Citation: Douglas M. Franz, Mak Djulbegovic, Tony Pham, Brian Space. Theoretical study of the effect of halogen substitution in molecular porous materials for CO2 and C2H2 sorption[J]. AIMS Materials Science, 2018, 5(2): 226-245. doi: 10.3934/matersci.2018.2.226
[1] | Ahmed Z. Abdullah, Adawiya J. Haider, Allaa A. Jabbar . Pure TiO2/PSi and TiO2@Ag/PSi structures as controllable sensor for toxic gases. AIMS Materials Science, 2022, 9(4): 522-533. doi: 10.3934/matersci.2022031 |
[2] | Angaraj Singh, Ajitanshu Vedrtnam, Kishor Kalauni, Aman Singh, Magdalena Wdowin . Synthesis routes of zeolitic imidazolate framework-8 for CO2 capture: A review. AIMS Materials Science, 2025, 12(1): 118-164. doi: 10.3934/matersci.2025009 |
[3] | Laís Weber Aguiar, Cleiser Thiago Pereira da Silva, Hugo Henrique Carline de Lima, Murilo Pereira Moises, Andrelson Wellington Rinaldi . Evaluation of the synthetic methods for preparing metal organic frameworks with transition metals. AIMS Materials Science, 2018, 5(3): 467-478. doi: 10.3934/matersci.2018.3.467 |
[4] | Jamal Alnofiay, Ahmed Al-Shahrie, Elsayed Shalaan . Green synthesis of high-performance gallium oxide supercapacitor: A path to outstanding energy density. AIMS Materials Science, 2024, 11(6): 1065-1082. doi: 10.3934/matersci.2024051 |
[5] | Akira Nishimura, Tadaki Inoue, Yoshito Sakakibara, Masafumi Hirota, Akira Koshio, Fumio Kokai, Eric Hu . Optimum molar ratio of H2 and H2O to reduce CO2 using Pd/TiO2. AIMS Materials Science, 2019, 6(4): 464-483. doi: 10.3934/matersci.2019.4.464 |
[6] | Akira Nishimura, Ryuki Toyoda, Daichi Tatematsu, Masafumi Hirota, Akira Koshio, Fumio Kokai, Eric Hu . Optimum reductants ratio for CO2 reduction by overlapped Cu/TiO2. AIMS Materials Science, 2019, 6(2): 214-233. doi: 10.3934/matersci.2019.2.214 |
[7] | Masatoshi Sakairi, Hirotaka Mizukami, Shuji Hashizume . Effects of solution composition on corrosion behavior of 13 mass% Cr martensitic stainless steel in simulated oil and gas environments. AIMS Materials Science, 2019, 6(2): 288-300. doi: 10.3934/matersci.2019.2.288 |
[8] | Pravina Kamini G., Kong Fah Tee, Jolius Gimbun, Siew Choo Chin . Biochar in cementitious material—A review on physical, chemical, mechanical, and durability properties. AIMS Materials Science, 2023, 10(3): 405-425. doi: 10.3934/matersci.2023022 |
[9] | Toni Varila, Henrik Romar, Tero Luukkonen, Ulla Lassi . Physical activation and characterization of tannin-based foams enforced with boric acid and zinc chloride. AIMS Materials Science, 2019, 6(2): 301-314. doi: 10.3934/matersci.2019.2.301 |
[10] | Endi Suhendi, Andini Eka Putri, Muhamad Taufik Ulhakim, Andhy Setiawan, Syarif Dani Gustaman . Investigation of ZnO doping on LaFeO3/Fe2O3 prepared from yarosite mineral extraction for ethanol gas sensor applications. AIMS Materials Science, 2022, 9(1): 105-118. doi: 10.3934/matersci.2022007 |
Metal--organic materials (MOMs) are a class of synthesized, often porous, and crystalline materials that have comprised the focus of a large amount of experimental and theoretical studies for the past few decades [1,2,3]. The application of MOMs is very diverse and has become essentially ubiquitous in scientific research, ranging from gas sorption [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17], separation [4,18,19], catalysis [20,21,22,23], sensing [24,25], photoinduced electron transfer [26,27,28,29] and biological uses [30,31]. The major reason for this is that there are conceivably infinite variations of MOM structures that can be synthesized by altering their component metal ions, organic linkers, secondary building units (SBUs) [32,33], solvents, and thermodynamic or physical conditions.
