, et al. (2015) High energy xLi2MnO3·(1 − x)LiNi2/3Co1/6Mn1/6O2 composite cathode for advanced Li-ion batteries.J Power Sources 274: 440–450. doi: 10.1016/j.jpowsour.2014.10.032
    [74] Grey CP, Yoon W, Reed J, et al. (2004) Electrochemical activity of Li in the transition-metal sites of O3 Li[Li (1−2x)/3Mn(2−x)/3Nix]O2. Electrochem Solid St 7: A290–A 293. doi: 10.1149/1.1783113
    [75] Amalraj F, Talianker M, Markovsky B, et al. (2013) Study of the lithium-rich integrated compound xLi2MnO3·(1 − x)LiMO2 (x around 0.5; M = Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells. J Electrochem Soc 160: A324–A337.
    [76] Kumar-Nayak P, Grinblat J, Levi M, et al. (2014) Electrochemical and structural characterization of carbon coated Li1.2Mn0.56Ni0.16Co0.08O2 and Li1.2Mn0.6Ni0.2O2 as cathode materials for Li-ion batteries. Electrochim Acta 137: 546–556. doi: 10.1016/j.electacta.2014.06.055
    [77] Wu Q, Maroni VA, Gosztola DJ, et al. (2015) A Raman-based investigation of the fate of Li2MnO3 in lithium- and manganese-rich cathode materials for lithium ion batteries. J Electrochem Soc 162: A1255–A1264. doi: 10.1149/2.0631507jes
    [78] Bak SM, Nam KW, Chang W, et al. (2013) Correlating structure changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode material. Chem Mater 25: 337–351. doi: 10.1021/cm303096e
    [79] Julien C, Camacho-Lopez MA, Lemal M, et al. (2002) LiCo1−yMyO2 positive electrodes for rechargeable lithium batteries. I. Aluminum doped materials. Mater Sci Eng B-Adv 95: 6–13. doi: 10.1016/S0921-5107(01)01010-8
    [80] Julien CM, Mauger A, Vijh A, et al. (2016) Cathode Materials with Monoatomic Ions in a Three-Dimensional Framework, In: Julien CM, Mauger A, Vijh A, et al., Lithium Batteries: Science and Technology, Cham, Switzerland: Springer, 163–199.
    [81] Ohzuku T, Kitagawa M, Hirai T (1990) Electrochemistry of manganese dioxide in lithium nonaqueous cell. III. X-ray diffractional study on the reduction of spinel-related manganese dioxide. J Electrochem Soc 137: 769–775.
    [82] Liu W, Kowal K, Farrington GC (1998) Mechanism of the electrochemical insertion of lithium into LiMn2O4 spinels. J Electrochem Soc 145: 459–465. doi: 10.1149/1.1838285
    [83] Xia Y, Yoshio M (1996) An investigation of lithium ion insertion into spinel structure Li–Mn–O compounds. J Electrochem Soc 143: 825–833. doi: 10.1149/1.1836544
    [84] Richard MN, Keotschau I, Dahn JR (1997) A cell for in situ x‐ray diffraction based on coin cell hardware and Bellcore plastic electrode technology. J Electrochem Soc 144: 554–557. doi: 10.1149/1.1837447
    [85] Yang XQ, Sun X, Lee SJ, et al. (1999) In situ synchrotron X‐ray diffraction studies of the phase transitions in LixMn2O4 cathode Materials. Electrochem Solid St 2: 157–160.
    [86] Kanamura K, Naito H, Yao T, et al. (1996) Structural change of the LiMn2O4 spinel structure induced by extraction of lithium. J Mater Chem 6: 33–36. doi: 10.1039/jm9960600033
    [87] White WB, DeAngelis A (1967) Interpretation of the vibrational spectra of spinels. Spectrochim Acta A 23: 985–995. doi: 10.1016/0584-8539(67)80023-0
    [88] Ammundsen B, Burns GR, Islam MS, et al. (1999) Lattice dynamics and vibrational spectra of lithium manganese oxides: A computer simulation and spectroscopic study. J Phys Chem B 103: 5175–5180. doi: 10.1021/jp984398l
    [89] Kanoh H, Tang W, Ooi K (1998) In situ Raman spectroscopic study on electroinsertion of Li+ into a Pt/l-MnO2 electrode in aqueous solution. Electrochem Solid St 1: 17–19.
