Citation: Yong X. Chen, Brian Cain, Pranav Soman. Gelatin methacrylate-alginate hydrogel with tunable viscoelastic properties[J]. AIMS Materials Science, 2017, 4(2): 363-369. doi: 10.3934/matersci.2017.2.363
[1] | Tayalia P, Mendonca CR, Baldacchini T, et al. (2008) 3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds. Adv Mater 20: 4494–4498. doi: 10.1002/adma.200801319 |
[2] | Annabi N, Tamayol A, Uquillas JA, et al. (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26: 85–124. doi: 10.1002/adma.201303233 |
[3] | Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101: 1869–1880. doi: 10.1021/cr000108x |
[4] | Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103: 655–663. doi: 10.1002/bit.22361 |
[5] | Storm C, Pastore JJ, MacKintosh FC, et al. (2005) Nonlinear elasticity in biological gels. Nature 435: 191–194. doi: 10.1038/nature03521 |
[6] | Wen Q, Janmey PA (2013) Effects of nonlinearity on cell-ECM interactions. Exp Cell Res 319: 2481–2489. doi: 10.1016/j.yexcr.2013.05.017 |
[7] | Burdick JA, Murphy WL (2012) Moving from static to dynamic complexity in hydrogel design. Nat Commun 3: 1269. doi: 10.1038/ncomms2271 |
[8] | McKinnon DD, Domaille DW, Cha JN, et al. (2014) Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv Mater 26: 865–872. doi: 10.1002/adma.201303680 |
[9] | Hong X, Stegemann JP, Deng CX (2016) Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography. Biomaterials 88: 12–24. doi: 10.1016/j.biomaterials.2016.02.019 |
[10] | Wang H, Heilshorn SC (2015) Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater 27: 3717–3736. doi: 10.1002/adma.201501558 |
[11] | Sun TL, Kurokawa T, Kuroda S, et al. (2013) Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 12: 932–937. |
[12] | Rodell CB, MacArthur JW, Dorsey SM, et al. (2015) Shear-Thinning Supramolecular Hydrogels with Secondary Autonomous Covalent Crosslinking to Modulate Viscoelastic Properties In Vivo. Adv Funct Mater 25: 636–644. doi: 10.1002/adfm.201403550 |
[13] | Chaudhuri O, Gu L, Klumpers D, et al. (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15: 326–334. |
[14] | Gillette BM, Jensen JA, Wang M, et al. (2010) Dynamic Hydrogels: Switching of 3D Microenvironments Using Two-Component Naturally Derived Extracellular Matrices. Adv Mater 22: 686–691. doi: 10.1002/adma.200902265 |
[15] | Park H, Kang SW, Kim BS, et al. (2009) Shear-reversibly crosslinked alginate hydrogels for tissue engineering. Macromol Biosci 9: 895–901. doi: 10.1002/mabi.200800376 |
[16] | Stowers RS, Allen SC, Suggs LJ (2015) Dynamic phototuning of 3D hydrogel stiffness. Proceedings of the National Academy of Sciences, 112: 1953–1958. |
[17] | Gonen-Wadmany M, Oss-Ronen L, Seliktar D (2007) Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering. Biomaterials 28: 3876–3886. doi: 10.1016/j.biomaterials.2007.05.005 |
[18] | Nichol JW, Koshy ST, Bae H, et al. (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31: 5536–5544. doi: 10.1016/j.biomaterials.2010.03.064 |
[19] | Soman P, Chung PH, Zhang AP, et al. (2013) Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng 110: 3038–3047. doi: 10.1002/bit.24957 |
[20] | Fairbanks BD, Singh SP, Bowman CN, et al. (2011) Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction. Macromolecules 44: 2444–2450. doi: 10.1021/ma200202w |
[21] | Chen YX, Yang S, Yan J, et al. (2015) A Novel Suspended Hydrogel Membrane Platform for Cell Culture. J Nanotechnol Eng Med 6: 021002. doi: 10.1115/1.4031231 |