This study focuses on explaining the sorption properties of CO
Recent studies involved examining C
The syntheses of MPM-1-Cl and MPM-1-Br are reported in references [38,39], respectively. Both MPMs feature an interesting hydrogen-bonding network in which (1) four hydrogen atoms from four different adenine linkers are hydrogen-bonded to a single halide ion and (2) an adenine linker from one [Cu
The purpose of this study is to elucidate (with atomistic resolution) the sorption properties of CO
The potential energy function for MPM-1-Cl was developed by our group in previous work [41] and utilized herein. The crystal structure for MPM-1-Br was obtained from reference [39]. For all simulations in both MPMs, the sorbent atoms were treated as rigid to accomodate a constant volume ensemble system. This approximation is especially valid when phononic effects are minor [43]. As with previous work on MPM-1-Cl [41], all atoms of MPM-1-Br were given Lennard-Jones 12--6 parameters, point partial charges, and scalar point polarizabilities to model repulsion/dispersion, stationary electrostatic, and explicit polarization, respectively. The Lennard-Jones parameters for all MPM atoms were taken from the Universal Force Field (UFF)[44], while the exponentially-damped polarizabilities for all atoms other than Cu were obtained from van Duijnen et al. [45]. The polarizability parameter for Cu
The potentials used for CO
Simulated annealing calculations were performed using the polarizable CO
C
Interestingly, the relative uptake trend is reversed at 298 K: MPM-1-Br shows slightly greater affinity for C
Xie et al. also measured CO
Xie et al. [37] derived the experimental
CO | C | ||||||
MPM-1-Cl | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
23.76 | 22.77 | 24.33 | 26.22 | 28.57 | 25.49 | 25.65 | |
0.05 atm loading, 273 K | 0.26 | 0.23 | 0.36 | 0.80 | 0.80 | 1.08 | 0.81 |
1.0 atm loading, 273 K | 3.50 | 3.63 | 4.75 | 5.06 | 3.86 | 5.05 | 5.25 |
0.05 atm loading, 298 K | 0.12 | 0.13 | 0.17 | 0.35 | 0.34 | 0.34 | 0.25 |
1.0 atm loading, 298 K | 1.97 | 2.07 | 2.74 | 3.60 | 2.78 | 4.21 | 4.57 |
MPM-1-Br | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
21.61 | 25.02 | 25.57 | 25.40 | 25.05 | 30.61 | 27.55 | |
0.05 atm loading, 273 K | 0.19 | 0.23 | 0.33 | 0.51 | 0.81 | 1.41 | 1.23 |
1.0 atm loading, 273 K | 2.54 | 2.52 | 3.20 | 3.77 | 3.59 | 3.69 | 3.66 |
0.05 atm loading, 298 K | 0.12 | 0.11 | 0.13 | 0.20 | 0.43 | 0.34 | 0.22 |
1.0 atm loading, 298 K | 1.56 | 1.52 | 1.80 | 2.47 | 2.82 | 3.31 | 3.30 |
With regards to C
The
The experimental and simulated C
Figure 5a shows the simulated C
As shown in Table 1, the experimental C
The simulated C
The theoretical
The simulated CO
The CO
A comparison of the experimental and simulated CO
As shown in Table 1, the experimental atmospheric CO
Note, we also performed simulations of CO
The simulated CO
In MPM-1-Br, the
The calculated
Pham et al. [41] reported a binding site for CO
The electrostatic and electrodynamic (polarizable) effects serve to attract the positively charged carbon center of the CO
MPM-1-Cl is able to sorb more CO
The primary binding site for C
Overall, there are more concurrent interactions between the C
The results for the classical binding energy calculations from simulated annealing are presented in Table 2. It is clear from these simulations that both materials favor C
MPM-1-Cl | Binding energy (kJ mol | Steps ( | Final Temp. (K) |
CO | 2.37 | 113 | |
C | 2.46 | 125 | |
MPM-1-Br | |||
CO | 3.24 | 129 | |
C | 4.53 | 150 |
This study aimed to elucidate the CO
It was discovered through our simulations that the primary binding site for C
Herein, we demonstrated how substitution of the halide ion in two isostructural MPMs with the empirical formula [Cu
The authors acknowledge the National Science Foundation (Award No. DMR-1607989), including support from the Major Research Instrumentation Program (Award No. CHE-1531590). Computational resources were made available by a XSEDE Grant (No. TG-DMR090028) and by Research Computing at the University of South Florida. B.S. also acknowledges support from an American Chemical Society Petroleum Research Fund grant (ACS PRF 56673-ND6).