    [90] Huang W, Frech R (1999) In situ Raman spectroscopic studies of electrochemical intercalation in LixMn2O4-based cathodes. J Power Sources 81–82: 616–620. doi: 10.1016/S0378-7753(99)00231-1
    [91] Julien C, Massot M (2003) Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel. Mater Sci Eng B-Adv 97: 217–230. doi: 10.1016/j.mseb.2003.09.028
    [92] Dokko K, Shi Q, Stefan IC, et al. (2003) In situ Raman spectroscopy of single microparticle Li+-intercalation electrodes. J Phys Chem B 107: 12549–12554. doi: 10.1021/jp034977c
    [93] Anzue N, Itoh T, Mohamedi M, et al. (2003) In situ Raman spectroscopic study of thin-film Li1−xMn2O4 electrodes. Solid State Ionics 156: 301–307. doi: 10.1016/S0167-2738(02)00693-8
    [94] Shi Q, Takahashi Y, Akimoto J, et al. (2005) In situ Raman scattering measurements of a LiMn2O4 single crystal microelectrode. Electrochem Solid St 8: A521–A524. doi: 10.1149/1.2030507
    [95] Sun X, Yang XQ, Balasubramanian M, et al. (2002) In situ investigation of phase transitions of Li1+yMn2O4 spinel during Li-ion extraction and insertion. J Electrochem Soc 149: A842–A848.
    [96] Michalska M, Ziołkowska DA, Jasinski JB, et al. (2018) Improved electrochemical performance of LiMn2O4 cathode material by Ce doping. Electrochim Acta 276: 37–46. doi: 10.1016/j.electacta.2018.04.165
    [97] Liu J, Manthiram A (2009) Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.5O4. J Phys Chem C 113: 15073–15079.
    [98] Alcantara R, Jaraba M, Lavela P, et al. (2003) Structural and electrochemical study of new LiNi0.5TixMn1.5−xO4 spinel oxides for 5-V cathode materials. Chem Mater 15: 2376–2382. doi: 10.1021/cm034080s
    [99] Zhong GB, Wang YY, Yu YQ, et al. (2012) Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M = Fe, Co, Cr) 5 V cathode materials for lithium ion batteries. J Power Sources 205: 385–393.
    [100] Liu D, Hamel-Paquet J, Trottier J, et al. (2012) Synthesis of pure phase disordered LiMn1.45Cr0.1Ni0.45O4 by a post-annealing method. J Power Sources 217: 400–406. doi: 10.1016/j.jpowsour.2012.06.063
    [101] Zhu W, Liu D, Trottier J, et al. (2014) Comparative studies of the phase evolution in M-doped LixMn1.5Ni0.5O4 (M = Co, Al, Cu and Mg) by in-situ X-ray diffraction. J Power Sources 264: 290–298. doi: 10.1016/j.jpowsour.2014.03.122
    [102] Dokko K, Mohamedi M, Anzue N, et al. (2002) In situ Raman spectroscopic studies of LiNixMn2−xO4 thin film cathode materials for lithium ion secondary batteries. J Mater Chem 12: 3688–3693. doi: 10.1039/B206764A
    [103] Zhu W, Liu D, Trottier J, et al. (2014) In situ Raman spectroscopic investigation of LiMn1.45Ni0.45M0.1O4 (M = Cr, Co) 5 V cathode materials. J Power Sources 298: 341–348.
    [104] Cocciantelli JM, Doumerc JP, Pouchard M, et al. (1991) Crystal chemistry of electrochemically inserted LixV2O5. J Power Sources 34: 103–111. doi: 10.1016/0378-7753(91)85029-V
    [105] Zhang X, Frech R (1996) In situ Raman spectroscopy of LixV2O5 in a lithium rechargeable battery. ECS Proceedings 17: 198–203.
    [106] Baddour-Hadjean R, Navone C, Pereira-Ramos JP (2009) In situ Raman microspectrometry investigation of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films. Electrochim Acta 54: 6674–6679. doi: 10.1016/j.electacta.2009.06.052
    [107] Jung H, Gerasopoulos K, Talin AA, et al. (2017) In situ characterization of charge rate dependent stress and structure changes in V2O5 cathode prepared by atomic layer deposition. J Power Sources 340: 89–97. doi: 10.1016/j.jpowsour.2016.11.035
    [108] Jung H, Gerasopoulos K, Talin AA, et al. (2017) A platform for in situ Raman and stress characterizations of V2O5 cathode using MEMS device. Electrochim Acta 242: 227–239. doi: 10.1016/j.electacta.2017.04.160
    [109] Julien C, Ivanov I, Gorenstein A (1995) Vibrational modifications on lithium intercalation in V2O5 films. Mater Sci Eng B-Adv 33: 168–172. doi: 10.1016/0921-5107(95)80032-8
    [110] Baddour-Hadjean R, Pereira-Ramos JP, Navone C, et al. (2008) Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films. Chem Mater 20: 1916–1923. doi: 10.1021/cm702979k
