Citation: Phuong Tran, Linh Nguyen, Huong Nguyen, Bong Nguyen, Linh Nong , Linh Mai, Huyen Tran, Thuy Nguyen, Hai Pham. Effects of inoculation sources on the enrichment and performance of anode bacterial consortia in sensor typed microbial fuel cells[J]. AIMS Bioengineering, 2016, 3(1): 60-74. doi: 10.3934/bioeng.2016.1.60
[1] | Ha PT, Tae B, Chang IS (2008) Performance and bacterial consortium of microbial fuel cell fed with formate. Energ Fuels 22: 164–168. doi: 10.1021/ef700294x |
[2] | Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25: 464–482. doi: 10.1016/j.biotechadv.2007.05.004 |
[3] | Logan BE (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40: 5181–5192. doi: 10.1021/es0605016 |
[4] | Kim HJ, Hyun MS, Chang IS, et al. (1999) A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechn 9: 365–367. |
[5] | Kim BH, Chang IS, Gil GC, et al. (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25: 541–545. doi: 10.1023/A:1022891231369 |
[6] | Chang IS, Jang JK, Gil GC, et al. (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19: 607–613. doi: 10.1016/S0956-5663(03)00272-0 |
[7] | Gil GC, Chang IS, Kim BH, et al. (2003) Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens Bioelectron 18: 327–334. doi: 10.1016/S0956-5663(02)00110-0 |
[8] | Moon H, Chang IS, Kang KH, et al. (2004) Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol Lett 26: 1717–1721. doi: 10.1007/s10529-004-3743-5 |
[9] | Kim M, Hyun MS, Gadd GM, et al. (2007) A novel biomonitoring system using microbial fuel cells. J Environ Monitor 9: 1323–1328. doi: 10.1039/b713114c |
[10] | van der Schalie WH, Shedd TR, Knechtges PL, et al. (2001) Using higher organisms in biological early warning systems for real-time toxicity detection. Biosens Bioelectron 16: 457–465. doi: 10.1016/S0956-5663(01)00160-9 |
[11] | Ren Z, Zha J, Ma M, et al. (2007) The early warning of aquatic organophosphorus pesticide contamination by on-line monitoring behavioral changes of Daphnia magna. Environ Monit Assess 134: 373–383. doi: 10.1007/s10661-007-9629-y |
[12] | Pham TH, Boon N, Aelterman P, et al. (2008) High shear enrichment improve the performance of the anodophillic microbial consortium in a microbial fuel cell. Microb Biotechnol 1: 487–496. doi: 10.1111/j.1751-7915.2008.00049.x |
[13] | Pham H, Boon N, Marzorati M, et al. (2009) Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia. Water Res 43: 2936–2946. doi: 10.1016/j.watres.2009.04.004 |
[14] | Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14: 512–518. doi: 10.1016/j.tim.2006.10.003 |
[15] | Rabaey K, Boon N, Siciliano SD, et al. (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70: 5373–5382. doi: 10.1128/AEM.70.9.5373-5382.2004 |
[16] | Vázquez-Larios AL, Poggi-Varaldo HM, Solorza-Feria O, et al. (2015) Effect of type of inoculum on microbial fuel cell performance that used RuxMoySez as cathodic catalyst. Int J Hydrogen Energ 40: 17402–17412. doi: 10.1016/j.ijhydene.2015.09.143 |
[17] | Ortega-Martínez AC, Juárez-López K, Solorza-Feria O, et al. (2013) Analysis of microbial diversity of inocula used in a five-face parallelepiped and standard microbial fuel cells. Int J Hydrogen Energ 38: 12589–12599. doi: 10.1016/j.ijhydene.2013.02.023 |
[18] | Li XM, Cheng KY, Selvam A, et al. (2013) Bioelectricity production from acidic food waste leachate using microbial fuel cells: Effect of microbial inocula. Process Biochem 48: 283–288. doi: 10.1016/j.procbio.2012.10.001 |
[19] | Greenberg A, Clesceri LS, Eaton AD (1992) Standard Methods for the Examination of Water and Wastewater, 18th Eds., Washington: American Public Health Association. |
[20] | Boon N, De Gelder L, Lievens H, et al. (2002) Bioaugmenting bioreactors for the continuous removal of 3-chloroaniline by a slow release approach. Environ Sci Technol 36: 4698–4704. doi: 10.1021/es020076q |
[21] | Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695–700. |
[22] | Boon N, De Windt W, Verstraete W, et al. (2002) Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol Ecol 39: 101–112. |
[23] | Altschul SF, Gish W., Miller W, et al. (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. doi: 10.1016/S0022-2836(05)80360-2 |
[24] | Kim JR, Beecroft NJ, Varcoe JR, et al. (2011) Spatiotemporal development of the bacterial community in a tubular longitudinal microbial fuel cell. Appl Microbiol Biotechnol 90: 1179–1191. doi: 10.1007/s00253-011-3181-y |
[25] | Stein NE, Hamelers HVM, Buisman CNJ (2012) The effect of different control mechanisms on the sensitivity and recovery time of a microbial fuel cell based biosensor. Sensors and Actuators B: Chemical 171–172: 816–821. |
[26] | Lower SK, Hochella MF, Beveridge TJ (2001) Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha-FeOOH. Science 292: 1360–1363. doi: 10.1126/science.1059567 |
[27] | Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Micro 7: 375–381. doi: 10.1038/nrmicro2113 |
[28] | Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71: 2186–2189. doi: 10.1128/AEM.71.4.2186-2189.2005 |
[29] | Huang JS, Guo Y, Yang P, et al. (2014) Performance evaluation and bacteria analysis of AFB-MFC enriched with high-strength synthetic wastewater. Water Sci Technol 69: 9–14. doi: 10.2166/wst.2013.390 |
[30] | Rabaey K, Rodriguez J, Blackall LL, et al. (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1: 9–18. doi: 10.1038/ismej.2007.4 |
[31] | Vázquez-Larios AL, Solorza-Feria O, Vázquez-Huerta G, et al. (2011) Effects of architectural changes and inoculum type on internal resistance of a microbial fuel cell designed for the treatment of leachates from the dark hydrogenogenic fermentation of organic solid wastes. Int J Hydrogen Energ 36: 6199–6209. doi: 10.1016/j.ijhydene.2011.01.006 |
[32] | Kim GT, Webster G, Wimpenny JW, et al. (2006) Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microbiol 101: 698–710. doi: 10.1111/j.1365-2672.2006.02923.x |
[33] | Madigan MT, Martinko J, Parker J (2004) Brock Biology of Microorganisms. NJ: Pearson Education Inc. 991. |
[34] | Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23: 291–298. doi: 10.1016/j.tibtech.2005.04.008 |
[35] | Pham TH, Boon N, De Maeyer K, et al. (2008) Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Appl Microbiol Biotechnol 80: 985–993. doi: 10.1007/s00253-008-1619-7 |
[36] | Rabaey K, Boon N, Hofte M, et al. (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39: 3401–3408. doi: 10.1021/es048563o |