The authors declare no conflict of interest related to the content of this publication.
[1] |
Zhou H, Long J, Yaghi O (2012) Introduction to Metal–Organic Frameworks. Chem Rev 112: 673–674. doi: 10.1021/cr300014x
![]() |
[2] |
Long J, Yaghi O (2009) The pervasive chemistry of metal–organic frameworks. Chem Soc Rev 38: 1213–1214. doi: 10.1039/b903811f
![]() |
[3] |
Pham T, Forrest K, Franz D, et al. (2017) Experimental and theoretical investigations of the gas adsorption sites in rht-metal–organic frameworks. CrystEngComm 19: 4646–4665. doi: 10.1039/C7CE01032J
![]() |
[4] |
Nugent P, Belmabkhout Y, Burd S, et al. (2013) Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495: 80–84. doi: 10.1038/nature11893
![]() |
[5] |
Mason J, Sumida K, Herm Z, et al. (2011) Evaluating metal–organic frameworks for postcombustion carbon dioxide capture via temperature swing adsorption. Energ Environ Sci 4: 3030–3040. doi: 10.1039/c1ee01720a
![]() |
[6] |
Caskey S, Wong-Foy A, Matzger A (2008) Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. J Am Chem Soc 130: 10870–10871. doi: 10.1021/ja8036096
![]() |
[7] |
Yang D, Cho H, Kim J, et al. (2012) CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energ Environ Sci 5: 6465–6473. doi: 10.1039/C1EE02234B
![]() |
[8] |
Collins D, Zhou H (2007) Hydrogen storage in metal-organic frameworks. J Mater Chem 17: 3154–3160. doi: 10.1039/b702858j
![]() |
[9] | Collins D, Ma S, Zhou H (2010) Hydrogen and Methane Storage in Metal–Organic Frameworks, Metal-Organic Frameworks: Design and Application, John Wiley & Sons Inc., 249–266. |
[10] |
Suh M, Park H, Prasad T, et al. (2012) Hydrogen Storage in Metal–Organic Frameworks. Chem Rev 112: 782–835. doi: 10.1021/cr200274s
![]() |
[11] |
Lin X, Telepeni I, Blake A, et al. (2009) High Capacity Hydrogen Adsorption in Cu(II) Tetracarboxylate Framework Materials: The Role of Pore Size, Ligand Functionalization, and Exposed Metal Sites. J Am Chem Soc 131: 2159–2171. doi: 10.1021/ja806624j
![]() |
[12] | Yan Y, Lin X, Yang S, et al. (2009) Exceptionally high H2 storage by a metal–organic polyhedral framework. Chem Commun 1025–1027. |
[13] |
Mohammed M, Elsaidi S, Wojtas L, et al. (2012) Highly Selective CO2 Uptake in Uninodal 6-Connected "mmo" Nets Based upon MO42- (M = Cr, Mo) Pillars. J Am Chem Soc 134: 19556–19559. doi: 10.1021/ja309452y
![]() |
[14] |
Wu H, Yao K, Zhu Y, et al. (2012) Cu-TDPAT, an rht-Type Dual-Functional Metal–Organic Framework Offering Significant Potential for Use in H2 and Natural Gas Purification Processes Operating at High Pressures. J Phys Chem C 116: 16609–16618. doi: 10.1021/jp3046356
![]() |
[15] |
Franz D, Forrest K, Pham T, et al. (2016) Accurate H2 Sorption Modeling in the rht-MOF NOTT-112 Using Explicit Polarization. Cryst Growth Des 16: 6024–6032. doi: 10.1021/acs.cgd.6b01058
![]() |
[16] |