    [111] Baddour-Hadjean R, Raekelboom E, Pereira-Ramos JP (2006) New structural characterization of the LixV2O5 system provided by Raman spectroscopy. Chem Mater 18: 3548–3556. doi: 10.1021/cm060540g
    [112] Baddour-Hadjean R, Marzouk A, Pereira-Ramos JP (2012) Structural modifications of LixV2O5 in a composite cathode (0 < x < 2) investigated by Raman microspectrometry. J Raman Spectrosc 43: 153–160. doi: 10.1002/jrs.2984
    [113] Baddour-Hadjean R, Pereira-Ramos JP (2007) New structural approach of lithium intercalation using Raman spectroscopy. J Power Sources 174: 1188–1192. doi: 10.1016/j.jpowsour.2007.06.177
    [114] Julien C, Massot M (2002) Spectroscopic studies of the local structure in positive electrodes for lithium batteries. Phys Chem Chem Phys 4: 4226–4235. doi: 10.1039/b203361e
    [115] Chen D, Ding D, Li X, et al. (2015) Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy. Chem Mater 27: 6608–6619. doi: 10.1021/acs.chemmater.5b03118
    [116] Julien CM, Massot M, Poinsignon C (2004) Lattice vibrations of manganese oxides: Part I. Periodic structures. Spectrochim Acta A 60: 689–700. doi: 10.1016/S1386-1425(03)00279-8
    [117] Hashem AM, Abuzeid H, Kaus M, et al. (2018) Green synthesis of nanosized manganese dioxide as positive electrode for lithium-ion batteries using lemon juice and citrus peel. Electrochim Acta 262: 74–81. doi: 10.1016/j.electacta.2018.01.024
    [118] Julien C, Massot M, Baddour-Hadjean R, et al. (2003) Raman spectra of birnessite manganese dioxides. Solid State Ionics 159: 345–356. doi: 10.1016/S0167-2738(03)00035-3
    [119] Hwang SJ, Park HS, Choy JH, et al. (2001) Micro-Raman spectroscopic study on layered lithium manganese oxide and its delithiated/relithiated derivatives. Electrochem Solid St 4: A213–A216. doi: 10.1149/1.1413704
    [120] Chen D, Ding D, Li X, et al. (2015) Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy. Chem Mater 27: 6608–6619. doi: 10.1021/acs.chemmater.5b03118
    [121] Yang L, Cheng S, Wang J, et al. (2016) Investigation into the origin of high stability of δ-MnO2 pseudo-capacitive electrode using operando Raman spectroscopy. Nano Energy 30: 293–302. doi: 10.1016/j.nanoen.2016.10.018
    [122] Zaghib K, Dontigny M, Perret P, et al. (2014) Electrochemical and thermal characterization of lithium titanate spinel anode in C-LiFePO4//C-Li4Ti5O12 cells at sub-zero temperatures. J Power Sources 248: 1050–1057. doi: 10.1016/j.jpowsour.2013.09.083
    [123] Paques-Ledent MT, Tarte P (1974) Vibrational studies of olivine-type compounds 2. Orthophosphates, orthoarsenates and orthovanadates AIBIIXVO4. Spectrochim Acta A 30: 673–689.
    [124] Wu J, Dathar GK, Sun C, et al. (2013) In situ Raman spectroscopy of LiFePO4: size and morphology dependence during charge and self-discharge. Nanotechnology 24: 424009.
    [125] Ramana CV, Mauger A, Gendron F, et al. (2009) Study of the Li-insertion/extraction process in LiFePO4/FePO4. J Power Sources 187: 555–564. doi: 10.1016/j.jpowsour.2008.11.042
    [126] Siddique NA, Salehi A, Wei Z, et al. (2015) Length‐scale‐dependent phase transformation of LiFePO4: An in situ and operando study using micro‐Raman spectroscopy and XRD. ChemPhysChem 16: 2383–2388. doi: 10.1002/cphc.201500299
    [127] Burba CM, Frech R (2004) Raman and FTIR spectroscopic study of LixFePO4 (0 ≤ x ≤ 1). J Electrochem Soc 151: A1032–A1038. doi: 10.1149/1.1756885
    [128] Morita M, Asai Y, Yoshimoto N, et al. (1998) A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts. J Chem Soc Faraday Trans 94: 3451–3456. doi: 10.1039/a806278a
    [129] Burba CM, Frech R (2007) Vibrational spectroscopic studies of monoclinic and rhombohedral Li3V2(PO4)3. Solid State Ionics 177: 3445–3454. doi: 10.1016/j.ssi.2006.09.017
    [130] Yin SC, Grondey H, Strobel P, et al. (2003) Electrochemical property: Structure relationships in monoclinic Li3V2(PO4)3. J Am Chem Soc 125: 10402–10411. doi: 10.1021/ja034565h
    [131] Takeuchi KJ, Marschilok AC, Davis SM, et al. (2001) Silver vanadium oxide and related battery applications. Coordin Chem Rev 219–221: 283–310.
