Citation: Bashir Sajo Mienda, Mohd Shahir Shamsir. An overview of pathway prediction tools for synthetic design of microbial chemical factories[J]. AIMS Bioengineering, 2015, 2(1): 1-14. doi: 10.3934/bioeng.2015.1.1
[1] | Chou CH, Chang WC, Chiu CM, et al.( 2009) FMM: a web server for metabolic pathway reconstruction and comparative analysis. Nucleic Acids Res 37: W129–34. |
[2] | Hatzimanikatis V, Li C, Ionita JA, et al. (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21: 1603–1609. |
[3] | Henry CS, Broadbelt LJ, Hatzimanikatis V (2010) Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol Bioeng 106: 462–473. |
[4] | Rodrigo G, Carrera J, Prather KJ, et al. (2008) DESHARKY: Automatic design of metabolic pathways for optimal cell growth. Bioinformatics 24: 2554–2556. |
[5] | Carbonell P, Planson AG, Fichera D, et al. (2011) A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst Biol 5: 122. doi: 10.1186/1752-0509-5-122 |
[6] | Carbonell P, Planson AG, Faulon JL (2013) Retrosynthetic design of heterologous pathways, in Methods Mol Biol. Springer Science+Business Media, LLC. 149–173. |
[7] | Cho A, Yun H, Park JH, et al. (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 4: 35. doi: 10.1186/1752-0509-4-35 |
[8] | Chatsurachai S, Furusawa C, Shimizu H (2012) An in silico platform for the design of heterologous pathways in nonnative metabolite production. BMC Bioinformatics 13: 93. doi: 10.1186/1471-2105-13-93 |
[9] | Kanehisa M, Goto S, Sato Y, et al. (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40: D109–114. |
[10] | Medema MH, van Raaphorst R, Takano E, et al. (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10: 191–202. |
[11] | Khosla C, Keasling JD (2003) Metabolic Engineering for drug discovery and development. Nat Rev Drug Discov 2: 1019–1025. |
[12] | Mienda BS, Shamsir MS (2013) Thermotolerant micro-organisms in Consolidated Bioprocessing for ethanol production: A review. Res Biotechnol 4: 1–6. |
[13] | Schomburg I, Chang A, Placzek S, et al. (2013) BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res 41: D764–772. |
[14] | Schellenberger J, Park JO, Conrad TM, et al. (2010) BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11: 213. doi: 10.1186/1471-2105-11-213 |
[15] | Le Novere N, Bornstein B, Broicher A, et al. (2006) BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34: D689–691. |
[16] | Rocha I, Maia P, Evangelista P, et al. (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4: 45. doi: 10.1186/1752-0509-4-45 |
[17] | Hoops S, Sahle S, Gauges R, et al. (2006) COPASI--a COmplex PAthway SImulator. Bioinformatics 22: 3067–74. |
[18] | Schaber J (2012) Easy parameter identifiability analysis with COPASI. Biosystems 110: 183–5. |
[19] | Planson AG, Carbonell P, Paillard E, et al. (2012) Compound toxicity screening and structure-activity relationship modeling in Escherichia coli. Biotechnol Bioeng 109: 846–850. |
[20] | Fehér T, Planson AG, Carbonell P, et al. (2014) Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering. Biotechnol J 9: 1446–1457. |
[21] | Planson AG, Carbonell P, Grigoras I, et al. (2012) A retrosynthetic biology approach to therapeutics: from conception to delivery. Curr Opin Biotechnol 23: 948–956. |
[22] | Fernandez-Castane A, Feher T, Carbonell P, et al. (2014) Computer-aided design for metabolic engineering. J Biotechnol 192: 302–313. |
[23] | Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451: 86–89. |
[24] | Reed JL, Vo TD, Schilling CH, et al. (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4: R54. doi: 10.1186/gb-2003-4-9-r54 |
[25] | Shinfuku Y, Sorpitiporn N, Sono M, et al. (2009) Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb Cell Fact 8: 43. doi: 10.1186/1475-2859-8-43 |
[26] | Mo ML, Palsson BO, Herrgard MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3: 37. doi: 10.1186/1752-0509-3-37 |
[27] | Becker SA, Feist AM, Mo ML, et al. (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2: 727–738. |
[28] | Schellenberger J, Que R, Fleming RM, et al. (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6: 1290–1307. |
[29] | Trinh CT, Wlaschin A, Srienc F (2009) Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol 81: 813–826. |
[30] | Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: A computational framework for redesign of microbial production systems. Genome Res 14: 2367–2376. |
[31] | Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657. |
[32] | Mienda BS, Shamsir MS, Shehu I, et al. (2014) In Silico Metabolic Engineering Interventions of Escherichia coli for Enhanced Ethanol Production, Based on Gene Knockout Simulation. IIOAB J 5: 16–23. |
[33] | Mienda BS, Shamsir MS (2014) In silico Gene knockout metabolic interventions in Escherichia coli for Enhanced Ethanol production on Glycerol. Res J Pharm Biol Chem Sci 5: 964–974. |
[34] | Mienda BS, Shamsir MS, Salleh FM (2014) In silico metabolic engineering prediction of Escherichia coli genome model for production of D-lactic acid from glycerol using the OptFlux software platform. Int J Computational Bioinformatics In Silico Modeling 3: 460–465. |
[35] | Dhamankar H, Prather KL (2011) Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals. Curr Opin Struct Biol 21: 488–494. |