Pham T, Forrest K, Franz D, et al. (2017) Predictive models of gas sorption in a metal–organic framework with open-metal sites and small pore sizes. Phys Chem Chem Phys 19: 18587–18602. doi: 10.1039/C7CP02767B
![]() |
[17] |
Franz D, Dyott Z, Forrest K, et al. (2018) Simulations of hydrogen, carbon dioxide, and small hydrocarbon sorption in a nitrogen-rich rht-metal–organic framework. Phys Chem Chem Phys 20: 1761–1777. doi: 10.1039/C7CP06885A
![]() |
[18] |
Li J, Kuppler R, Zhou H (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38: 1477–1504. doi: 10.1039/b802426j
![]() |
[19] |
Wang H, Yao K, Zhang Z, et al. (2014) The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases. Chem Sci 5: 620–624. doi: 10.1039/C3SC52348A
![]() |
[20] | Lee J, Farha O, Roberts J, et al. (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 5: 1450–1459. |
[21] |
Maeda C, Miyazaki Y, Ema T (2014) Recent progress in catalytic conversions of carbon dioxide. Catal Sci Technol 4: 1482–1497. doi: 10.1039/c3cy00993a
![]() |
[22] | Cho S, Ma B, Nguyen S, et al. (2006) A metal–organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem Commun 2563–2565. |
[23] |
Song J, Zhang Z, Hu S, et al. (2009) MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chem 11: 1031–1036. doi: 10.1039/b902550b
![]() |
[24] | Ma D, Li B, Zhou X, et al. (2013) A dual functional MOF as a luminescent sensor for quantitatively detecting the concentration of nitrobenzene and temperature. Chem Commun 8964–8966. |
[25] |
Wang J, Li M, Li D (2013) A dynamic, luminescent and entangled MOF as a qualitative sensor for volatile organic solvents and a quantitative monitor for acetonitrile vapour. Chem Sci 4: 1793–1801. doi: 10.1039/c3sc00016h
![]() |
[26] |
Larsen R, Wojtas L (2013) Photoinduced inter-cavity electron transfer between Ru(II)tris(2,2'- bipyridne) and Co(II)tris(2,2'-bipyridine) Co-encapsulated within a Zn(II)-trimesic acid metal organic framework. J Mater Chem A 1: 14133-14139. doi: 10.1039/c3ta13422a
![]() |
[27] |
Larsen R, Wojtas L (2012) Photophysical Studies of Ru(II)tris(2,2'-bipyridine) Confined within a Zn(II)–Trimesic Acid Polyhedral Metal–Organic Framework. J Phys Chem A 116: 7830–7835. doi: 10.1021/jp302979a
![]() |
[28] |
Whittington C, Wojtas L, Gao W, et al. (2015) A new photoactive Ru(II)tris(2,2'-bipyridine) templated Zn(II) benzene-1,4-dicarboxylate metal organic framework: structure and photophysical properties. Dalton T 44: 5331–5337. doi: 10.1039/C4DT02594F
![]() |
[29] |
Larsen R, Wojtas L (2015) Fixed distance photoinduced electron transfer between Fe and Zn porphyrins encapsulated within the Zn HKUST-1 metal organic framework. Dalton T 44: 2959– 2963. doi: 10.1039/C4DT02685C
![]() |
[30] |
McKinlay A, Morris R, Horcajada P, et al. (2010) BioMOFs: metal–organic frameworks for biological and medical applications. Angew Chem Int Edit 49: 6260–6266. doi: 10.1002/anie.201000048