    [132] Bao Q, Bao S, Li CM, et al. (2007) Lithium insertion in channel-structured b-AgVO3: in situ Raman study and computer simulation. Chem Mater 19: 5965–5972. doi: 10.1021/cm071728i
    [133] Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53: 1126–1130. doi: 10.1063/1.1674108
    [134] Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos T R Soc A 362: 2271–2288. doi: 10.1098/rsta.2004.1454
    [135] Inaba M, Yoshida H, Yida H, et al. (1995) In situ Raman study on electrochemical Li intercalation into graphite. J Electrochem Soc 142: 20–26. doi: 10.1149/1.2043869
    [136] Huang W, Frech R (1998) In situ Raman studies of graphite surface structures during lithium electrochemical intercalation. J Electrochem Soc 145: 765–770.
    [137] Novák P, Joho F, Imhof R, et al. (1999) In situ investigation of the interaction between graphite and electrolyte solutions. J Power Sources 81–82: 212–216.
    [138] Luo Y, Cai WB, Scherson DA (2002) In situ, real-time Raman microscopy of embedded single particle graphite electrodes. J Electrochem Soc 149: A1100–A1105. doi: 10.1149/1.1492286
    [139] Kostecki R, McLarnon F (2003) Microprobe study of the effect of Li intercalation on the structure of graphite. J Power Sources 119–121: 550–554.
    [140] Luo Y, Cai WB, Xing XK, et al. (2004) In situ, time-resolved Raman spectromicrotopography of an operating lithium-ion battery. Electrochem Solid St 7: E1–E5. doi: 10.1149/1.1627972
    [141] Shi Q, Dokko K, Scherson DA (2004) In situ Raman microscopy of a single graphite microflake electrode in a Li+-containing electrolyte. J Phys Chem B 108: 4798–4793.
    [142] Migge S, Sandmann G, Rahner D, et al. (2005) Studying lithium intercalation into graphite particles via in situ Raman spectroscopy and confocal microscopy. J Solid State Electr 9: 132–137. doi: 10.1007/s10008-004-0563-4
    [143] Hardwick LJ, Hahn M, Ruch P, et al. (2006) Graphite surface disorder detection using in situ Raman microscopy. Solid State Ionics 177: 2801–2806. doi: 10.1016/j.ssi.2006.03.032
    [144] Hardwick LJ, Buqa H, Holzapfel M, et al. (2007) Behaviour of highly crystalline graphitic materials in lithium-ion cells with propylene carbonate containing electrolytes: An in situ Raman and SEM study. Electrochim Acta 52: 4884–4891. doi: 10.1016/j.electacta.2006.12.081
    [145] Hardwick LJ, Marcinek M, Beer L, et al. (2008) An investigation of the effect of graphite degradation on irreversible capacity in lithium-ion cells. J Electrochem Soc 155: A442–A447.
    [146] Hardwick LJ, Ruch PW, Hahn M, et al. (2008) In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects. J Phys Chem Solids 69: 1232–1237. doi: 10.1016/j.jpcs.2007.10.017
    [147] Nakagawa H, Ochida M, Domi Y, et al. (2012) Electrochemical Raman study of edge plane graphite negative-electrodes in electrolytes containing trialkyl phosphoric ester. J Power Sources 212: 148–153. doi: 10.1016/j.jpowsour.2012.04.013
    [148] Underhill C, Leung SY, Dresselhaus G, et al. (1979) Infrared and Raman spectroscopy of graphite-ferric chloride. Solid State Commun 29: 769–774.
    [149] Hardwick LJ, Hahn M, Ruch P, et al. (2006) An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite. Electrochim Acta 52: 675–680. doi: 10.1016/j.electacta.2006.05.053
    [150] Solin SA (1990) Graphite Intercalation Compounds, Berlin: Springer-Verlag.
    [151] Brancolini G, Negri F (2004) Quantum chemical modeling of infrared and Raman activities in lithium-doped amorphous carbon nanostructures: hexa-peri-hexabenzocoronene as a model for hydrogen-rich carbon materials. Carbon 42: 1001–1005. doi: 10.1016/j.carbon.2003.12.016
    [152] Nakagawa H, Domi Y, Doi T, et al. (2012) In situ Raman study on degradation of edge plane graphite negative-electrodes and effects of film-forming additives. J Power Sources 206: 320–324. doi: 10.1016/j.jpowsour.2012.01.141
    [153] Perez-Villar S, Lanz P, Schneider H, et al. (2013) Characterization of a model solid electrolyte interphase/carbon interface by combined in situ Raman/Fourier transform infrared microscopy. Electrochim Acta 106: 506–515. doi: 10.1016/j.electacta.2013.05.124
    [154] Nakagawa H, Domi Y, Doi T, et al. (2013) In situ Raman study on the structural degradation of a graphite composite negative-electrode and the influence of the salt in the electrolyte solution. J Power Sources 236: 138–144. doi: 10.1016/j.jpowsour.2013.02.060
    [155] Lanz P, Novák P (2014) Combined in situ Raman and IR microscopy at the interface of a single graphite particle with ethylene carbonate/dimethyl carbonate. J Electrochem Soc 161: A1555–A1563. doi: 10.1149/2.0021410jes
    [156] Domi Y, Doi T, Nakagawa H, et al. (2016) In situ Raman study on reversible structural changes of graphite negative-electrodes at high potentials in LiPF6-Based electrolyte solution. J Electrochem Soc 163: A2435–A2440. doi: 10.1149/2.1301610jes
    [157] Yamanaka T, Nakagawa H, Tsubouchi S, et al. (2017) Correlations of concentration changes of electrolyte salt with resistance and capacitance at the surface of a graphite electrode in a lithium ion battery studied by in situ microprobe Raman spectroscopy. Electrochim Acta 251: 301–306. doi: 10.1016/j.electacta.2017.08.119
    [158] Bhattacharya S, Alpas AT (2018) A novel elevated temperature pre-treatment for electrochemical capacity enhancement of graphene nanoflake-based anodes. Mater Renew Sustain Energy 7: 3.
    [159] Inaba M, Yoshida H, Ogumi Z (1996) In situ Raman study of electrochemical lithium insertion into mesocarbon microbeads heat‐treated at various temperatures. J Electrochem Soc 143: 2572–2578. doi: 10.1149/1.1837049
    [160] Totir DA, Scherson DA (2000) Electrochemical and in situ Raman studies of embedded carbon particle electrodes in nonaqueous liquid electrolytes. Electrochem Solid St 3: 263–265.
    [161] Ramesha GK, Sampath S (2009) Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J Phys Chem C 113: 7985–7989. doi: 10.1021/jp811377n
    [162] Tang W, Goh BM, Hu MY, et al. (2016) In situ Raman and nuclear magnetic resonance study of trapped lithium in the solid electrolyte interface of reduced graphene oxide. J Phys Chem C 120: 2600–2608. doi: 10.1021/acs.jpcc.5b12551
    [163] Julien CM, Massot M, Zaghib K (2007) Structural studies of Li4/3Me5/3O4 (Me = Ti, Mn) electrode materials: local structure and electrochemical aspects. J Power Sources 136: 72–79.
    [164] Mukai K, Kato Y, Nakano H (2014) Understanding the zero-strain lithium insertion scheme of Li[Li1/3Ti5/3]O4: structural changes at atomic scale clarified by Raman spectroscopy. J Phys Chem C 118: 2992–2999. doi: 10.1021/jp412196v
    [165] Shu J, Shui M, Xu D, et al. (2011) Design and comparison of ex situ and in situ devices for Raman characterization of lithium titanate anode material. Ionics 17: 503–509. doi: 10.1007/s11581-011-0544-4
    [166] Julien CM, Mauger A, Vijh A, et al. (2016) Anodes for Li-Ion Batteries, In: Julien CM, Mauger A, Vijh A, et al., Lithium Batteries: Science and Technology, Cham, Switzerland: Springer, 323–429.
    [167] Ohzuku T, Takehara Z, Yoshizawa S (1979) Non-aqueous lithium/titanium dioxide cell. Electrochim Acta 24: 219–222. doi: 10.1016/0013-4686(79)80028-6
    [168] Wagemaker M, Borghols WJH, Mulder FM (2007) Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J Am Chem Soc 129: 4323–4327.
    [169] Mukai K, Kato Y, Nakano H (2014) Understanding the zero-strain lithium insertion scheme of Li[Li1/3Ti5/3]O4: structural changes at atomic scale clarified by Raman spectroscopy. J Phys Chem C 118: 2992–2999. doi: 10.1021/jp412196v
    [170] Dinh NN, Oanh NTT, Long PD, et al. (2003) Electrochromic properties of TiO2 anatase thin films prepared by a dipping sol–gel method. Thin Solid Films 423: 70–76. doi: 10.1016/S0040-6090(02)00948-3
    [171] Smirnov M, Baddour-Hadjean R (2004) Li intercalation in TiO2 anatase: Raman spectroscopy and lattice dynamic studies. J Chem Phys 121: 2348–2355. doi: 10.1063/1.1767993
    [172] Baddour-Hadjean R, Bach S, Smirnov M, et al. (2004) Raman investigation of the structural changes in anatase LixTiO2 upon electrochemical lithium insertion. J Raman Spectrosc 35: 577–585. doi: 10.1002/jrs.1200
    [173] Hardwick LJ, Holzapfel M, Novák P, et al. (2007) Electrochemical lithium insertion into anatase-type TiO2: An in situ Raman microscopy investigation. Electrochim Acta 52: 5357–5367. doi: 10.1016/j.electacta.2007.02.050
    [174] Ren Y, Hardwick LJ, Bruce PG (2010) Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angew Chem Int Edit 49: 2570–2574. doi: 10.1002/anie.200907099
    [175] Gentili V, Brutti S, Hardwick LJ, et al. (2012) Lithium insertion into anatase nanotubes. Chem Mater 24: 4468–4476. doi: 10.1021/cm302912f
    [176] Laskova BP, Frank O, Zukalova M, et al. (2013) Lithium insertion into titanium dioxide (anatase): A Raman study with 16/18O and 6/7Li isotope labeling. Chem Mater 25: 3710–3717. doi: 10.1021/cm402056j
    [177] Laskova BP, Kavan L, Zukalova M, et al. (2016) In situ Raman spectroelectrochemistry as a useful tool for detection of TiO2(anatase) impurities in TiO2(B) and TiO2(rutile). Monatsh Chem 147: 951–959. doi: 10.1007/s00706-016-1678-x
    [178] Mauger A, Xie H, Julien CM, (2016) Composite anodes for lithium-ion batteries, status and trends. AIMS Mater Sci 3: 1054–1106. doi: 10.3934/matersci.2016.3.1054
    [179] Li H, Huang X, Chen L, et al. (2000) The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics 135: 181–191. doi: 10.1016/S0167-2738(00)00362-3
    [180] Nanda J, Datta MK, Remillard JT, et al. (2009) In situ Raman microscopy during discharge of a high capacity silicon–carbon composite Li-ion battery negative electrode. Electrochem Commun 11: 235–237. doi: 10.1016/j.elecom.2008.11.006
    [181] Zeng Z, Liu N, Zeng Q, et al. (2016) In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy. Nano Energy 22: 105–110.