![]() |
[31] |
Hinks N, McKinlay A, Xiao B, et al. (2010) Metal organic frameworks as NO delivery materials for biological applications. Micropor Mesopor Mat 129: 330–334. doi: 10.1016/j.micromeso.2009.04.031
![]() |
[32] |
Eddaoudi M, Moler D, Li H, et al. (2001) Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal–Organic Carboxylate Frameworks. Accounts Chem Res 34: 319–330. doi: 10.1021/ar000034b
![]() |
[33] |
Nouar F, Eubank J, Bousquet T, et al. (2008) Supermolecular Building Blocks (SBBs) for the Design and Synthesis of Highly Porous Metal–Organic Frameworks. J Am Chem Soc 130: 1833–1835. doi: 10.1021/ja710123s
![]() |
[34] | Figueroa J, Fout T, Plasynski S, et al. (2008) Advances in CO2 capture technology-The U.S. Department of Energy's Carbon Sequestration Program. Int J Greenh Gas Con 2: 9–20. |
[35] |
Chen K, Scott H, Madden D, et al. (2016) Benchmark C2H2/CO2 and CO2/C2H2 Separation by Two Closely Related Hybrid Ultramicroporous Materials. Chem 1: 753–765. doi: 10.1016/j.chempr.2016.10.009
![]() |
[36] |
Scott H, Shivanna M, Bajpai A, et al. (2017) Highly Selective Separation of C2H2 from CO2 by a New Dichromate-Based Hybrid Ultramicroporous Material. ACS Appl Mater Inter 9: 33395–33400. doi: 10.1021/acsami.6b15250
![]() |
[37] | Xie DY, Xing HB, Zhang ZG, et al. (2017) Porous hydrogen-bonded organometallic frameworks for adsorption separation of acetylene and carbon dioxide. CIESC J 68: 154–162. |
[38] |
Thomas-Gipson J, Beobide G, Castillo O, et al. (2011) Porous supramolecular compound based on paddle-wheel shaped copper (II)–adenine dinuclear entities. CrystEngComm 13: 3301–3305. doi: 10.1039/c1ce05195d
![]() |
[39] |
Thomas-Gipson J, Beobide G, Castillo O, et al. (2014) Paddle-Wheel Shaped Copper(II)-Adenine Discrete Entities As Supramolecular Building Blocks To Afford Porous Supramolecular Metal–Organic Frameworks (SMOFs). Cryst Growth Des 14: 4019–4029. doi: 10.1021/cg500634y
![]() |
[40] |
Chui S, Lo S, Charmant J, et al. (1999) A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 283: 1148–1150. doi: 10.1126/science.283.5405.1148
![]() |
[41] |
Pham T, Forrest K, Chen K, et al. (2016) Theoretical Investigations of CO2 and H2 Sorption in Robust Molecular Porous Materials. Langmuir 32: 11492–11505. doi: 10.1021/acs.langmuir.6b03161
![]() |
[42] | Nugent P, Rhodus V, Pham T, et al. (2013) A robust molecular porous material with high CO2 uptake and selectivity. J Am Chem Soc 68: 154–162. |
[43] |
Belof J, Stern A, Space B (2008) An Accurate and Transferable Intermolecular Diatomic Hydrogen Potential for Condensed Phase Simulation. J Chem Theory Comput 4: 1332–1337. doi: 10.1021/ct800155q
![]() |
[44] |
Rappé A, Casewit C, Colwell K, et al. (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114: 10024–10035. doi: 10.1021/ja00051a040
![]() |
[45] |
Van Duijnen P, Swart M (1998) Molecular and Atomic Polarizabilities: Thole's Model Revisited. J Phys Chem A 102: 2399–2407. doi: 10.1021/jp980221f
![]() |
[46] | Forrest K, Pham T, McLaughlin K, et al. (2012) Simulation of the Mechanism of Gas Sorption in a Metal–Organic Framework with Open Metal Sites: Molecular Hydrogen in PCN-61. J Phys Chem C 116: 155 38–155549. |
[47] | Breneman C, Wiberg K (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11: 361–373. |
[48] |
Valiev M, Bylaska EJ, Govind N, et al. (2010) NWChem: A comprehensive and scalable opensource solution for large scale molecular simulations. Comput Phys Commun 181: 1477–1489. doi: 10.1016/j.cpc.2010.04.018
![]() |
[49] |
Mullen A, Pham T, Forrest K, et al. (2013) A Polarizable and Transferable PHAST CO2 Potential for Materials Simulation. J Chem Theory Comput 9: 5421–5429. doi: 10.1021/ct400549q
![]() |
[50] | Potoff J, Siepmann J (2001) Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J 47: 16761682. |
[51] |
Metropolis N, Rosenbluth A, Rosenbluth M, et al. (1953) Equation of state calculations by fast computing machines. J Chem Phys 21: 1087–1092. doi: 10.1063/1.1699114
![]() |
[52] | Massively Parallel Monte Carlo (MPMC), 2012. Available from: https://github.com/mpmccode/mpmc. |
[53] | Monte Carlo-Molecular Dynamics (MCMD), 2017. Available from: https://github.com/khavernathy/mcmd. |
[54] |
Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by Simulated Annealing. Science 220: 671–680. doi: 10.1126/science.220.4598.671
![]() |
[55] |
Dincă M, Dailly A, Liu Y, et al. (2006) Hydrogen Storage in a Microporous Metal–Organic Framework with Exposed Mn2+ Coordination Sites. J Am Chem Soc 128: 16876–16883. doi: 10.1021/ja0656853
![]() |
[56] |
Pham T, Forrest K, McLaughlin K, et al. (2013) Theoretical Investigations of CO2 and H2 Sorption in an Interpenetrated Square-Pillared Metal–Organic Material. J Phys Chem C 117: 9970–9982. doi: 10.1021/jp402764s
![]() |
[57] | Nicholson D, Parsonage N (1982) Computer Simulation and the Statistical Mechanics of Adsorption, Academic Press. |
[58] |
Bae Y, Mulfort K, Frost H, et al. (2008) Separation of CO2 from CH2 Using Mixed-Ligand Metal–Organic Frameworks. Langmuir 24: 8592–8598. doi: 10.1021/la800555x
![]() |
[59] |
Goj A, Sholl D, Akten E, et al. (2002) Atomistic Simulations of CO2 and N2 Adsorption in Silica Zeolites: The Impact of Pore Size and Shape. J Phys Chem B 106: 8367–8375. doi: 10.1021/jp025895b
![]() |
[60] |
Akten E, Siriwardane R, Sholl D (2003) Monte Carlo Simulation of Single- and Binary-Component Adsorption of CO2, N2, and H2 in Zeolite Na-4A. Energ Fuel 17: 977–983. doi: 10.1021/ef0300038
![]() |
[61] |
Harris J, Yung K (1995) Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J Phys Chem 99: 12021–12024. doi: 10.1021/j100031a034
![]() |