    [182] Tardif S, Pavlenko E, Quazuguel L, et al. (2017) Operando Raman spectroscopy and synchrotron X-ray diffraction of lithiation/delithiation in silicon nanoparticle anodes. ACS Nano 11: 11306–11316. doi: 10.1021/acsnano.7b05796
    [183] Miroshnikov Y, Zitoun D (2017) Operando plasmon-enhanced Raman spectroscopy in silicon anodes for Li-ion battery. J Nanopart Res 19: 372. doi: 10.1007/s11051-017-4063-8
    [184] Holzapfel M, Buqa H, Hardwick LJ, et al. (2006) Nano silicon for lithium-ion batteries. Electrochim Acta 52: 973–978. doi: 10.1016/j.electacta.2006.06.034
    [185] Long BR, Chan MKY, Greeley JP, et al. (2011) Dopant modulated Li insertion in Si for battery anodes: theory and experiment. J Phys Chem C 115: 18916–18921. doi: 10.1021/jp2060602
    [186] Miroshnikov Y, Yang J, Shokhen V, et al. (2018) Operando micro-Raman study revealing enhanced connectivity of plasmonic metals decorated silicon anodes for lithium-ion batteries. ACS Appl Energy Mater 1: 1096–1105. doi: 10.1021/acsaem.7b00220
    [187] Zeng Z, Liu N, Zeng Q, et al. (2016) In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy. Nano Energy 22: 105–110.
    [188] Yang J, Kraytsberg A, Ein-Eli Y (2015) In situ Raman spectroscopy mapping of Si based anode material lithiation. J Power Sources 282: 294–298. doi: 10.1016/j.jpowsour.2015.02.044
    [189] Shimizu M, Usui H, Suzumura T, et al. (2015) Analysis of the deterioration mechanism of Si electrode as a Li-ion battery anode using Raman microspectroscopy. J Phys Chem C 119: 2975–2982. doi: 10.1021/jp5121965
    [190] Domi Y, Usui H, Shimizu M, et al. (2016) Effect of phosphorus-doping on electrochemical performance of silicon negative electrodes in lithium-ion batteries. ACS Appl Mater Inter 8: 7125–7132. doi: 10.1021/acsami.6b00386
    [191] Yamaguchi K, Domi Y, Usui H, et al. (2017) Elucidation of the reaction behavior of silicon negative electrodes in a bis(fluorosulfonyl)amide based ionic liquid electrolyte. ChemElectroChem 4: 3257–3263. doi: 10.1002/celc.201700724
    [192] Zhang WJ (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196: 13–24. doi: 10.1016/j.jpowsour.2010.07.020
    [193] Weppner W, Huggins RA (1977) Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc 124: 1569–1578. doi: 10.1149/1.2133112
    [194] Drewett NE, Aldous AL, Zou J, et al. (2017) In situ Raman spectroscopic analysis of the lithiation and sodiation of antimony microparticles. Electrochim Acta 247: 296–305. doi: 10.1016/j.electacta.2017.07.030
    [195] Zhong X, Wang X, Wang H, et al. (2018) Ultrahigh-performance mesoporous ZnMn2O4 microspheres as anode materials for lithium-ion batteries and their in situ Raman investigation. Nano Res 11: 3814. doi: 10.1007/s12274-017-1955-y
    [196] Cabo-Fernandez L, Mueller F, Passerini S, et al. (2016) In situ Raman spectroscopy of carbon-coated ZnFe2O4 anode material in Li-ion batteries-Investigation of SEI growth. Chem Commun 52: 3970–3973. doi: 10.1039/C5CC09350C
    [197] Schmitz R, Muller RA, Schmitz RW, et al. (2013) SEI investigations on copper electrodes after lithium plating with Raman spectroscopy and mass spectrometry. J Power Sources 233: 110–114. doi: 10.1016/j.jpowsour.2013.01.105
    [198] Hy S, Felix F, Chen YH, et al. (2014) In situ surface enhanced Raman spectroscopic studies of solid electrolyte interphase formation in lithium ion battery electrodes. J Power Sources 256: 324–328. doi: 10.1016/j.jpowsour.2014.01.092
    [199] Yamanaka T, Nakagawa H, Tsubouchi S, et al. (2017) In situ diagnosis of the electrolyte solution in a laminate lithium ion battery by using ultrafine multi-probe Raman spectroscopy. J Power Sources 359: 435–440.