1. | Douglas M. Franz, Jonathan L. Belof, Keith McLaughlin, Christian R. Cioce, Brant Tudor, Adam Hogan, Luciano Laratelli, Meagan Mulcair, Matthew Mostrom, Alejandro Navas, Abraham C. Stern, Katherine A. Forrest, Tony Pham, Brian Space, MPMC and MCMD: Free High‐Performance Simulation Software for Atomistic Systems, 2019, 2, 2513-0390, 1900113, 10.1002/adts.201900113 | |
2. | Yu-Yun Lin, Fu-Yu Liu, I-Chia Chen, Hwei-Yan Tsai, Jhen-Wei Huang, Jia-Hao Lin, Chiing-Chang Chen, Photocatalytic reduction of carbon dioxide by BiTeX (X = Cl, Br, I) under visible-light irradiation, 2024, 365, 03014797, 121536, 10.1016/j.jenvman.2024.121536 | |
3. | Yu-Yun Lin, Hong-Han Huang, Shiuh-Tsuen Huang, Fu-Yu Liu, Jia-Hao Lin, Chiing-Chang Chen, Synthesis, characterization, photocatalytic activity of selenium vacancy in BiSeX and BiSeX/GO (X = Cl、Br、I) photocatalysts, 2025, 10106030, 116330, 10.1016/j.jphotochem.2025.116330 |
CO | C | ||||||
MPM-1-Cl | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
23.76 | 22.77 | 24.33 | 26.22 | 28.57 | 25.49 | 25.65 | |
0.05 atm loading, 273 K | 0.26 | 0.23 | 0.36 | 0.80 | 0.80 | 1.08 | 0.81 |
1.0 atm loading, 273 K | 3.50 | 3.63 | 4.75 | 5.06 | 3.86 | 5.05 | 5.25 |
0.05 atm loading, 298 K | 0.12 | 0.13 | 0.17 | 0.35 | 0.34 | 0.34 | 0.25 |
1.0 atm loading, 298 K | 1.97 | 2.07 | 2.74 | 3.60 | 2.78 | 4.21 | 4.57 |
MPM-1-Br | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
21.61 | 25.02 | 25.57 | 25.40 | 25.05 | 30.61 | 27.55 | |
0.05 atm loading, 273 K | 0.19 | 0.23 | 0.33 | 0.51 | 0.81 | 1.41 | 1.23 |
1.0 atm loading, 273 K | 2.54 | 2.52 | 3.20 | 3.77 | 3.59 | 3.69 | 3.66 |
0.05 atm loading, 298 K | 0.12 | 0.11 | 0.13 | 0.20 | 0.43 | 0.34 | 0.22 |
1.0 atm loading, 298 K | 1.56 | 1.52 | 1.80 | 2.47 | 2.82 | 3.31 | 3.30 |
MPM-1-Cl | Binding energy (kJ mol | Steps ( | Final Temp. (K) |
CO | 2.37 | 113 | |
C | 2.46 | 125 | |
MPM-1-Br | |||
CO | 3.24 | 129 | |
C | 4.53 | 150 |
CO | C | ||||||
MPM-1-Cl | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
23.76 | 22.77 | 24.33 | 26.22 | 28.57 | 25.49 | 25.65 | |
0.05 atm loading, 273 K | 0.26 | 0.23 | 0.36 | 0.80 | 0.80 | 1.08 | 0.81 |
1.0 atm loading, 273 K | 3.50 | 3.63 | 4.75 | 5.06 | 3.86 | 5.05 | 5.25 |
0.05 atm loading, 298 K | 0.12 | 0.13 | 0.17 | 0.35 | 0.34 | 0.34 | 0.25 |
1.0 atm loading, 298 K | 1.97 | 2.07 | 2.74 | 3.60 | 2.78 | 4.21 | 4.57 |
MPM-1-Br | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
21.61 | 25.02 | 25.57 | 25.40 | 25.05 | 30.61 | 27.55 | |
0.05 atm loading, 273 K | 0.19 | 0.23 | 0.33 | 0.51 | 0.81 | 1.41 | 1.23 |
1.0 atm loading, 273 K | 2.54 | 2.52 | 3.20 | 3.77 | 3.59 | 3.69 | 3.66 |
0.05 atm loading, 298 K | 0.12 | 0.11 | 0.13 | 0.20 | 0.43 | 0.34 | 0.22 |
1.0 atm loading, 298 K | 1.56 | 1.52 | 1.80 | 2.47 | 2.82 | 3.31 | 3.30 |
MPM-1-Cl | Binding energy (kJ mol | Steps ( | Final Temp. (K) |
CO | 2.37 | 113 | |
C | 2.46 | 125 | |
MPM-1-Br | |||
CO | 3.24 | 129 | |
C | 4.53 | 150 |