    [200] Yamanaka T, Nakagawa H, Tsubouchi S, et al. (2017) In situ Raman spectroscopic studies on concentration change of electrolyte salt in a lithium ion model battery with closely faced graphite composite and LiCoO2 composite electrodes by using an ultrafine microprobe. Electrochim Acta 234: 93–98. doi: 10.1016/j.electacta.2017.03.060
    [201] Yamanaka T , Nakagawa H, Tsubouchi S, et al. (2017) Effects of pored separator films at the anode and cathode sides on concentration changes of electrolyte salt in lithium ion batteries. Jpn J Appl Phys 56: 128002. doi: 10.7567/JJAP.56.128002
    [202] Naudin C, Bruneel JL, Chami M, et al. (2003) Characterization of the lithium surface by infrared and Raman spectroscopies. J Power Sources 124: 518–525. doi: 10.1016/S0378-7753(03)00798-5
    [203] Galloway TA, Cabo-Fernandez L, Aldous IM, et al. (2017) Shell isolated nanoparticles for enhanced Raman spectroscopy studies in lithium–oxygen cells. Faraday Discuss 205: 469–490. doi: 10.1039/C7FD00151G
    [204] Park Y, Kim Y, Kim SM, et al. (2017) Reaction at the electrolyte–electrode interface in a Li-ion battery studied by in situ Raman spectroscopy. Bull Korean Chem Soc 38: 511–513. doi: 10.1002/bkcs.11117
    [205] Yamanaka T, Nakagawa H, Tsubouchi S, et al. (2017) In situ Raman spectroscopic studies on concentration of electrolyte salt in lithium ion batteries by using ultrafine multifiber probes. ChemSusChem 10: 855–861. doi: 10.1002/cssc.201601473
    [206] Lewis IR, Griffiths PR (1996) Raman spectrometry with fiber-optic sampling. Appl Spectrosc 50: 12A–30A.
    [207] Yamanaka T, Nakagawa H, Ochida M, et al. (2016) Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction. J Phys Chem C 120: 2585–2591. doi: 10.1021/acs.jpcc.5b11894
    [208] Yamanaka T, Nakagawa H, Tsubouchi S, et al. (2017) In situ Raman spectroscopic studies on concentration change of ions in the electrolyte solution in separator regions in a lithium ion battery by using multi-microprobes. Electrochem Commun 77: 32–35. doi: 10.1016/j.elecom.2017.01.020
    [209] Yamanaka T, Nakagawa H, Tsubouchi S, et al. (2017) Modification of the solid electrolyte interphase by chronoamperometric pretreatment and its effect on the concentration change of electrolyte salt in lithium ion batteries studied by in situ microprobe Raman spectroscopy. J Electrochem Soc 164: A2355–A2359. doi: 10.1149/2.0601712jes
  • This article has been cited by:

    1. Rinaldo M. Colombo, Magali Lecureux-Mercier, Mauro Garavello, 2020, Chapter 5, 978-3-030-50449-6, 83, 10.1007/978-3-030-50450-2_5
    2. Felisia Angela Chiarello, Paola Goatin, Luis Miguel Villada, Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models, 2020, 39, 2238-3603, 10.1007/s40314-020-1097-9
    3. Alexandre Bayen, Jan Friedrich, Alexander Keimer, Lukas Pflug, Tanya Veeravalli, Modeling Multilane Traffic with Moving Obstacles by Nonlocal Balance Laws, 2022, 21, 1536-0040, 1495, 10.1137/20M1366654
    4. Felisia Angela Chiarello, 2021, Chapter 5, 978-3-030-66559-3, 79, 10.1007/978-3-030-66560-9_5
    5. Jan Friedrich, Simone Göttlich, Maximilian Osztfalk, Network models for nonlocal traffic flow, 2022, 56, 2822-7840, 213, 10.1051/m2an/2022002
    6. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    7. Giuseppe Maria Coclite, Lorenzo di Ruvo, On the initial-boundary value problem for a non-local elliptic-hyperbolic system related to the short pulse equation, 2022, 3, 2662-2963, 10.1007/s42985-022-00208-w
    8. Kuang Huang, Qiang Du, Stability of a Nonlocal Traffic Flow Model for Connected Vehicles, 2022, 82, 0036-1399, 221, 10.1137/20M1355732
    9. Yanbing Wang, Daniel B. Work, Estimation for heterogeneous traffic using enhanced particle filters, 2022, 18, 2324-9935, 568, 10.1080/23249935.2021.1881186
    10. Felisia Angela Chiarello, Harold Deivi Contreras, Luis Miguel Villada, Nonlocal reaction traffic flow model with on-off ramps, 2022, 17, 1556-1801, 203, 10.3934/nhm.2022003
    11. Ioana Ciotir, Rim Fayad, Nicolas Forcadel, Antoine Tonnoir, A non-local macroscopic model for traffic flow, 2021, 55, 0764-583X, 689, 10.1051/m2an/2021006
    12. Maria Colombo, Gianluca Crippa, Marie Graff, Laura V. Spinolo, On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws, 2021, 55, 0764-583X, 2705, 10.1051/m2an/2021073
    13. Alexander Keimer, Lukas Pflug, 2023, 15708659, 10.1016/bs.hna.2022.11.001
    14. Alexandre Bayen, Jean-Michel Coron, Nicola De Nitti, Alexander Keimer, Lukas Pflug, Boundary Controllability and Asymptotic Stabilization of a Nonlocal Traffic Flow Model, 2021, 49, 2305-221X, 957, 10.1007/s10013-021-00506-7
    15. F. A. CHIARELLO, J. FRIEDRICH, P. GOATIN, S. GÖTTLICH, O. KOLB, A non-local traffic flow model for 1-to-1 junctions, 2020, 31, 0956-7925, 1029, 10.1017/S095679251900038X
    16. Jan Friedrich, Simone Göttlich, Alexander Keimer, Lukas Pflug, 2024, Chapter 30, 978-3-031-55263-2, 347, 10.1007/978-3-031-55264-9_30
    17. Veerappa Gowda G. D., Sudarshan Kumar Kenettinkara, Nikhil Manoj, Convergence of a second-order scheme for non-local conservation laws, 2023, 57, 2822-7840, 3439, 10.1051/m2an/2023080
    18. Jan Friedrich, Sanjibanee Sudha, Samala Rathan, Numerical schemes for a class of nonlocal conservation laws: a general approach, 2023, 18, 1556-1801, 1335, 10.3934/nhm.2023058
    19. Jan Friedrich, Simone Göttlich, Michael Herty, Lyapunov Stabilization for Nonlocal Traffic Flow Models, 2023, 61, 0363-0129, 2849, 10.1137/22M152181X
    20. Felisia A. Chiarello, Harold D. Contreras, 2024, Chapter 26, 978-3-031-55263-2, 303, 10.1007/978-3-031-55264-9_26
    21. Jan Friedrich, Lyapunov stabilization of a nonlocal LWR traffic flow model, 2023, 23, 1617-7061, 10.1002/pamm.202200084
    22. Agatha Joumaa, Paola Goatin, Giovanni De Nunzio, 2023, A Macroscopic Model for Multi-Modal Traffic Flow in Urban Networks, 979-8-3503-9946-2, 411, 10.1109/ITSC57777.2023.10422168
    23. Saeed Mohammadian, Zuduo Zheng, Md. Mazharul Haque, Ashish Bhaskar, Continuum modeling of freeway traffic flows: State-of-the-art, challenges and future directions in the era of connected and automated vehicles, 2023, 3, 27724247, 100107, 10.1016/j.commtr.2023.100107
    24. Harold Deivi Contreras, Paola Goatin, Luis-Miguel Villada, A two-lane bidirectional nonlocal traffic model, 2025, 543, 0022247X, 129027, 10.1016/j.jmaa.2024.129027
    25. Felisia Angela Chiarello, Paola Goatin, 2023, Chapter 3, 978-3-031-29874-5, 49, 10.1007/978-3-031-29875-2_3
    26. Alexander Keimer, Lukas Pflug, Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity, 2023, 361, 1778-3569, 1723, 10.5802/crmath.490
    27. Archie J. Huang, Animesh Biswas, Shaurya Agarwal, Incorporating Nonlocal Traffic Flow Model in Physics-Informed Neural Networks, 2024, 25, 1524-9050, 16249, 10.1109/TITS.2024.3429029
    28. Rinaldo M. Colombo, Mauro Garavello, Claudia Nocita, General stability estimates in nonlocal traffic models for several populations, 2025, 32, 1021-9722, 10.1007/s00030-025-01034-w
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(17806) PDF downloads(5188) Cited by(81)

Figures and Tables

Figures(20)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog