Processing math: 100%
Review

What Synthesis Methodology Should I Use? A Review and Analysis of Approaches to Research Synthesis.

  • Received: 10 November 2015 Accepted: 28 March 2016 Published: 30 March 2016
  • Background: When we began this process, we were doctoral students and a faculty member in a research methods course. As students, we were facing a review of the literature for our dissertations. We encountered several different ways of conducting a review but were unable to locate any resources that synthesized all of the various synthesis methodologies. Our purpose is to present a comprehensive overview and assessment of the main approaches to research synthesis. We use ‘research synthesis’ as a broad overarching term to describe various approaches to combining, integrating, and synthesizing research findings. Methods: We conducted an integrative review of the literature to explore the historical, contextual, and evolving nature of research synthesis. We searched five databases, reviewed websites of key organizations, hand-searched several journals, and examined relevant texts from the reference lists of the documents we had already obtained. Results: We identified four broad categories of research synthesis methodology including conventional, quantitative, qualitative, and emerging syntheses. Each of the broad categories was compared to the others on the following: key characteristics, purpose, method, product, context, underlying assumptions, unit of analysis, strengths and limitations, and when to use each approach. Conclusions: The current state of research synthesis reflects significant advancements in emerging synthesis studies that integrate diverse data types and sources. New approaches to research synthesis provide a much broader range of review alternatives available to health and social science students and researchers.

    Citation: Kara Schick-Makaroff, Marjorie MacDonald, Marilyn Plummer, Judy Burgess, Wendy Neander. What Synthesis Methodology Should I Use? A Review and Analysis of Approaches to Research Synthesis.[J]. AIMS Public Health, 2016, 3(1): 172-215. doi: 10.3934/publichealth.2016.1.172

    Related Papers:

    [1] Hyunjin Ahn, Myeongju Kang . Emergent dynamics of various Cucker–Smale type models with a fractional derivative. Mathematical Biosciences and Engineering, 2023, 20(10): 17949-17985. doi: 10.3934/mbe.2023798
    [2] Jingyi He, Changchun Bao, Le Li, Xianhui Zhang, Chuangxia Huang . Flocking dynamics and pattern motion for the Cucker-Smale system with distributed delays. Mathematical Biosciences and Engineering, 2023, 20(1): 1505-1518. doi: 10.3934/mbe.2023068
    [3] Le Li, Lihong Huang, Jianhong Wu . Flocking and invariance of velocity angles. Mathematical Biosciences and Engineering, 2016, 13(2): 369-380. doi: 10.3934/mbe.2015007
    [4] Fei Cao, Sebastien Motsch, Alexander Reamy, Ryan Theisen . Asymptotic flocking for the three-zone model. Mathematical Biosciences and Engineering, 2020, 17(6): 7692-7707. doi: 10.3934/mbe.2020391
    [5] Jan Haskovec, Ioannis Markou . Exponential asymptotic flocking in the Cucker-Smale model with distributed reaction delays. Mathematical Biosciences and Engineering, 2020, 17(5): 5651-5671. doi: 10.3934/mbe.2020304
    [6] Pedro Aceves-Sánchez, Mihai Bostan, Jose-Antonio Carrillo, Pierre Degond . Hydrodynamic limits for kinetic flocking models of Cucker-Smale type. Mathematical Biosciences and Engineering, 2019, 16(6): 7883-7910. doi: 10.3934/mbe.2019396
    [7] Xuewu Wang, Bin Tang, Xin Zhou, Xingsheng Gu . Double-robot obstacle avoidance path optimization for welding process. Mathematical Biosciences and Engineering, 2019, 16(5): 5697-5708. doi: 10.3934/mbe.2019284
    [8] Zhen Yang, Junli Li, Liwei Yang, Qian Wang, Ping Li, Guofeng Xia . Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments. Mathematical Biosciences and Engineering, 2023, 20(1): 145-178. doi: 10.3934/mbe.2023008
    [9] Yuzhuo Shi, Huijie Zhang, Zhisheng Li, Kun Hao, Yonglei Liu, Lu Zhao . Path planning for mobile robots in complex environments based on improved ant colony algorithm. Mathematical Biosciences and Engineering, 2023, 20(9): 15568-15602. doi: 10.3934/mbe.2023695
    [10] Jing Yin, Jiahao Li, Yifan Fang, Ahui Yang . Service scheduling optimization for multiple tower cranes considering the interval time of the cross-tasks. Mathematical Biosciences and Engineering, 2023, 20(3): 5993-6015. doi: 10.3934/mbe.2023259
  • Background: When we began this process, we were doctoral students and a faculty member in a research methods course. As students, we were facing a review of the literature for our dissertations. We encountered several different ways of conducting a review but were unable to locate any resources that synthesized all of the various synthesis methodologies. Our purpose is to present a comprehensive overview and assessment of the main approaches to research synthesis. We use ‘research synthesis’ as a broad overarching term to describe various approaches to combining, integrating, and synthesizing research findings. Methods: We conducted an integrative review of the literature to explore the historical, contextual, and evolving nature of research synthesis. We searched five databases, reviewed websites of key organizations, hand-searched several journals, and examined relevant texts from the reference lists of the documents we had already obtained. Results: We identified four broad categories of research synthesis methodology including conventional, quantitative, qualitative, and emerging syntheses. Each of the broad categories was compared to the others on the following: key characteristics, purpose, method, product, context, underlying assumptions, unit of analysis, strengths and limitations, and when to use each approach. Conclusions: The current state of research synthesis reflects significant advancements in emerging synthesis studies that integrate diverse data types and sources. New approaches to research synthesis provide a much broader range of review alternatives available to health and social science students and researchers.


    The harmful use of alcohol causes a large disease, social and economic burden in societies. In 2012, about 3.3 million deaths, or $ 5.9\% $ of all global deaths, were attributable to alcohol consumption. Alcohol consumption can have an impact not only on the incidence of diseases, injuries and other health conditions, but also on the course of disorders and their outcomes in individuals [1]. According to a research report by the Shanghai Institute of Environmental Economics, the number of patients due to alcoholism has increased by 28.5 times, and the number of deaths has increased by 30.6 times in the past seven years [2]. Thus, it is very important to study drinking behavior.

    Recently, many authors have studied mathematical models of drinking [3,4,5,6,7,8,9]. Bani et al. [3] studied the influence of environmental factors on college alcohol drinking patterns. Mulone et al. [4] developed a two-stage (four compartments) model for youths with serious drinking problems and their treatment, and the stability of all the equilibria was obtained. Mushayabasa et al. [5] formulated a deterministic model for evaluating the impact of heavy alcohol drinking on the reemerging gonorrhea epidemic. Lee et al. [6] studied the optimal control intervention strategies in low- and high-risk problem drinking populations. Mubayi et al. [7] studied the impact of relative residence times on the distribution of heavy drinkers in highly distinct environments and found that alcohol consumption is a function of social dynamics, environmental contexts, individuals' preferences and family history. Huo, Chen and Xiang [8] introduced a more realistic binge drinking model with time delay, in which time delay is used to represent the time lag of the immunity against drinking. Xiang, Liu and Huo [9] proposed a new SAIRS alcoholism model with birth and death on complex heterogeneous networks.

    Media coverage is one of the effective ways to control alcoholism or infectious diseases, many authors have studied alcoholism or epidemic models with media coverage [10,11,12,13,14]. Cui et al. [10] developed a three dimensional compartmental model to investigate the impact of media coverage to the spread and control of infectious diseases. Pawelek et al. [11] studied the impact of twitter on influenza epidemics. Huo and Zhang [12] introduced a more realistic mathematical influenza model including dynamics of Twitter, which might reduce and increase the spread of influenza. Huo and Zhang [13] formulated a novel alcoholism model which involved impact of Twitter and investigated the occurrence of backward, forward bifurcation and Hopf bifurcation. Huo and Yang [14] introduced a novel SEIS epidemic model with the impact of media. Above results show that media coverage can regard as a good indicator in controlling the emergence and spread of the epidemic disease or alcoholism. Many scholars have done a lot of researches on drinking or infectious diseases with or without media coverage [15,16,17,18,19,20,21,22].

    Alcoholism can be defined as a pattern of alcohol use that compromises the health and safety of oneself and others. There are a variety of treatment methods currently available, such as behavioral treatments, medications and mutual-support Groups [23]. The goal of a person pursuing treatment is to abstain from alcohol or to cut back on drinking. Many people have studied the epidemic or alcoholism models with treatment [24,25,26].

    Motivated by the above [13,14], we set up a new alcoholism model with treatment and effect of Twitter in this paper. We derive the basic reproductive number of the model and study the stability of our model. Furthermore, we investigate the occurrence of backward and forward bifurcation.

    The organization of this paper is as follows: In Section 2, we present a new alcoholism model with treatment and effect of Twitter. In Section 3, we derive the basic reproductive number and study the stability of all equilibria. We also study the occurrence of backward and forward bifurcation. In Section 4, we perform some numerical simulations to illustrate and extend our main results. Sensitivity analysis and some discussion are given in last section.

    The total population in this model is divided into four compartments: $ S(t) $, $ L(t) $, $ H(t) $, $ R(t) $. $ S(t) $ represents the number of moderate drinkers, that is, the people who do not drink or drink within daily and weekly limits [13]. $ L(t) $ represents the number of light problem drinkers, that is, the drinkers who drink beyond daily or weekly ceiling [13]. $ H(t) $ represents the number of heavy problem drinkers, that is, the drinkers who drink far more than daily and weekly limits [13]. $ R(t) $ represents the number of quitting drinkers, that is, the people who quit problem drinking by treatment permanently. $ T(t) $ represents the number of messages that Twitter provide about alcoholism at time t. The total number of population at time t is given by

    $ N(t) = S(t)+L(t)+H(t)+R(t). $

    The population flowing among those compartments is shown in the following diagram (Figure 1).

    Figure 1.  Flowchart of the alcoholism model with the influence of Twitter.

    The diagram leads to the following system of ordinary differential equations:

    $ {dSdt=Λ+qHβSHeαTα1S,dLdt=βSHeαTρLα1L,dHdt=ρLγHqH(α1+α2)H,dRdt=γHα1R,dTdt=μ1S+μ2L+μ3H+μ4RτT.
    $
    (2.1)

    Where all the parameters are positive constants and $ \Lambda $ is the recruitment rate of the population. $ \alpha_{1} $ is the natural death rate. $ \alpha_{2} $ is the alcoholism-related death rate. $ \beta $ is the rate of transmission between moderate drinkers and heavy problem drinkers, and it is reduced by a factor $ e^{-\alpha T} $ due to the behavior change of the public after reading information about alcoholism. $ \alpha $ is the coefficient that determines how effective the drinking information can reduce the transmission rate. $ \tau $ is outdated-rate of tweets. $ \rho $ is the transmission rate from the light problem drinkers to the heavy problem drinkers. After treatment, the transfer rate of the heavy problem drinkers to the moderate drinkers is $ q $, the transfer rate of the heavy problem drinkers to the quitting drinkers is $ \gamma $. $ \mu_{i}(i = 1, 2, 3, 4 $) are the rates that moderate drinkers, light problem drinkers, heavy problem drinkers and quitting drinkers may tweet about alcoholism during an alcoholism occasion, respectively.

    Adding the first four equations of system (2.1), we have

    $ \frac{\mbox{d}N}{\mbox{d}t} = \frac{\mbox{d}S}{\mbox{d}t}+\frac{\mbox{d}L}{\mbox{d}t}+\frac{\mbox{d}H}{\mbox{d}t}+\frac{\mbox{d}R}{\mbox{d}t} = \Lambda-\alpha_{1}N-\alpha_{2}H\leq \Lambda-\alpha_{1}N. $

    Then it follows that $ \underset{t\rightarrow\infty}{\lim} \sup N(t)\leq\frac{\Lambda}{\alpha_{1}} $.

    According to the fifth equation of system (2.1), we obtain

    $ \frac{\mbox{d}T}{\mbox{d}t} = \mu_{1}S+\mu_{2}L+\mu_{3}H+\mu_{4}R-\tau T\leq \frac{\Lambda (\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4})}{\alpha_{1}}-\tau T, $

    then it follows that $ \underset{t\rightarrow\infty}{\lim}\sup T(t)\leq\frac{\Lambda (\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4})}{\alpha_{1}\tau} $, so the set is

    $ Ω={(S,L,H,R,T)R5+:0S,L,H,RNΛα1,0TΛ(μ1+μ2+μ3+μ4)α1τ}.
    $
    (2.2)

    Therefore, we will consider the global stability of system (2.1) on the set $ \Omega $.

    It is easy to see that system (2.1) always has a alcohol free equilibrium $ P_{0} = (S_{0}, L_{0}, H_{0}, R_{0}, T_{0}) $, where

    $ S_{0} = \frac{\Lambda}{\alpha_{1}}, L_{0} = 0 , H_{0} = 0 , R_{0} = 0, T_{0} = \frac{\Lambda \mu_{1}}{\alpha_{1}\tau}. $

    By applying the method of the next generation matrix in [27], we obtain the basic reproduction number $ R_{0} $. System (2.1) can be written as

    $ \frac{\mbox{d}x}{\mbox{d}t} = F(x)-V(x), $

    where $ x = (L, S, H, R, T)^{T} $,

    $ F(x)=(βSHeαT0000),and V(x)=(ρL+α1LΛqH+βSHeαT+α1SρL+qH+γH+(α1+α2)HγH+α1Rμ1Sμ2Lμ3Hμ4R+τT).
    $

    The Jacobian matrices of $ F(x) $ and $ V(x) $ at the alcohol free equilibrium $ P_{0} $ are

    $ DF(P0)=(00Λβα1eαμ1Λα1τ0000000000000000000000),
    $

    and

    $ DV(P0)=(ρ+α100000α1Λβα1eαμ1Λα1τq00ρ0α1+α2+q+γ0000γα10μ2μ1μ3μ4τ).
    $

    Therefore, the basic reproduction number $ R_{0} $ is

    $ R0=Λβρeαμ1Λα1τα1(α1+ρ)(α1+α2+q+γ).
    $
    (3.1)

    Theorem 1. When $ R_{0} < 1 $ and $ T(t)\geq\frac{\Lambda \mu_{1}}{\alpha_{1}\tau} $, the alcohol free equilibrium $ P_{0} $ of system (2.1) is globally asymptotically stable; When $ R_{0} < 1 $ and $ T(t) < \frac{\Lambda \mu_{1}}{\alpha_{1}\tau} $, the alcohol free equilibrium $ P_{0} $ of system (2.1) is locally asymptotically stable; When $ R_{0} > 1 $, the alcohol free equilibrium $ P_{0} $ of system (2.1) is unstable.

    Proof. The characteristic equation of the system (2.1) at the alcohol free equilibrium $ P_{0} $ is

    $ |λ+α10Λβα1eαμ1Λα1τq000λ+(α1+ρ)Λβα1eαμ1Λα1τ000ρλ+(α1+α2+q+γ)0000γλ+α10μ1μ2μ3μ4λ+τ|=0.
    $
    (3.2)

    Therefore, Eq.(3.2) can be written as

    $ (λ+τ)(λ+α1)2[(λ+(α1+ρ))(λ+(α1+α2+q+γ))Λβρα1eαμ1Λα1τ]=0.
    $
    (3.3)

    Therefore, the three eigenvalues of the Eq.(3.2) are $ \lambda_{1} = -\tau $, $ \lambda_{2} = -\alpha_{1} $, $ \lambda_{3} = -\alpha_{1} $, and the other eigenvalues are determined by the equation

    $ (λ+(α1+ρ))(λ+(α1+α2+q+γ))Λβρα1eαμ1Λα1τ=0.
    $
    (3.4)

    Therefore, the Eq.(3.4) can be written as

    $ λ2+λ(2α1+α2+q+γ+ρ)+(α1+ρ)(α1+α2+q+γ)(1R0)=0.
    $
    (3.5)

    By Viete theorem, we have

    $ \lambda_{4}+\lambda_{5} = -(2\alpha_{1}+\alpha_{2}+q+\gamma+\rho) \lt 0, $

    and

    $ \lambda_{4}\lambda_{5} = (\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)(1-R_{0}). $

    Thus, when $ R_{0} < 1 $, the alcohol free equilibrium $ P_{0} $ is locally asymptotically stable; when $ R_{0} > 1 $, the alcohol free equilibrium $ P_{0} $ is unstable.

    Define the Lyapunov function

    $ M(S,L,H,R,T)=ρL(t)+(α1+ρ)H(t).
    $

    It is clear that $ M(t)\geq0 $ and the equality holds if and only if $ L(t) = H(t) = 0 $. Differentiating $ M(S, L, H, R, T) $ and from the Eq.(2.2), we obtain $ S(t)\leq \frac{\Lambda}{\alpha_{1}} $. Therefore, when $ T(t)\geq \frac{\Lambda \mu_{1}}{\alpha_{1}\tau} $, we have

    $ dM(S,L,H,R,T)dt=ρdL(t)dt+(α1+ρ)dH(t)dt=ρ(βSHeαT(α1+ρ)L)+(α1+ρ)(ρL(α1+α2+γ+q)H)=[ρβSeαT(α1+ρ)(α1+α2+γ+q)]H[Λβρα1eαμ1Λα1τ(α1+ρ)(α1+α2+γ+q)]H=(α1+ρ)(α1+α2+γ+q)H[Λβρeαμ1Λα1τα1(α1+ρ)(α1+α2+γ+q)1]=(α1+ρ)(α1+α2+γ+q)H[R01].
    $
    (3.6)

    It follows that $ M(S, L, H, R, T) $ is bounded and non-increasing. Thus, $ \underset{t\rightarrow \infty}{\lim}M(S, L, H, R, T) $ exists. Note that $ R_{0} < 1 $ guarantees that $ \frac{\mbox{d}M(S, L, H, R, T)}{\mbox{d}t}\leq 0 $ for all $ t\geq 0 $. Consequently, for system (2.1) there holds

    $ \underset{t\rightarrow \infty}{\lim}L(t) = 0, \;\; \underset{t\rightarrow \infty}{\lim}H(t) = 0. $

    Hence, by LaSalle's Invariance Principle [28], the alcohol free equilibrium is globally attractive. We show that the alcohol free equilibrium $ P_{0} $ is globally asymptotic stability when $ R_{0} < 1 $.

    Theorem 2. (Ⅰ) When $ \theta = 0 $ and $ R_{0} > 1 $, the system (2.1) has a unique positive alcoholism equilibrium $ P_{0}^{*} $;

    (Ⅱ)When $ \theta \neq 0 $ and $ R_{0} > \max \{R_{01}, 1\} $, the system (2.1) has a unique positive alcoholism equilibrium $ P_{1}^{*} $;

    (Ⅲ)When $ R_{02} = R_{0} < \min \{R_{01}, 1\} $, the system (2.1) has a unique positive alcoholism equilibrium $ P_{2}^{*} $;

    (Ⅳ)When $ R_{02} < R_{0} < \min \{R_{01}, 1\} $, the system (2.1) has two different positive alcoholism equilibria $ P_{3}^{*} $ and $ P_{4}^{*} $.

    Proof. Assuming the right-hand sides of system (2.1) is $ 0 $, we have

    $ {Λ+qHβSHeαTα1S=0,βSHeαTρLα1L=0,ρLγHqH(α1+α2)H=0,γHα1R=0,μ1S+μ2L+μ3H+μ4RτT=0.
    $
    (3.7)

    Let $ (S, L, H, R, T) = (S^{*}, L^{*}, H^{*}, R^{*}, T^{*}) $ be the solution of Eq.(3.7), we have

    $ {Λ+qHβSHeαTα1S=0,βSHeαTρLα1L=0,ρLγHqH(α1+α2)H=0,γHα1R=0,μ1S+μ2L+μ3H+μ4RτT=0.
    $
    (3.8)

    By Eq.(3.8), we obtain

    $ S=Λα1+[ρq(α1+ρ)(α1+α2+γ+q)]Hα1ρ,
    $
    (3.9)
    $ L=(α1+α2+γ+q)Hρ,
    $
    (3.10)
    $ R=γHα1,
    $
    (3.11)
    $ T=Λμ1α1τ+Hα1ρτ[μ1qρμ1(α1+ρ)(α1+α2+q+γ)+α1μ2(α1+α2+q+γ)+α1μ3ρ+γμ4ρ].
    $
    (3.12)

    Combine the above Eqs.(3.9)-(3.12) and the first equation of Eq.(3.8), we have

    $ [1θHR01]R0=eθH,
    $
    (3.13)

    where

    $ R01=Λρθ(α1+ρ)(α1+α2+q+γ)ρq,
    $
    (3.14)

    and

    $ θ=α[μ1qρμ1(α1+ρ)(α1+α2+q+γ)+α1μ2(α1+α2+q+γ)+α1μ3ρ+γμ4ρ]α1ρτ.
    $
    (3.15)

    For the sake of simplicity, we define

    $ R02=R01e1R01.
    $
    (3.16)

    In what follows, we assume

    $ F(H)=R0R0R01θHeθH.
    $
    (3.17)

    Thus

    $ F(H)=θeθHR0R01θ,
    $
    (3.18)
    $ F(H)=θ2eθH.
    $
    (3.19)

    The following work is to discuss the properties of Eq.(3.17).

    (Ⅰ) When $ \theta = 0 $ and $ R_{0} > 1 $, the existence of the unique alcoholism equilibrium $ P^{*}_{0} $ of system (2.1) can be obtained by Eq.(3.13), as shown in line $ L_{4} $ of Figure 2, where

    $ H0=Λρ(α1+ρ)(α1+α2+q+γ)ρq(11R0),S0=Λα1Λα1(11R0),L0=Λ(α1+α2+q+γ)(α1+ρ)(α1+α2+q+γ)ρq(11R0),R0=Λγρα1[(α1+ρ)(α1+α2+q+γ)ρq](11R0),T0=Λμ1α1τ+Λα1τ[(α1+ρ)(α1+α2+q+γ)ρq][μ1qρ+α1μ3ρ+γμ4ρ+α1μ2(α1+α2+q+γ)μ1(α1+ρ)(α1+α2+q+γ)](11R0).
    $
    Figure 2.  The regions for the existence of alcoholism equilibrium of system (2.1).

    (Ⅱ) When $ \theta \neq0 $ and $ R_{0} > 1 $, we have $ F(0) = R_{0}-1 > 0 $ and $ F(\infty) = -\infty < 0 $. Assume that $ F^{'}(H^{*}) < \theta (1-\frac{R_{0}}{R_{01}}) $. Thus, when $ \theta > 0 $ and $ R_{0} > R_{01} $ or $ \theta < 0 $, we obtain $ F^{'}(H^{*}) < 0 $. Therefore, there is a unique positive solution for Eq.(3.17). Thus, the alcoholism equilibrium $ P^{*}_{1} = (S^{*}_{1}, L^{*}_{1}, H^{*}_{1}, R^{*}_{1}, T^{*}_{1}) $ can be obtained, as shown in regions $ \Omega_{A} $ and $ \Omega_{B} $ of Figure 2.

    (Ⅲ) When $ \theta > 0 $ and $ R_{0} < 1 $, we have $ F(0) = R_{0}-1 < 0 $, $ F(\infty) = -\infty < 0 $ and $ F^{''}(H^{*}) < 0 $. Assume that $ F^{'}(H^{*}) = \theta e^{-\theta H^{*}}-\frac{R_{0}}{R_{01}}\theta = \theta (e^{-\theta H^{*}}-\frac{R_{0}}{R_{01}}) $. If $ F^{'}(H^{*}) = 0 $, Eq.(3.17) has the unique positive solution $ H^{*}_{2} = \frac{1}{\theta}\ln(\frac{R_{01}}{R_{0}}) $ when $ R_{0} < R_{01} $. Meanwhile, we also have

    $ F(H_{2}^{*}) = R_{0}-\frac{R_{0}}{R_{01}}\theta H_{2}^{*}-e^{-\theta H_{2}^{*}} = 0. $

    Therefore, we obtain $ R_{0} = R_{02} = R_{01} e^{(1-R_{01})} $. Thus, the alcoholism equilibrium $ P^{*}_{2} = (S^{*}_{2}, L^{*}_{2}, H^{*}_{2}, R^{*}_{2}, T^{*}_{2}) $ can be obtained, as shown in line $ L_{2} $ of Figure 2.

    (Ⅳ) When $ R_{02} < R_{0} < 1 $, we have $ F(H_{2}^{*}) > 0 $. Eq.(3.17) has two different positive solutions $ H^{*}_{3} $ and $ H^{*}_{4} $, where $ H^{*}_{3} $ and $ H^{*}_{4} $ satisfy the following condition $ H^{*}_{3} < H^{*}_{2} < H^{*}_{4} $. Thus, the alcoholism equilibria $ P^{*}_{3} = (S^{*}_{3}, L^{*}_{3}, H^{*}_{3}, R^{*}_{3}, T^{*}_{3}) $ and $ P^{*}_{4} = (S^{*}_{4}, L^{*}_{4}, H^{*}_{4}, R^{*}_{4}, T^{*}_{4}) $ can be obtained, as shown in region $ \Omega_{E} $ of Figure 2.

    Remark 1. For simplicity, the six curves $ (L_{i}, i = 1, 2, 3, 4, 5, 6) $ divide the space in which $ R_{0} $ and $ \theta $ are located into seven regions as shown in Figure 2.

    $ L1:R0=R01(θ),withR0>1,L2:R0=R01(θ)e1R01(θ),withR0<min{R01(θ),1},L3:θ=0,withR0<1,L4:θ=0,withR0>1,L5:R0=R01(θ)e1R01(θ),withR01(θ)<R0<1,L6:R0=1.
    $

    In this section, we study the local stability of the alcoholism equilibria $ P_{i}^{*}(i = 0, 1, 2, 3, 4) $. First we obtain the characteristic matrix of system (2.1) at the alcoholism equilibria $ P_{i}^{*}(i = 0, 1, 2, 3, 4) $, as follows

    $ |λ+βHieαTi+α10βSieαTiq0αβSiHieαTiβHieαTiλ+(α1+ρ)βSieαTi0αβSiHieαTi0ρλ+(α1+α2+q+γ)0000γλ+α10μ1μ2μ3μ4λ+τ|=0.
    $
    (3.20)

    In order to simplify Eq.(3.20), we have

    $ Φ=βeαTi=α1(α1+ρ)(α1+α2+γ+q)eαTiΛρeΛαμ1α1τR0=α1(α1+ρ)(α1+α2+γ+q)eθHiΛρR0,
    $
    $ ΦSi=(α1+ρ)(α1+α2+γ+q)ρ=ΛθR01+q.
    $

    Then the characteristic equation can be rewritten as:

    $ (λ+α1)G(λ)=0,
    $
    (3.21)
    $ G(λ)=λ4+a1(Hi)λ3+a2(Hi)λ2+a3(Hi)λ+a4(Hi)=0,
    $
    (3.22)

    where

    $ a1(Hi)=3α1+α2+q+γ+ρ+τ+HiΦ,
    $
    (3.23)
    $ a2(Hi)=(2α1+α2+q+γ+ρ+τ)(α1+HiΦ)+(2α1+α2+q+γ+ρ)τ+αHi(ΛθR01+q)(μ2μ1),
    $
    (3.24)
    $ a3(Hi)=(2α1+α2+q+γ+ρ)(α1+HiΦ)τ+(α1+α2+q+γ)α1HiΦ+(α1+α2+γ)ρHiΦ+αHi(ΛθR01+q)[(2α1+α2+q+γ)(μ2μ1)+ρ(μ3μ1)],
    $
    (3.25)
    $ a4(Hi)=τ(α1+ρ)(α1+α2+q+γ)[(α1+HiΦ)α1(1+Hiθ)].
    $
    (3.26)

    Theorem 3. For system (2.1), we assume that $ \mu_{1} = \mu_{2} = \mu_{3} = \mu_{4} $.

    (Ⅰ) When $ \theta = 0, \alpha_{2} = 0 $ and $ R_{0} > 1 $$ (i.e., L_{4}) $, the alcoholism equilibrium $ P_{0}^{*} $ is locally asymptotically stable;

    (Ⅱ)When $ \theta \neq 0 $, $ R_{0} > \max\{1, R_{01}\} $$ (i.e., \Omega_{A} $, and $ \Omega_{B}) $, $ \Phi > \alpha_{1}\theta $ and $ \tau > \rho $, the alcoholism equilibrium $ P_{1}^{*} $ is locally asymptotically stable;

    (Ⅲ)When $ R_{02} = R_{0} < \min\{1, R_{01}\} $$ (i.e., L_{2}) $, the alcoholism equilibrium $ P_{2}^{*} $ may be locally stable or not;

    (Ⅳ)(ⅰ)When $ R_{02} < R_{0} < \min\{1, R_{01}\} $$ (i.e., \Omega_{E}) $, the alcoholism equilibrium $ P_{3}^{*} $ is unstable,

    (ⅱ)When $ R_{02} < R_{0} < \min\{1, R_{01}\} $$ (i.e., \Omega_{E}) $ and $ \tau > \rho $, the alcoholism equilibrium $ P_{4}^{*} $ is locally asymptotically stable.

    Proof. (Ⅰ)When $ \theta = 0 $, applying to the proof of (Ⅰ) of Theorem 2. We linearize the system (2.1) and evaluate the characteristic equation at the alcoholism equilibrium $ P_{0}^{*} $, and get

    $ |λ+βH0eαT0+α10βS0eαT0q0αβS0H0eαT0βH0eαT0λ+(α1+ρ)βS0eαT00αβS0H0eαT00ρλ+(α1+q+γ)0000γλ+α10μ1μ1μ1μ1λ+τ|=0.
    $

    Thus, the characteristic equation can be rewritten as:

    $ (λ+α1)(λ+τ)G1(λ)=0,
    $
    $ G1(λ)=λ3+b1λ2+b2λ+b3=0,
    $

    where

    $ b1=3α1+q+γ+ρ+H0Φ,b2=(2α1+q+γ+ρ)(α1+H0Φ),b3=[(α1+ρ)(α1+γ)+α1q]H0Φ.
    $

    It is clear that $ b_{1} > 0 $, $ b_{2} > 0 $ and $ b_{3} > 0 $. Applying Routh$ - $Hurwitz [13], by assuming that $ B = b_{1}b_{2}-b_{3} $. Then, we obtain

    $ B=(2α1+q+γ+ρ)(H0Φ)2+(7α12+5α1q+5α1γ+5α1ρ+q2+2qγ+2qρ+γ2+γρ+ρ2)(H0Φ)+6α13+5α12q+5α12γ+5α12ρ+α1q2+2α1qγ+2α1qρ+α1γ2+2α1γρ+α1ρ2>0
    $

    Hence, the alcoholism equilibrium $ P_{0}^{*} $ is locally asymptotically stable.

    (Ⅱ)When $ \mu_{1} = \mu_{2} = \mu_{3} = \mu_{4} $ and $ \Phi > \alpha_{1}\theta $, by Eqs.(3.23)-(3.26), we have

    $ a1(H1)=3α1+α2+q+γ+ρ+τ+H1Φ>0,a2(H1)=(2α1+α2+q+γ+ρ+τ)(α1+H1Φ)+(2α1+α2+q+γ+ρ)τ>0,a3(H1)=(2α1+α2+q+γ+ρ)(α1+H1Φ)τ+(α1+α2+q+γ)α1H1Φ+(α1+α2+γ)ρH1Φ>0,a4(H1)=τ(α1+ρ)(α1+α2+q+γ)[(α1+H1Φ)α1(1+H1θ)]>0.
    $

    Applying Routh$ - $Hurwitz [13], let $ C = a_{1}a_{2}-a_{3} $. Then, we obtain

    $ C = c_{1}{H_{1}^{*}}^2+c_{2}H_{1}^{*}+c_{3} \gt 0, $

    where

    $ c1=2Φ2α1+Φ2α2+Φ2γ+Φ2q+Φ2ρ+Φ2τ>0,c2=7Φα12+Φα22+Φγ2+Φq2+Φρ2+Φτ2+5Φα1α2+5Φα1γ+2Φα2γ+5Φα1q+2Φα2q+5Φα1ρ+Φα2ρ+6Φα1τ+2Φqρ+2Φqτ+2Φρτ+Φγρ+2Φγq+2Φα2τ+2Φγτ>0,c3=α1α22+5α12α2+α1γ2+5α12γ+α1q2+5α12q+α1ρ2+5α12ρ+9α12τ+α2τ2+α22τ+γτ2+γ2τ+qτ2+q2τ+ρτ2+ρ2τ+2α1α2q+2α1α2ρ+6α1α2τ+2α1γq+2α1γρ+6α1γτ+6α1qτ+2α2qτ+6α1ρτ+2α2ρτ+2γqτ+2γρτ+2qρτ+2α1qρ+3α1τ2+6α13+2α1α2γ+2α2γτ>0.
    $

    Then, let $ D = a_{3}[a_{1}a_{2}-a_{3}]-a_{1}^{2}a_{4} $, and get

    $ D = d_{1}{H_{1}^{*}}^2+d_{2}H_{1}^{*}+d_{3}, $

    It is clear that $ D > 0 $ and $ d_{i} > 0 $($ i = 1, 2, 3 $), when $ \tau > \rho $. Because the expression of $ d_{i} $($ i = 1, 2, 3 $) are too long, we list them in Appendix. Hence, the alcoholism equilibrium $ P_{1}^{*} $ is locally asymptotically stable.

    (Ⅲ)Applying to the proof of (Ⅲ) of Theorem 2, when $ H^{*}_{2} = \frac{1}{\theta}\ln(\frac{R_{01}}{R_{0}}) $, we obtain $ \Phi = \alpha_{1}\theta $. Thus, by Eq.(3.26), we have

    $ a_{4}(H_{2}^{*}) = \tau(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)\big[(\alpha_{1}+H_{2}^{*}\Phi)-\alpha_{1}(1+H_{2}^{*}\theta)\big] = 0, $

    and by Eq.(3.23), we have

    $ a_{1}(H_{2}^{*}) = 3\alpha_{1}+\alpha_{2}+q+\gamma +\rho +\tau +H_{2}^{*}\Phi \gt 0. $

    Thus, we know that Eq.(3.21) has negative and zero eigenvalues. Therefore, the alcoholism equilibrium $ P_{2}^{*} $ may be locally stable or not.

    (Ⅳ)(ⅰ)Applying to the proof of (Ⅳ) of Theorem 2, when $ H^{*}_{3} < H^{*}_{2} = \frac{1}{\theta}\ln(\frac{R_{01}}{R_{0}}) $, we obtain $ \Phi < \alpha_{1}\theta $. Thus, by Eq.(3.26), we have

    $ a_{4}(H_{3}^{*}) = \tau(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)\big[(\alpha_{1}+H_{3}^{*}\Phi)-\alpha_{1}(1+H_{3}^{*}\theta)\big] \lt 0, $

    and by Eq.(3.23), we have

    $ a_{1}(H_{3}^{*}) = 3\alpha_{1}+\alpha_{2}+q+\gamma +\rho +\tau +H_{3}^{*}\Phi \gt 0. $

    Assuming $ g_{1}(H_{3}^{*}), g_{2}(H_{3}^{*}), g_{3}(H_{3}^{*}), g_{4}(H_{3}^{*}) $ is the root of Eq.(3.22), and we assume that the real parts satisfying $ Re(g_{1}(H_{3}^{*}))\leq Re(g_{2}(H_{3}^{*}))\leq Re(g_{3}(H_{3}^{*}))\leq Re(g_{4}(H_{3}^{*})) $, so we obtain

    $ g_{1}(H_{3}^{*})+g_{2}(H_{3}^{*})+g_{3}(H_{3}^{*})+g_{4}(H_{3}^{*}) = -a_{1}(H_{3}^{*}) \lt 0, $

    and

    $ g_{1}(H_{3}^{*})g_{2}(H_{3}^{*})g_{3}(H_{3}^{*})g_{4}(H_{3}^{*}) = a_{4}(H_{3}^{*}) \lt 0. $

    There are $ Re(g_{1}(H_{3}^{*})) < 0 $ and $ Re(g_{4}(H_{3}^{*})) > 0 $, thus, the alcoholism equilibrium $ P_{3}^{*} $ is unstable.

    (ⅱ) When $ H^{*}_{4} > H^{*}_{2} = \frac{1}{\theta}\ln(\frac{R_{01}}{R_{0}}) $, we obtain $ \Phi > \alpha_{1}\theta $. Thus, by Eq.(3.26), we have

    $ a_{4}(H_{4}^{*}) = \tau(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)\big[(\alpha_{1}+H_{4}^{*}\Phi)-\alpha_{1}(1+H_{4}^{*}\theta)\big] \gt 0. $

    By $ \mu_{1} = \mu_{2} = \mu_{3} = \mu_{4} $, we have

    $ a1(H4)=3α1+α2+q+γ+ρ+τ+H4Φ>0,a2(H4)=(2α1+α2+q+γ+ρ+τ)(α1+H4Φ)+(2α1+α2+q+γ+ρ)τ>0,a3(H4)=(2α1+α2+q+γ+ρ)(α1+H4Φ)τ+(α1+α2+q+γ)α1H4Φ+(α1+α2+γ)ρH4Φ>0.
    $

    Applying Routh$ - $Hurwitz [13], by assuming that $ E = a_{1}a_{2}-a_{3} $. Then, we obtain

    $ E = e_{1}{H_{4}^{*}}^2+e_{2}H_{4}^{*}+e_{3} \gt 0, $

    where

    $ e1=2Φ2α1+Φ2α2+Φ2γ+Φ2q+Φ2ρ+Φ2τ>0,e2=7Φα12+Φα22+Φγ2+Φq2+Φρ2+Φτ2+5Φα1α2+5Φα1γ+2Φγq+Φγρ+5Φα1q+2Φα2γ+5Φα1ρ+2Φα2q+Φα2ρ+6Φα1τ+2Φα2τ+2Φγτ+2Φqρ+2Φqτ+2Φρτ>0,e3=5α12α2+α1α22+α1γ2+5α12γ+α1q2+5α12q+α1ρ2+5α12ρ+3α1τ2+9α12τ+α2τ2+α22τ+γτ2+γ2τ+qτ2+q2τ+ρτ2+ρ2τ+6α13+2α1α2γ+2α1α2q+2α1α2ρ+6α1α2τ+2α1γq+2α1γρ+6α1γτ+2α2γτ+2α1qρ+2α2qτ+6α1qτ+6α1ρτ+2α2ρτ+2γρτ+2γqτ+2qρτ>0.
    $

    Then, by assuming that $ F = a_{3}[a_{1}a_{2}-a_{3}]-a_{1}^{2}a_{4} $, and get

    $ F = f_{1}{H_{4}^{*}}^2+f_{2}H_{4}^{*}+f_{3}, $

    It is clear that $ D > 0 $, when $ f_{i} > 0 $($ i = 1, 2, 3 $) and $ \tau > \rho $. Because the expression of $ f_{i} $($ i = 1, 2, 3 $) are too long, we do not list it here, and it is placed in Appendix. Hence, the alcoholism equilibrium $ P_{4}^{*} $ is locally asymptotically stable.

    In this section, we study the change of the parameter $ \beta $ causing a forward or a backward bifurcation to occur.

    Theorem 4. (Ⅰ) If $ R_{01} > 1 $, when $ R_{0} = 1 $, the system (2.1) appears a backward bifurcation.

    (Ⅱ) If $ R_{01} < 1 $, when $ R_{0} = 1 $, the system (2.1) appears a forward bifurcation.

    Proof. Using the central manifold theory described in [29]. Introducing $ x_{1} = S $, $ x_{2} = L $, $ x_{3} = H $, $ x_{4} = R $, $ x_{5} = T $, the system (2.1) becomes

    $ {dx1dt=Λ+qx3βx1x3eαx5α1x1:=f1,dx2dt=βx1x3eαx5ρx2α1x2:=f2,dx3dt=ρx2γx3qx3(α1+α2)x3:=f3,dx4dt=γx3α1x4:=f4,dx5dt=μ1x1+μ2x2+μ3x3+μ4x4τx5:=f5.
    $
    (3.27)

    Thus, the alcohol free equilibrium $ P_{0} $ is

    $ P_{0} = X_{0} = (\frac{\Lambda}{\alpha_{1}}, 0, 0, 0, \frac{\Lambda \mu_{1}}{\alpha_{1}\tau}), $

    In view of Theorem 4.1 [29], the Jacobian matrix $ J(P_{0}) $ of the system (3.27) in the alcohol free equilibrium is

    $ J(X0)=(α10qΛβα1eαμ1Λα1τ000(α1+ρ)Λβα1eαμ1Λα1τ000ρ(α1+α2+q+γ)0000γα10μ1μ2μ3μ4τ).
    $

    We establish the local stability of alcohol free equilibrium taking $ \beta $ as bifurcation parameter, when $ R_{0} = 1 $ corresponding to $ \beta = \beta^{*} = \frac{\alpha_{1}(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)e^{\frac{\Lambda \alpha \mu_{1}}{\alpha_{1}\tau}}}{\Lambda \rho} $, thus, we obtain

    $ J(X0)=(α10qα1(α1+ρ)(α1+α2+q+γ)ρ000(α1+ρ)α1(α1+ρ)(α1+α2+q+γ)ρ000ρ(α1+α2+q+γ)0000γα10μ1μ2μ3μ4τ).
    $

    It is clear that $ 0 $ is a simple eigenvalue of $ J(P_{0}) $. Therefore, there is a right eigenvector associated with 0 eigenvalues that is $ R = (r_{1}, r_{2}, r_{3}, r_{4}, r_{5})^{T} $, there is a left eigenvector associated with 0 eigenvalues is $ L = (l_{1}, l_{2}, l_{3}, l_{4}, l_{5}) $, and it is required to satisfy $ LR = 1 $.

    Therefore, the right eigenvector is

    $ R=(α1(α1+α2+q+γ)ρ(α1+α2+γ)α1ρα1+α2+q+γρ1γα1(μ1μ2)(α1+α2+q+γ)ρτ(α1μ1α1μ3+α2μ1+γμ1γμ4)α1τ),
    $

    the left eigenvector is

    $ L=(0,ρ2α1+α2+q+γ+ρ,α1+ρ2α1+α2+q+γ+ρ,0,0).
    $

    In view of Theorem 4.1 [29], we know that

    $ a=5k,i,j=1lkrirj2fk(X0)xixj,b=5k,i=1lkri2fk(X0)xiβ.
    $

    Therefore, we obtain

    $ a=l2r1r32f2(X0)x1x3+l2r3r12f2(X0)x3x1+l2r3r52f2(X0)x3x5+l2r5r32f2(X0)x5x3=2l2(r1r32f2(X0)x1x3+r3r52f2(X0)x3x5)=2ρΛαβeΛαμ1α1τα1(2α1+α2+q+γ+ρ)[α1(μ2μ1)(α1+α2+q+γ)ρ(α1μ1α1μ3+α2μ1+γμ1γu4)α1ρτ]+2ρβeΛαμ1α1τ2α1+α2+q+γ+ρ[(α1+ρ)(α1+α2+γ)α1qα1ρ]=2[α1(α1+ρ)(α1+α2+q+γ)2+ρ(α1+ρ)(α1+α2+γ)(α1+α2+q+γ)Λρ(2α1+α2+q+γ+ρ)](R011).b=l2r32f2(X0)x3β=ΛρeΛαμ1α1τα1(2α1+α2+q+γ+ρ)>0.
    $

    According to Theorem 4.1 of [29], we notice that the coefficient $ b $ is always positive. The coefficient $ a $ is positive when $ {R_{01}} > 1 $. In this case, the direction of the bifurcation of the system (2.1) at $ {R_{0}} = 1 $ is backward, as shown in the Figure 9(a). The coefficient $ a $ is negative when $ {R_{01}} < 1 $. Under this circumstance, the direction of the bifurcation of the system (2.1) at $ {R_{0}} = 1 $ is forward, as shown in the Figure 9(b).

    Figure 9.  (a) Illustration of backward bifurcation when one parameter $ \beta $ in $ R_{0} $ is varied. (b) Illustration of forward bifurcation when one parameter $ \beta $ in $ R_{0} $ is varied.

    The goal of this section is to present some numerical simulations which complement the theoretical results in the previous sections. We choose some parameters based on the Table 1.

    Table 1.  The parameters description of the alcoholism model.
    Parameter Description Value Source
    $ \Lambda $ The constant recruitment rate of the population $ 0.7-0.8 day^{-1} $ [30]
    $ \beta $ Transmission coefficient from the moderate drinkers
    compartment to the light problem drinkers compartment $ 0.0099 - 0.9 person^{-1} $ Estimate
    $ \alpha $ The coefficient that determines how effective the positive
    drinking information can reduce the transmission rate $ 0.00091 - 0.8 tweet^{-1} $ Estimate
    $ \rho $ Transmission coefficient from the light problem drinkers
    compartment to the heavy problem drinkers compartment $ 0.04 - 0.99 day^{-1} $ Estimate
    $ {\mu_1} $ The rates that the moderate drinkers may tweet
    about alcoholism during an alcoholism occasion $ 0 - 1 day^{-1} $ [11]
    $ {\mu_2} $ The rates that the light problem drinkers may tweet
    about alcoholism during an alcoholism occasion $ 0 - 1 day^{-1} $ [11]
    $ {\mu_3} $ The rates that the heavy problem drinkers may tweet
    about alcoholism during an alcoholism occasion $ 0 - 1 day^{-1} $ [11]
    $ {\mu_4} $ The rates that quitting drinkers may tweet
    about alcoholism during an alcoholism occasion $ 0 - 1 day^{-1} $ [13]
    $ {\alpha_1} $ The natural death rate of the population $ 0.009 - 0.6year^{-1} $ [4,5]
    $ {\alpha_2} $ The death rate due to heavy alcoholism $ 0.02 - 0.5day^{-1} $ Estimate
    $ q $ Transmission coefficient from the heavy problem drinkers
    compartment to the moderate drinkers compartment $ 0.006 - 0.99day^{-1} $ Estimate
    $ \gamma $ Transmission coefficient from the heavy problem drinkers
    compartment to quitting drinkers compartment $ 0.006 - 0.99day^{-1} $ Estimate
    $ {\tau} $ The rate that message become outdated $ 0.03 - 0.6year^{-1} $ [11]

     | Show Table
    DownLoad: CSV

    As an example, we choose a set of the following parameters, the parameter values are $ \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_1 = 0.04, \mu_2 = 0.8, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, q = 0.07, \rho = 0.09, \tau = 0.03 $ and $ \beta = 0.001 $. It follows from Theorem 1 that the alcohol free equilibrium $ P_{0} = (88.89, 0, 0, 0, 118.52) $ of system (2.1) is globally asymptotically stable for any value of time $ t $ when $ R_{0} = 0.0519 < 1 $ (see Figure 3 (a) and (b)). Furthermore, we can also observe that the value of the equilibrium $ P^{*}(t) $ changes as $ t $ increasing and eventually tends to $ P_{0} = (88.89, 0, 0, 0, 118.52) $ from Figure 3 (a) and (b).

    Figure 3.  Alcohol free equilibrium $ P_{0} $ of system (2.1) is globally asymptotically stable.

    In order to verify the local stability of the alcoholism equilibrium $ P_{1}^{*} $, we choose a set of the following parameters, the parameter values are $ \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_1 = 0.04, \mu_2 = 0.04, \mu_3 = 0.04, \mu_4 = 0.04, \gamma = 0.1, q = 0.07, \rho = 0.09, \tau = 0.03 $ and $ \beta = 0.004 $. It follows from Theorem 3 that the alcoholism equilibrium $ P_{1}^{*} = (28.16, 6.09, 0.81, 8.97, 58.71) $ of system (2.1) is locally asymptotically stable for any value of time $ t $ when $ R_{0} = 2.0765 > \max\{1, R_{01}\} $, where $ R_{01} = 0.6128 $ (see Figure 4 (a) and (b)). Furthermore, we can also observe that the value of the equilibrium $ P^{*}(t) $ changes with $ t $ increasing and eventually tends to $ P_{1}^{*} = (28.16, 6.09, 0.81, 8.97, 58.71) $ from Figure 4 (a) and (b).

    Figure 4.  Alcoholism equilibrium $ P_{1}^{*} $ of system (2.1) is locally asymptotically stable.

    In order to verify the local stability of the alcoholism equilibrium $ P_{4}^{*} $, we choose a set of the following parameters, the parameter values are $ \Lambda = 8, \alpha = 0.07, \alpha_1 = 0.003, \alpha_2 = 0.005, \mu_1 = 0.025, \mu_2 = 0.025, \mu_3 = 0.025, \mu_4 = 0.025, \gamma = 0.01, q = 0.07, \rho = 0.4, \tau = 0.45 $ and $ \beta = 0.9 $. It follows from Theorem 3 that the alcoholism equilibrium $ P_{4}^{*} = (254.1677, 85.2877, 387.8429, 1292.7081, 112.2223) $ of system (2.1) is locally asymptotically stable for any value of time $ t $ when $ R_{02} < R_{0} < \max\{1, R_{01}\} $, where $ R_{01} = 2.7788 $, $ R_{0} = 0.8486 $ and $ R_{02} = 0.4692 $ (see Figure 5 (a) and (b)). Furthermore, we can also observe that the value of the equilibrium $ P^{*}(t) $ changes with $ t $ increasing and eventually tends to $ P_{4}^{*} = (254.1677, 85.2877, 387.8429, 1292.7081, 112.2223) $ from Figure 5 (a) and (b).

    Figure 5.  Alcoholism equilibrium $ P_{4}^{*} $ of system (2.1) is locally asymptotically stable.

    Then, we choose a set of the following parameters, the parameter values are $ \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_1 = 0, \mu_2 = 0.008, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, q = 0.99, \rho = 0.99, \tau = 0.03 $ and $ \beta = 0.0204 $. It follows from Theorem 3 that the alcoholism equilibrium $ P_{1}^{*} = (49.19, 0.92, 0.57, 6.37, 185.30) $ of system (2.1) is locally asymptotically stable for any value of time $ t $ when $ R_{0} = 1.1238 > \max\{1, R_{01}\} $ and $ \beta < \beta^{*} $, where $ R_{01} = -2.9044 $ and $ \beta^{*} = 0.021 $ (see Figure 6 (a) and (b)).

    Figure 6.  Alcoholism equilibrium $ P_{1}^{*} $ of system (2.1) is locally asymptotically stable when $ \beta < \beta^{*} $.

    If we choose $ \beta $ as $ 0.076 $ (see Figure 7 (a) and (b)), we have more intricate dynamic behaviors on system (2.1). As an example, we choose a set of the following parameters, the parameter values are $ \Lambda = 0.8, \alpha = 0.00626, \alpha_1 = 0.009, \alpha_2 = 0.4, \mu_1 = 0.009, \mu_2 = 0.004, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, q = 0.06, \rho = 0.9, \tau = 0.03 $ and $ \beta = 0.076 $. The alcoholism equilibrium $ P_{1}^{*} $ of system (2.1) occurs a Hopf bifurcation when $ R_{0} = 9.9478 > 1 $ and $ \beta > \beta^{*} $, where $ \beta^{*} = 0.011 $ (see Figure 7 (a-d)). In Figure 7 (a-d), we can readily see that the solution curves of system (2.1) perform a sustained periodic oscillation and phase trajectories approaches limit cycle.

    Figure 7.  Alcoholism equilibrium $ P_{1}^{*} $ of system (2.1) occurs a Hopf bifurcation when $ \beta > \beta^{*} $.

    In order to demonstrate some results about Hopf bifurcation, we consider $ \beta $ as bifurcation parameter. We know that the alcoholism equilibrium $ P_{1}^{*} $ is feasible for $ \beta\in[0.0099, 0.8] $. Thus, system (2.1) is stable when $ 0.0099\leq \beta < 0.011 $, and Hopf bifurcation occurs at the alcoholism equilibrium $ P_{1}^{*} $ when $ 0.011\leq \beta < 0.08 $, and system (2.1) becomes stable again when $ 0.08\leq \beta \leq 0.2 $, as depicted in Figure 8(a-e).

    Figure 8.  Hopf bifurcation occurs at the alcoholism equilibrium $ P_{1}^{*} $ when $ 0.0099\leq \beta \leq 0.2 $.

    The backward and forward bifurcation diagram of system (2.1) is shown in Figure 9, and the direction of bifurcation depends upon the value of $ R_{01} $. As seen in the backward bifurcation diagram of Figure 9(a) when $ R_{01} = 4.4936 > 1 $, there is a threshold quantity $ R_{t} $ which is the value of $ R_{0} $. The alcohol free equilibrium is globally asymptotically stable when $ R_{0} < R_{t} $, where $ R_{t} = 0.1350 $. There are two alcoholism equilibria and a alcohol free equilibrium when $ R_{t} < R_{0} < 1 $, the upper ones are stable, the middle ones are unstable and the lower ones is globally asymptotically stable. There are a stable alcoholism equilibria and an unstable alcohol free equilibrium when $ R_{0} > 1 $. As seen in the forward bifurcation diagram of Figure 9(b) when $ R_{01} = 0.5357 < 1 $, the alcohol free equilibrium is globally asymptotically stable when $ R_{0} < 1 $. There are a stable alcoholism equilibria and an unstable alcohol free equilibrium when $ R_{0} > 1 $.

    In this section, we examine the effects of changes in some parameters on the number of heavy problem drinkers. Therefore, we carry out the sensitivity analysis of heavy problem drinkers H.

    Figure 10 shows a comparison between the parameters of system (2.1) versus the heavy problem drinkers, we main consider the effect of $ \mu_{1}, q, \gamma, \tau $ on the dynamics of heavy problem drinkers. Firstly, we choose the effect of parameter $ \mu_{1} $ on the dynamics of heavy problem drinkers, the other parameter values are $ \Lambda = 0.8, \alpha = 0.07, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_2 = 0.8, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, q = 0.09, \rho = 0.09, \tau = 0.03 $ and $ \beta = 0.04 $, as depicted in Figure 10(a). We know that the number of heavy problem drinkers will decrease when $ \mu_{1} $ increase from Figure 10(a). The simulation shows that more Twitter messages can result in the lower alcoholism cases, and changing the number of Twitter messages posted per day does affect the time when the alcoholism reaches the peak. Secondly, we choose the effect of parameter $ q $ on the dynamics of heavy problem drinkers, the other parameter values are $ \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_1 = 0.04, \mu_2 = 0.8, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, \rho = 0.09, \tau = 0.03 $ and $ \beta = 0.15 $, as depicted in Figure 10(b). We know that the number of heavy problem drinkers will decrease when $ q $ increase from Figure 10(b). Thirdly, we choose the effect of parameter $ \gamma $ on the dynamics of heavy problem drinkers, the other parameter values are $ \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_{1} = 0.04, \mu_2 = 0.8, \mu_3 = 0.8, \mu_4 = 0.8, q = 0.07, \tau = 0.03, \rho = 0.01 $ and $ \beta = 0.15 $, as depicted in Figure 10(c). We know that the number of heavy problem drinkers will decrease when $ \gamma $ increase from Figure 10(c). The simulation results in Figure 10(b) and 10(c) show that treatment significantly reduces the number of alcoholism cases. Finally, we choose the effect of parameter $ \tau $ on the dynamics of heavy problem drinkers, the other parameter values are $ \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_{1} = 0.04, \mu_2 = 0.8, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, q = 0.07, \rho = 0.09 $ and $ \beta = 0.15 $, as depicted in Figure 10(d). We know that the number of heavy problem drinkers will increase when $ \tau $ increase from Figure 10(d). This indicates that the rate of upper outdated Twitter messages result in the upper alcoholism cases.

    Figure 10.  Sensitivity analysis of heavy problem drinkers H.

    We construct a new alcoholism model with treatment and effect of Twitter in this paper. We study the stability of all equilibria and derive the basic reproductive number $ R_{0} $. We also investigate the occurrence of backward and forward bifurcation for a certain defined range of $ R_{0} $ by the center manifold theory. Furthermore, we give some numerical results and sensitivity analysis to extend and illustrate our results. Our results show that Twitter may be a good indicator of alcoholism model and affect the emergence and spread of drinking behavior. How to prove existence of Hopf bifurcation analytically is interesting and still open. We will leave this work in future.

    We are grateful to the anonymous referees and the editors for their valuable comments and suggestions which improved the quality of the paper. This work is supported by the National Natural Science Foundation of China (11861044 and 11661050), and the HongLiu first-class disciplines Development Program of Lanzhou University of Technology.

    The authors declare there is no conflict of interest.

    The formula of $d_{1}$, $d_{2}$, $d_{3}$ in the proof of (Ⅱ) of Theorem 3.

    $ d1=7Φ2α14+12Φ2α13α2+12Φ2α13γ+12Φ2α13q+12Φ2α13ρ+18Φ2α13τ+6Φ2α12α22+12Φ2α12α2γ+12Φ2α12α2q+18Φ2α12α2ρ+21Φ2α12α2τ+6Φ2α12γ2+12Φ2α12γq+18Φ2α12γρ+21Φ2α12γτ+6Φ2α12q2+12Φ2α12qρ+21Φ2α12qτ+6Φ2α12ρ2+21Φ2α12ρτ+13Φ2α12τ2+Φ2α1α23+3Φ2α1α22γ+3Φ2α1α22q+7Φ2α1α22ρ+8Φ2α1α22τ+3Φ2α1α2γ2+6Φ2α1α2γq+14Φ2α1α2γρ+16Φ2α1α2γτ+3Φ2α1α2q2+10Φ2α1α2qρ+16Φ2α1α2qτ+7Φ2α1α2ρ2+14Φ2α1α2ρτ+10Φ2α1α2τ2+Φ2α1γ3+3Φ2α1γ2q+7Φ2α1γ2ρ+8Φ2α1γ2τ+3Φ2α1γq2+10Φ2α1γqρ+16Φ2α1γqτ+14Φ2α1γρτ+10Φ2α1γτ2+Φ2α1q3+3Φ2α1q2ρ+8Φ2α1q2τ+3Φ2α1qρ2+10Φ2α1qτ2+Φ2α1ρ3+8Φ2α1ρ2τ+10Φ2α1ρτ2+2Φ2α1τ3+Φ2α23ρ+Φ2α23τ+3Φ2α22γτ+2Φ2α22qρ+3Φ2α22qτ+Φ2α22ρ2+2Φ2α22ρτ+2Φ2α22τ2+3Φ2α2γ2ρ+3Φ2α2γ2τ+4Φ2α2γqρ+6Φ2α2γqτ+2Φ2α2γρ2+4Φ2α2γρτ+4Φ2α2γτ2+3Φ2α2q2τ+2Φ2α2qρ2+3Φ2α2qρτ+4Φ2α2qτ2+Φ2α2ρ3+2Φ2α2ρ2τ+3Φ2α2ρτ2+Φ2α2τ3+Φ2γ3ρ+Φ2γ3τ+2Φ2γ2qρ+3Φ2γ2qτ+Φ2γ2ρ2+2Φ2γ2ρτ+2Φ2γ2τ2+Φ2γq2ρ+3Φ2γq2τ+2Φ2γqρ2+3Φ2γqρτ+4Φ2γqτ2+Φ2γρ3+2Φ2γρ2τ+3Φ2γρτ2+Φ2γτ3+Φ2q3τ+Φ2q2ρτ+2Φ2q2τ2+Φ2qρ2τ+2Φ2qρτ2+Φ2qτ3+Φ2ρ3τ+2Φ2ρ2τ2+Φ2ρτ3+6αΦα13α2ρ+8αΦα12α22ρ+8αΦα12α2γρ+8αΦα12α2qρ+8αΦα12α2ρ2+2αΦα12α2ρτ+2αΦα1α23ρ+4αΦα1α22γρ+4αΦα1α22qρ+10αΦα1α22ρ2+2αΦα1α22ρτ+2αΦα1α2γ2ρ+4αΦα1α2γqρ+10αΦα1α2γρ2+2αΦα1α2γρτ+2αΦα1α2q2ρ+10αΦα1α2qρ2+2αΦα1α2qρτ+2αΦα1α2ρ3+2αΦα1α2ρ2τ+2αΦα23ρ2+4αΦα22γρ2+4αΦα22qρ2+2αΦα22ρ3+2αΦα22ρ2τ+2αΦα2γ2ρ2+4αΦα2γqρ2+2αΦα2γρ3+2αΦα2γρ2τ+Φ2α2q2ρ+2αΦα2q2ρ2+2αΦα2qρ3+2αΦα2qρ2τ+3Φ2α22γρ+7Φ2α1γρ2+10Φ2α1qρτ,
    $
    $d2=6Φα15+9αα14α2ρ+11Φα14α2+11Φα14γ+11Φα14q+11Φα14ρ+26Φα14τ+15αα13α22ρ+6Φα13α22+15αα13α2γρ+12Φα13α2γ+15αα13α2qρ+15αα13α2ρ2+6αα13α2ρτ+18Φα13α2ρ+33Φα13α2τ+6Φα13γ2+12Φα13γq+18Φα13γρ+33Φα13γτ+6Φα13q2+12Φα13qρ+33Φα13qτ+6Φα13ρ2+27Φα13τ2+7αα12α23ρ+Φα12α23+14αα12α22γρ+3Φα12α22γ+14αα12α22qρ+3Φα12α22q+23αα12α22ρ2+8αα12α22ρτ+8Φα12α22ρ+14Φα12α22τ+3Φα12α2γ2+14αα12α2γqρ+6Φα12α2γq+23αα12α2γρ2+8αα12α2γρτ+16Φα12α2γρ+28Φα12α2γτ+7αα12α2q2ρ+3Φα12α2q2+23αα12α2qρ2+8αα12α2qρτ+11Φα12α2qρ+28Φα12α2qτ+7αα12α2ρ3+8αα12α2ρ2τ+8Φα12α2ρ2+αα12α2ρτ2+26Φα12α2ρτ+27Φα12α2τ2+Φα12γ3+3Φα12γ2q+8Φα12γ2ρ+14Φα12γ2τ+3Φα12γq2+11Φα12γqρ+28Φα12γqτ+8Φα12γρ2+26Φα12γρτ+27Φα12γτ2+Φα12q3+3Φα12q2ρ+14Φα12q2τ+3Φα12qρ2+19Φα12qρτ+27Φα12qτ2+Φα12ρ3+14Φα12ρ2τ+27Φα12ρτ2+7Φα12τ3+αα1α24ρ+3αα1α23γρ+3αα1α23qρ+9αα1α23ρ2+2αα1α23ρτ+Φα1α23ρ+2Φα1α23τ+3αα1α22γ2ρ+6αα1α22γqρ+18αα1α22γρ2+4αα1α22γρτ+6Φα1α22γτ+3αα1α22q2ρ+18αα1α22qρ2+4αα1α22qρτ+2Φα1α22qρ+9αα1α22ρ3+10αα1α22ρ2τ+2Φα1α22ρ2+αα1α22ρτ2+5Φα1α22ρτ+9Φα1α22τ2+αα1α2γ3ρ+3αα1α2γ2qρ+9αα1α2γ2ρ2+2αα1α2γ2ρτ+3Φα1α2γ2ρ+3αα1α2γq2ρ+18αα1α2γqρ2+4αα1α2γqρτ+4Φα1α2γqρ+12Φα1α2γqτ+9αα1α2γρ3+10αα1α2γρ2τ+4Φα1α2γρ2+αα1α2γρτ2+10Φα1α2γρτ+18Φα1α2γτ2+αα1α2q3ρ+9αα1α2q2ρ2+2αα1α2q2ρτ+Φα1α2q2ρ+6Φα1α2q2τ+9αα1α2qρ3+10αα1α2qρ2τ+2Φα1α2qρ2+αα1α2qρτ2+5Φα1α2qρτ+αα1α2ρ4+2αα1α2ρ3τ+Φα1α2ρ3+αα1α2ρ2τ2+5Φα1α2ρ2τ+15Φα1α2ρτ2+5Φα1α2τ3+Φα1γ3ρ+2Φα1γ3τ+2Φα1γ2qρ+6Φα1γ2qτ+2Φα1γ2ρ2+9Φα1γ2τ2+Φα1γq2ρ+6Φα1γq2τ+2Φα1γqρ2+5Φα1γqρτ+18Φα1γqτ2+Φα1γρ3+5Φα1γρ2τ+15Φα1γρτ2+5Φα1γτ3+2Φα1q3τ+9Φα1q2τ2+5Φα1qτ3+2Φα1ρ3τ+9Φα1ρ2τ2+5Φα1ρτ3+αα24ρ2+3αα23γρ2+3αα23qρ2+2αα23ρ3+2αα23ρ2τ+Φα23τ2+3αα22γ2ρ2+6αα22γqρ2+4αα22γρ3+3Φα22γτ2+3αα22q2ρ2+4αα22qρ3+4αα22qρ2τ+Φα22qτ(3τρ)+αα22ρ4+2αα22ρ3τ+αα22ρ2τ2+2Φα22ρτ2+Φα22τ3+αα2γ3ρ2+3αα2γ2qρ2+2αα2γ2ρ3+2αα2γ2ρ2τ+3Φα2γ2τ2+3αα2γq2ρ2+4αα2γqρ3+4αα2γqρ2τ+αα2γρ4+2αα2γρ3τ+αα2γρ2τ2+4Φα2γρτ2+2Φα2γτ3+αα2q3ρ2+2αα2q2ρ3+2αα2q2ρ2τ+Φα2q2τ(3τ2ρ)+αα2qρ4+2αα2qρ3τ+αα2qρ2τ2+Φα2qρτ(3τ2ρ)+2Φα2qτ3+2Φα2ρ2τ2+Φα2ρτ3+Φγ3τ2+Φρ2τ3+Φγ2qτ(3τρ)+2Φγ2ρτ2+Φγ2τ3+Φγq2τ(3τ2ρ)+Φγqρτ(3τ2ρ)+2Φγqτ3+2Φγρ2τ2+Φγρτ3+Φq3τ(τρ)+Φq2ρτ(τρ)+Φq2τ(τ2ρ2)+Φqρ2τ(τρ)+Φqρτ3+Φρ3τ2+7αα12α2γ2ρ+3Φα1α22γρ+6Φα1α22qτ+6Φα1α2γ2τ+18Φα1α2qτ2+5Φα1γ2ρτ+12Φα1qρτ2+4αα22γρ2τ+Φα2γqτ(6τ2ρ)+33Φα13ρτ+12Φα13α2q,
    $
    $d3=12α15τ+16α14α2τ+16α14γτ+16α14qτ+16α14ρτ+18α14τ2+7α13α22τ+14α13α2qτ+14α13α2ρτ+21α13α2τ2+7α13γ2τ+14α13γqτ+14α13γρτ+7α13q2τ+14α13qρτ+21α13qτ2+7α13ρ2τ+21α13ρτ2+6α13τ3+α12α23τ+3α12α22qτ+3α12α22ρτ+8α12α22τ2+3α12α2γ2τ+6α12α2γqτ+6α12α2γρτ+16α12α2γτ2+3α12α2q2τ+6α12α2qρτ+16α12α2qτ2+3α12α2ρ2τ+16α12α2ρτ2+5α12α2τ3+α12γ3τ+3α12γ2qτ+3α12γ2ρτ+8α12γ2τ2+3α12γq2τ+6α12γqρτ+16α12γqτ2+3α12γρ2τ+16α12γρτ2+5α12γτ3+α12q3τ+3α12q2ρτ+8α12q2τ2+3α12qρ2τ+16α12qρτ2+5α12qτ3+α12ρ3τ+8α12ρ2τ2+5α12ρτ3+α1α23τ2+3α1α22qτ2+3α1α22ρτ2+α1α22τ3+3α1α2γ2τ2+6α1α2γqτ2+6α1α2γρτ2+3α1α2q2τ2+6α1α2qρτ2+2α1α2qτ3+3α1α2ρ2τ2+2α1α2ρτ3+α1γ3τ2+3α1γ2ρτ2+α1γ2τ3+3α1γq2τ2+6α1γqρτ2+2α1γqτ3+3α1γρ2τ2+2α1γρτ3+α1q3τ2+3α1q2ρτ2+α1q2τ3+3α1qρ2τ2+2α1qρτ3+α1ρ3τ2+α1ρ2τ3+14α13α2γτ+21α13γτ2+3α12α22γτ+3α1α22γτ2+2α1α2γτ3+3α1γ2qτ2.
    $

    The formula of $f_{1}$, $f_{2}$, $f_{3}$.

    $ f1=7Φ2α14+12Φ2α13α2+12Φ2α13γ+12Φ2α13q+12Φ2α13ρ+18Φ2α13τ+6Φ2α12α22+12Φ2α12α2γ+12Φ2α12α2q+18Φ2α12α2ρ+21Φ2α12α2τ+6Φ2α12γ2+12Φ2α12γq+18Φ2α12γρ+21Φ2α12γτ+6Φ2α12q2+12Φ2α12qρ+21Φ2α12qτ+6Φ2α12ρ2+21Φ2α12ρτ+13Φ2α12τ2+Φ2α1α23+3Φ2α1α22γ+3Φ2α1α22q+7Φ2α1α22ρ+8Φ2α1α22τ+3Φ2α1α2γ2+6Φ2α1α2γq+14Φ2α1α2γρ+16Φ2α1α2γτ+3Φ2α1α2q2+10Φ2α1α2qρ+16Φ2α1α2qτ+7Φ2α1α2ρ2+14Φ2α1α2ρτ+10Φ2α1α2τ2+Φ2α1γ3+3Φ2α1γ2q+7Φ2α1γ2ρ+8Φ2α1γ2τ+3Φ2α1γq2+10Φ2α1γqρ+16Φ2α1γqτ+14Φ2α1γρτ+10Φ2α1γτ2+Φ2α1q3+3Φ2α1q2ρ+8Φ2α1q2τ+3Φ2α1qρ2+10Φ2α1qτ2+Φ2α1ρ3+8Φ2α1ρ2τ+10Φ2α1ρτ2+2Φ2α1τ3+Φ2α23ρ+Φ2α23τ+3Φ2α22γτ+2Φ2α22qρ+3Φ2α22qτ+Φ2α22ρ2+2Φ2α22ρτ+2Φ2α22τ2+3Φ2α2γ2ρ+3Φ2α2γ2τ+4Φ2α2γqρ+6Φ2α2γqτ+2Φ2α2γρ2+4Φ2α2γρτ+4Φ2α2γτ2+3Φ2α2q2τ+2Φ2α2qρ2+3Φ2α2qρτ+4Φ2α2qτ2+Φ2α2ρ3+2Φ2α2ρ2τ+3Φ2α2ρτ2+Φ2α2τ3+Φ2γ3ρ+Φ2γ3τ+2Φ2γ2qρ+3Φ2γ2qτ+Φ2γ2ρ2+2Φ2γ2ρτ+2Φ2γ2τ2+Φ2γq2ρ+3Φ2γq2τ+2Φ2γqρ2+3Φ2γqρτ+4Φ2γqτ2+Φ2γρ3+2Φ2γρ2τ+3Φ2γρτ2+Φ2γτ3+Φ2q3τ+Φ2q2ρτ+2Φ2q2τ2+Φ2qρ2τ+2Φ2qρτ2+Φ2qτ3+Φ2ρ3τ+2Φ2ρ2τ2+Φ2ρτ3+6αΦα13α2ρ+8αΦα12α22ρ+8αΦα12α2γρ+8αΦα12α2qρ+8αΦα12α2ρ2+2αΦα12α2ρτ+2αΦα1α23ρ+4αΦα1α22γρ+4αΦα1α22qρ+10αΦα1α22ρ2+2αΦα1α22ρτ+2αΦα1α2γ2ρ+4αΦα1α2γqρ+10αΦα1α2γρ2+2αΦα1α2γρτ+2αΦα1α2q2ρ+10αΦα1α2qρ2+2αΦα1α2qρτ+2αΦα1α2ρ3+2αΦα1α2ρ2τ+2αΦα23ρ2+4αΦα22γρ2+4αΦα22qρ2+2αΦα22ρ3+2αΦα22ρ2τ+2αΦα2γ2ρ2+4αΦα2γqρ2+2αΦα2γρ3+2αΦα2γρ2τ+Φ2α2q2ρ+2αΦα2q2ρ2+2αΦα2qρ3+2αΦα2qρ2τ+3Φ2α22γρ+7Φ2α1γρ2+10Φ2α1qρτ,f2=6Φα15+9αα14α2ρ+11Φα14α2+11Φα14γ+11Φα14q+11Φα14ρ+26Φα14τ+15αα13α22ρ+6Φα13α22+15αα13α2γρ+12Φα13α2γ+15αα13α2qρ+15αα13α2ρ2+6αα13α2ρτ+18Φα13α2ρ+33Φα13α2τ+6Φα13γ2+12Φα13γq+18Φα13γρ+33Φα13γτ+6Φα13q2+12Φα13qρ+33Φα13qτ+6Φα13ρ2+27Φα13τ2+7αα12α23ρ+Φα12α23+14αα12α22γρ+3Φα12α22γ+14αα12α22qρ+3Φα12α22q+23αα12α22ρ2+8αα12α22ρτ+8Φα12α22ρ+14Φα12α22τ+3Φα12α2γ2+14αα12α2γqρ+6Φα12α2γq+23αα12α2γρ2+8αα12α2γρτ+16Φα12α2γρ+28Φα12α2γτ+7αα12α2q2ρ+3Φα12α2q2+23αα12α2qρ2+8αα12α2qρτ+11Φα12α2qρ+28Φα12α2qτ+7αα12α2ρ3+8αα12α2ρ2τ+8Φα12α2ρ2+αα12α2ρτ2+26Φα12α2ρτ+27Φα12α2τ2+Φα12γ3+3Φα12γ2q+8Φα12γ2ρ+14Φα12γ2τ+3Φα12γq2+11Φα12γqρ+28Φα12γqτ+8Φα12γρ2+26Φα12γρτ+27Φα12γτ2+Φα12q3+3Φα12q2ρ+14Φα12q2τ+3Φα12qρ2+19Φα12qρτ+27Φα12qτ2+Φα12ρ3+14Φα12ρ2τ+27Φα12ρτ2+7Φα12τ3+αα1α24ρ+3αα1α23γρ+3αα1α23qρ+9αα1α23ρ2+2αα1α23ρτ+Φα1α23ρ+2Φα1α23τ+3αα1α22γ2ρ+6αα1α22γqρ+18αα1α22γρ2+4αα1α22γρτ+6Φα1α22γτ+3αα1α22q2ρ+18αα1α22qρ2+4αα1α22qρτ+2Φα1α22qρ+9αα1α22ρ3+10αα1α22ρ2τ+2Φα1α22ρ2+αα1α22ρτ2+5Φα1α22ρτ+9Φα1α22τ2+αα1α2γ3ρ+3αα1α2γ2qρ+9αα1α2γ2ρ2+2αα1α2γ2ρτ+3Φα1α2γ2ρ+3αα1α2γq2ρ+18αα1α2γqρ2+4αα1α2γqρτ+4Φα1α2γqρ+12Φα1α2γqτ+9αα1α2γρ3+10αα1α2γρ2τ+4Φα1α2γρ2+αα1α2γρτ2+10Φα1α2γρτ+18Φα1α2γτ2+αα1α2q3ρ+9αα1α2q2ρ2+2αα1α2q2ρτ+Φα1α2q2ρ+6Φα1α2q2τ+9αα1α2qρ3+10αα1α2qρ2τ+2Φα1α2qρ2+αα1α2qρτ2+5Φα1α2qρτ+αα1α2ρ4+2αα1α2ρ3τ+Φα1α2ρ3+αα1α2ρ2τ2+5Φα1α2ρ2τ+15Φα1α2ρτ2+5Φα1α2τ3+Φα1γ3ρ+2Φα1γ3τ+2Φα1γ2qρ+6Φα1γ2qτ+2Φα1γ2ρ2+9Φα1γ2τ2+Φα1γq2ρ+6Φα1γq2τ+2Φα1γqρ2+5Φα1γqρτ+18Φα1γqτ2+Φα1γρ3+5Φα1γρ2τ+15Φα1γρτ2+5Φα1γτ3+2Φα1q3τ+9Φα1q2τ2+5Φα1qτ3+2Φα1ρ3τ+9Φα1ρ2τ2+5Φα1ρτ3+αα24ρ2+3αα23γρ2+3αα23qρ2+2αα23ρ3+2αα23ρ2τ+Φα23τ2+3αα22γ2ρ2+6αα22γqρ2+4αα22γρ3+3Φα22γτ2+3αα22q2ρ2+4αα22qρ3+4αα22qρ2τ+Φα22qτ(3τρ)+αα22ρ4+2αα22ρ3τ+αα22ρ2τ2+2Φα22ρτ2+Φα22τ3+αα2γ3ρ2+3αα2γ2qρ2+2αα2γ2ρ3+2αα2γ2ρ2τ+3Φα2γ2τ2+3αα2γq2ρ2+4αα2γqρ3+4αα2γqρ2τ+αα2γρ4+2αα2γρ3τ+αα2γρ2τ2+4Φα2γρτ2+2Φα2γτ3+αα2q3ρ2+2αα2q2ρ3+2αα2q2ρ2τ+Φα2q2τ(3τ2ρ)+αα2qρ4+2αα2qρ3τ+αα2qρ2τ2+Φα2qρτ(3τ2ρ)+2Φα2qτ3+2Φα2ρ2τ2+Φα2ρτ3+Φγ3τ2+Φρ2τ3+Φγ2qτ(3τρ)+2Φγ2ρτ2+Φγ2τ3+Φγq2τ(3τ2ρ)+Φγqρτ(3τ2ρ)+2Φγqτ3+2Φγρ2τ2+Φγρτ3+Φq3τ(τρ)+Φq2ρτ(τρ)+Φq2τ(τ2ρ2)+Φqρ2τ(τρ)+Φqρτ3+Φρ3τ2+7αα12α2γ2ρ+3Φα1α22γρ+6Φα1α22qτ+6Φα1α2γ2τ+18Φα1α2qτ2+5Φα1γ2ρτ+12Φα1qρτ2+4αα22γρ2τ+Φα2γqτ(6τ2ρ)+33Φα13ρτ+12Φα13α2q,f3=12α15τ+16α14α2τ+16α14γτ+16α14qτ+16α14ρτ+18α14τ2+7α13α22τ+14α13α2qτ+14α13α2ρτ+21α13α2τ2+7α13γ2τ+14α13γqτ+14α13γρτ+7α13q2τ+14α13qρτ+21α13qτ2+7α13ρ2τ+21α13ρτ2+6α13τ3+α12α23τ+3α12α22qτ+3α12α22ρτ+8α12α22τ2+3α12α2γ2τ+6α12α2γqτ+6α12α2γρτ+16α12α2γτ2+3α12α2q2τ+6α12α2qρτ+16α12α2qτ2+3α12α2ρ2τ+16α12α2ρτ2+5α12α2τ3+α12γ3τ+3α12γ2qτ+3α12γ2ρτ+8α12γ2τ2+3α12γq2τ+6α12γqρτ+16α12γqτ2+3α12γρ2τ+16α12γρτ2+5α12γτ3+α12q3τ+3α12q2ρτ+8α12q2τ2+3α12qρ2τ+16α12qρτ2+5α12qτ3+α12ρ3τ+8α12ρ2τ2+5α12ρτ3+α1α23τ2+3α1α22qτ2+3α1α22ρτ2+α1α22τ3+3α1α2γ2τ2+6α1α2γqτ2+6α1α2γρτ2+3α1α2q2τ2+6α1α2qρτ2+2α1α2qτ3+3α1α2ρ2τ2+2α1α2ρτ3+α1γ3τ2+3α1γ2ρτ2+α1γ2τ3+3α1γq2τ2+6α1γqρτ2+2α1γqτ3+3α1γρ2τ2+2α1γρτ3+α1q3τ2+3α1q2ρτ2+α1q2τ3+3α1qρ2τ2+2α1qρτ3+α1ρ3τ2+α1ρ2τ3+14α13α2γτ+21α13γτ2+3α12α22γτ+3α1α22γτ2+2α1α2γτ3+3α1γ2qτ2.
    $
    [1] Vos T, Barber RM, Bell B, et al. (2013). Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386: 743-800.
    [2] 6. Bowman KG. (07) A research synthesis overview. Nurs Sci Q 20:171-176.
    [3] 7. Stevens KR. (2001) Systematic reviews. The heart of evidence-based practice. AACN Clin Issues 12:529-5.
    [4] 8. Upchurch S, Brosnan CA, Grimes DE. (2002) Teaching research synthesis to advanced practice nurses. J Nurs Educ :222-226.
    [5] 9. Whittemore R. (200 Combining evidence in nursing research: Methods and implications. Nurs Res 54:56-62.
    [6] 10. Feldman KA. (1971) Using the work of others: Some observations on reviewing and integrating. Sociol Educ 44:8102.
    [7] 11. Streiner DL. (2005) I have the answer, now what's the question?: Why meta-analyses do not provide definitive solutions. Can J Psychiat 50:829-831.
    [8] 12. Chatterji M. (2007) Grades of evidence: Variability in quality of findings in effectiveness studies of complex field interventions. Am J Eval 2 239-255.
    [9] 13. Jackson N, Waters E. (2005) Criteria for the systematic review of health promotion and public health interventions. Health Promot Int 20: 367-374.
    [10] 14. Torraco RJ. (2005) Writing integrative literature reviews: Guidelines and examples. Hum Resource Dev Rev 4:356-367.
    [11] 15. Whittemore R, Knafl K. (2005). The integrative review: Updated methodology. J Adv Nurs 52:546-553.
    [12] 16. Cooper, H. (2003) Editorial. Psychol Bull :3-9.
    [13] 17. Chalmers I, Hedges LV, Cooper H. (2002) A brief history of research synthesis. Eval Health Prof 25:12-37.
    [14] 18. Whittemore R, Knafl K. (2005). The integrative review: Updated methodology. J Adv Nurs 52:546-553.
    [15] 19. Smith MC, Stullenbarger E. (1991) A prototype for integrative review and meta-analysis of nursing research. J Adv Nurs 16:1272-1283.
    [16] 20. Cooper H. (1982) The integrative research review: A systematic approach. Beverly Hills: Sage.
    [17] 21. Jackson GB. (1980) Methods for integrative reviews. Rev Educ Res 50: 438-460.
    [18] 22. Glass GV. (1976) Primary, secondary, and meta-analysis of research. Educ Res 5:3-8.
    [19] 23. Glass GV. (8) Integrating findings: The meta-analysis of research. Rev Res Educ 5:351-379.
    [20] 24. Glass GV. (0) Meta–analysis at 25. Available from: http://www.gvglass.info/papers/meta25.html
    [21] 25. Rosenthal R, DiMatteo MR. (2001) Meta-analysis: Recent developments in quantitative methods for literature reviews. Annu Rev Psychol 52:59-82.
    [22] 26. Jenicek M. (1989) Meta-analysis in medicine: Where we are and where we want to go. J Clin Epidemiol 42:35-44.
    [23] 27. Mullen PD, Ramirez G. (2006) The promise and pitfalls of systematic reviews. Annu Rev Publ Health 27:81-102.
    [24] 28. Eysenck H. (1995) Meta-analysis or best evidence synthesis? J Eval Clin Prac 1:29-36.
    [25] 29. Slavin RE. (1986) Best-evidence synthesis: An alternative to meta-analytic and traditional reviews. Educ Res 15:5-11.
    [26] 30. Slavin RE. (1995) Best evidence synthesis: An intelligent alternative to meta-analysis. J Clin Epidemiol 48:9-18.
    [27] 31. Thorne S, Jensen L, Kearney MH, et al. (2004) Qualitative metasynthesis: Reflections on methodological orientation and ideological agenda. Qual Health Res 14:1342-1365.
    [28] 32. Sandelowski M, Barroso J. (2003) Classifying the findings in qualitative studies. Qual Health Res 13:905-923.
    [29] 33. Sandelowski M, Barroso J. (2007) Handbook for synthesizing qualitative research. New York: Springer Publishing Company Inc.
    [30] 34. Annells M. (2005) Guest editorial: A qualitative quandary: Alternative representations and meta-synthesis. J Clin Nurs 14:535-536.
    [31] 35. Barroso J, Gollop CJ, Sandelowski M, et al. (2003) The challenges of searching for and retrieving qualitative studies. Western J Nurs Res 25:153-178.
    [32] 36. Estabrooks CA, Field PA, Morse JM. (1994) Aggregating qualitative findings: An approach to theory development. Qual Health Res 4:503-511.
    [33] 37. Finfgeld DL. Metasynthesis (2003) The state of the art – so far. Qual Health Res 13:893-904.
    [34] 38. Finlayson K, Dixon A. (2008) Qualitative meta-synthesis: A guide for the novice. Nurs Res 15:59-71.
    [35] 39. Jensen LA, Allen MN. (1996) Meta-synthesis of qualitative findings. Qual Health Res 6:553-560.
    [36] 40. Reis S, Hermoni D, Van-Raalte R, et al. (2007) Aggregation of qualitative studies – From theory to practice: Patient priorities and family medicine/general practice evaluations. Patient Educ Couns 65:214-222.
    [37] 41. Sandelowski, M. (2006) "Meta-jeopardy": The crisis of representation in qualitative metasynthesis. Nurs Outlook 54:10-16.
    [38] 42. Walsh D, Downe S. (2005) Meta-synthesis method for qualitative research: A literature review. J Adv Nurs 50:204-211.
    [39] 43. Walsh D, Downe S. (2006) Appraising the quality of qualitative research. Midwifery 22:108-119.
    [40] 44. Zimmer L. (2006) Qualitative meta-synthesis: A question of dialoguing with texts. J Adv Nurs 53:311-318.
    [41] 45. Walker L, Avant K. (1983) Strategies for theory construction in nursing. Norwalk, CT: Appleton-Century-Crofts.
    [42] 46. Rodgers BL, Knafl KA. (2000) Concept development in nursing: Foundations, techniques and applications. Philadelphia: Saunders.
    [43] 47. Morse J. (1995) Exploring the theoretical basis of nursing using advanced techniques of concept analysis. Adv Nurs Sci 17:31-46.
    [44] 50. Dixon-Woods M, Agarwal S, Jones D, et al. (2005). Synthesizing qualitative and quantitative evidence: A review of possible methods. J Health Serv Res Po 10:45-53.
    [45] 51. Kearney MH. (1998). Ready-to-wear: Discovering grounded formal theory. Res Nurs Health 21:179-186.
    [46] 53. Paterson BL, Dubouloz CJ, Chevrier J, et al. (2009) Conducting qualitative metasynthesis research: Insights from a metasynthesis project. Int J Qual Methods 8, 22-33.
    [47] 54. Paterson BL, Thorne SE, Canam C, et al. (2001) Meta-study of qualitative health research: A practical guide to meta-analysis and meta-synthesis. Thousand Oaks, CA: Sage Publications Inc.
    [48] 55. McCormick J, Rodney P, Varcoe C. (2003). Reinterpretations across studies: An approach to meta-analysis. Qual Health Res 13:933-944.
    [49] 56. Schreiber R, Crooks D, Stern PN. (1997) Qualitative meta-analysis. In Morse JM, editor. Completing a qualitative project: Details and dialogue. Thousand Oaks, CA: Sage, 311-326.
    [50] 57. Stern PN, Harris CC. (1985) Women's health and the self-care paradox: A model to guide self-care readiness. Health Care Women In 6:151-163.
    [51] 58. Varcoe C, Rodney P, McCormick J. (2003) Health care relationships in context: An analysis of three ethnographies. Qual Health Res 13:957-973.
    [52] 59. Weed M. (2008) A potential method for the interpretive synthesis of qualitative research: Issues in the development of `meta-interpretation`. Int J Soc Res Meth 11:13-28.
    [53] 60. Atkins S, Lewin S, Smith H, et al. Conducting a meta-ethnography of qualitative literature: Lessons learnt. BMC Med Res Methodol 8:1471-2288.
    [54] 61. Noblit GW, Hare RD. (1988) Meta-ethnography: Synthesizing qualitative studies. Newbury Park, CA: Sage.
    [55] 62. Campbell R, Pound P, Pope C, et al. (2003) Evaluative meta-ethnography: A synthesis of qualitative research on lay experiences of diabetes and diabetes care. Soc Sci Med 56:671-684.
    [56] 63. Arksey H, O'Malley L. (2005) Scoping studies: Towards a methodological framework. Int J Soc Res Meth 8:19-32.
    [57] 64. Best A, Terpstra JL, Moore G, et al. (2009) Building knowledge integration systems for evidence-informed decisions. J Health Organ Manag 23:627-641.
    [58] 65. Watt A, Cameron A, Sturm L, et al. (2008) Rapid reviews versus full systematic reviews: An inventory of current methods and practice in health technology assessment. Intl J Technol Ass 24:133-139.
    [59] 66. Saul JE, Willis CD, Bitz J, et al. (2013) A time-responsive tool for informing policy making: Rapid realist review. Implement Sci 8. Available from: http://dx.doi.org/10.1186/1748-8-8-103
    [60] 67. Greenhalgh T, Robert G, Macfarlane F, et al. (2005) Storylines of research in diffusion of innovation: A meta-narrative approach to systematic review. Soc Sci Med 61:417-430.
    [61] 68. Pawson R. (2002) Evidence-based policy: The promise of 'realist synthesis.' Evaluation 8:340-358.
    [62] 69. Pawson R, Greenhalgh T, Harvey G, et al. Realist view – A new method of systematic review designed for complex policy interventions. J Health Serv Res Po 10:21-34.
    [63] 70. Sandelowski M, Barroso J, Voils CI. (2007) Using qualitative metasummary to synthesize qualitative and quantitative descriptive findings. Res Nurs Health 30:99-111.
    [64] 71. Dixon Woods M, Kirk D, Agarwal S, et al. (2005) Vulnerable groups and access to health care: A critical interpretive review. Available from: http://www.netscc.ac.uk/hsdr/files/project/SDO_FR_08-1210-025_V01.pdf
    [65] 72. Dixon Woods M, Cavers D, Agarwal S, et al. (2006) Conducting a critical interpretive synthesis of the literature on access to healthcare by vulnerable groups. BMC Med Res Methodol doi:10.1186/1471-2288-6-35.
    [66] 73. Entwistle V, Firnigl D, Ryan M, et al. (2012) Which experiences of health care delivery matter to service users and why? A critical interpretive synthesis and conceptual map. J Health Serv Res Po 17:70-78.
    [67] 74. Heaton J, Corden A, Parker G. (2012) 'Continuity of care': A critical interpretive synthesis of how the concept was elaborated by a national research programme. Int J Integr Care 12. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429143/
    [68] 75. Harden A, Garcia J, Oliver S, et al. (2004) Applying systematic review methods to studies of people's views: An example from public health research. J Epidemiol Commun H 58:794-800.
    [69] 76. Voils CI, Sandelowski M, Barroso J, et al. (2008) Making sense of qualitative and quantitative findings in mixed research synthesis studies. Field Method 20:3-25.
    [70] 77. Dixon Woods M, Fitzpatrick R. (2001) Qualitative research in systematic reviews. Brit Med J 323:765-766.
    [71] 78. Goldsmith MR, Bankhead CR, Austoker J. (2007) Synthesising quantitative and qualitative research in evidence-based patient information. J Epidemiol Commun H 61:262-270.
    [72] 79. Mays N, Pope C, Popay J. (2005) Systematically reviewing qualitative and quantitative evidence to inform management and policy-making in the health field. J Health Serv Res Po 10:6-20.
    [73] 80. Popay J. (2003) Qualitative research and the epidemiological imagination: A vital relationship. Gac Sanit 17 Suppl 3: 58-63.
    [74] 81. Cochrane. (2015) Available from http://www.cochrane.org/
    [75] 82. The Campbell Collaboration. (2015) What helps? What harms? Based on what evidence? Available from http://www.campbellcollaboration.org/
    [76] 83. Conn VS, Rantz MJ. (2003) Research methods: Managing primary study quality in meta-analyses. Res Nurs Health 26:322-333.
    [77] 84. Greenhalgh T, Robert G, Macfarlane F, et al. (2004) Diffusion of innovations in service organizations: Systematic review and recommendations. MILBANK Q 82:581-629.
    [78] 85. Greenhalgh T, Robert G, Bate P, et al. (2005) Diffusion of innovations in health service organizations: A systematic literature review. Malden, MA: Blackwell Publishing Inc.
    [79] 86. Glaser BG, Strauss A. (1967) The discovery of grounded theory. Chicago: Aldine.
    [80] 87. MacDonald M. (2001) Finding a critical perspective in grounded theory. In: Schreiber RS, Stern PN, editors. Using grounded theory in nursing. New York: Springer Publishing Company, 113-158.
    [81] 89. Guba E, Lincoln Y. (1989) Fourth generation evaluation. Newbury Park: Sage Publications.
    [82] 90. Sandelowski M. (1989) The problem of rigor in qualitative research. Adv Nurs Sci 8:27-37.
    [83] 91. Moreira T. (2007) Entangled evidence: Knowledge making in systematic reviews in healthcare. Sociol Health Ill 29:180-197.
    [84] 92. Voils CI, Barroso J, Hasselblad V, et al. (2007) In or out? Methodological considerations for including and excluding findings from a meta-analysis of predictors of antiretroviral adherence in HIV-positive women. J Adv Nurs 59:163-177.
    [85] 93. Oliver S, Harden A, Rees R, et al. (2005) An emerging framework for including different types of evidence in systematic reviews for public policy. Evaluation 11:428-446.
    [86] 94. Poland B, Frohlich KL, Cargo M. (2008) Context as a fundamental dimension of health promotion program evaluation. In: Potvin L, McQueen D, editors. Health promotion evaluation practices in the Americas. New York: Springer Science & Business Media, 299-318.
    [87] 95. LaRocca R, Yost J, Dobbins M, et al. (2012) The effectiveness of knowledge translation strategies used in public health: a systematic review. BMC Public Health 12:751.
    [88] 97. Risjord M. (2009) Rethinking concept analysis. J Adv Nurs 65:684-691.
    [89] 98. Wilson J. (1969) Thinking with concepts. Cambridge, England: Cambridge University Press.
    [90] 99. Rodgers BL. (1993) Concept analysis: An evolutionary view. In: Rodgers BL, Knafl KA, editors. Concept Development in Nursing: Foundations, Techniques, and Applications. Philadelphia: W. B. Saunders Company, 73-92.
    [91] 100.Bhaskar R. (1979) The possibility of naturalism. Atlantic Heights, NJ: Humanities Press.
    [92] 101.Kirkevold M. (1997) Integrative nursing research: An important strategy to further the development of nursing science and nursing practice. J Adv Nurs 25:977-984.
    [93] 102.Kelly M, Morgan A, Ellis S, et al. (2010) Evidence based public health: A review of the experience of the National Institute of Health and Clinical Excellence (NICE) of developing public health guidance in England. Soc Sci Med 71:1056–1062.
    [94] 103.Droogan J, Cullum N. (1984) Systematic reviews in nursing. Int J Nurs Stud 35:13-22.
    [95] 104.The Joanna Briggs Institute. (2015) Available from: http://www.joannabriggs.org/index.html
    [96] 105.Biesta G. (2010) Pragmatism and the philosophical foundations of mixed methods research. In: Tashakkori A, Teddlie C, editors. Mixed methods in social and behavioral research (2nd ed.) Thousand Oaks, CA: Sage, 95-118.
    [97] 107.Wong G, Westhorp G, Pawson R, et al. (2013) Greenhalgh T. Realist synthesis: RAMESES training materials. Available from: http://www.ramesesproject.org/media/Realist_reviews_training_materials.pdf
    [98] 108.Greenhalgh T, Wong G. (2013) Training materials for meta-narrative reviews. Available from: http://www.ramesesproject.org/media/Meta_narrative_reviews_training_materials.pdf
    [99] 109.Schwandt TA. (1) Constructivist, interpretivist approaches to human inquiry. In: Denzin NK, Lincoln YS, editors. Handbook of Qualitative Research. 2nd ed. Thousand Oaks, CA, 118-137.
    [100] 110.Blumer H. (1969) Symbolic interactionism: Perspective and method. Englewood Cliffs, NJ: Prentice-Hall.
    [101] 111.Milliken J, Schreiber R. (2001) Can you "do" symbolic interactionism without grounded theory? In: Schreiber RS, Stern PN, editors. Using grounded theory in nursing. New York: Springer, 177-190.
    [102] 112.Münch R. (1994) Sociological theory: From the 1850s to the 1920s. Chicago: Nelson Hall Publishers.
    [103] 113.Strauss A. (1993) Continual permutations of action. New York: Aldine de Gruyter.
    [104] 114.Charmaz K. (2006) Constructing grounded theory: A practical guide through qualitative analysis. London: Sage.
    [105] 115.Coryn CLS, Noakes LA, Westine CD, et al. (2011) A systematic review of theory-driven evaluation practice from 1990 to 2009. Am J Eval 32:199-226.
    [106] 116.Powell S, Tod J, Cornwall J, et al. (2004) A systematic review of how theories explain learning behavior in school contexts. London: EPPI-Centre.
    [107] 117.Baker WL, White MC, Cappelleri JC, et al. (2009) Understanding heterogeneity in meta-analysis: The role of meta-regression. Int J Clin Pract 63:1426-1434.
    [108] 118.Thompson SG, Higgins JPT. (2001) How should meta-regression analysis be undertaken and interpreted? MRC Biostatistics Unit, Institute of Public Health, Cambridge. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.4099&rep=rep1&type=pdf
    [109] 119.Greco T, Biondi-Zoccai G, Saleh O, et al. (2015) The attractiveness of network meta-analysis: A comprehensive systematic and narrative review. Heart Lung Vessel 7:133-142.
    [110] 120.Li T, Puhan MA, Vedula SS, Singh S, et al. (2011) Network meta-analysis – highly attractive but more methodological research is needed. BMC Medicine 9:79. Available from: http://www.biomedcentral.com/1741-7015/9/79
    [111] 121.Mills EJ, Thorlund K, Ioannidis JPA. (2013) Demystifying trial networks and network meta-analysis. BMJ 346:f2914. Available from: http://www.bmj.com/content/346/bmj.f2914
    [112] 122.Riley RD, Lambert PC, Abo-Zaid G. (2010) Meta-analysis of individual patient data: Rationale, conduct, and reporting. BMJ 340:c221. Available from: http://www.bmj.com/content/340/bmj.c221
    [113] 123.Thomas D, Radji S, Benedetti A. (2014) Systematic review of methods for individual patient data meta-analysis with binary outcomes. BMC Med Res Methodol 14:79. Available from: http://www.biomedcentral.com/1471-2288/14/79
    [114] 124.Hunt M. (1997) How science takes stock. New York: Russell Sage Foundation.
    [115] 125.Sandelowski M, Voils C, Barroso J. (2007) Comparability work and the management of difference in research synthesis studies. Soc Sci Med 64:236-247.
    [116] 126.Wong G, Greenhalgh T, Westhorp G, et al. (2013) RAMESES publication standards: Metanarrative reviews. J Adv Nurs 69:987-1004.
    [117] 127.Wong G, Greenhalgh T, Westhorp G, et al. (2013) RAMESES publication standards: Realist syntheses. J Adv Nurs 69:1005-1022.
    [118] 128.Wong G, Greenhalgh T, Westhorp G, et al. (2013) Quality standards for realist synthesis and meta-narrative reviews. Available from: http://betterevaluation.org/sites/default/files/Quality_standards_for_RS_and_MNR_v3final.pdf
    [119] 129.Levac D, Colguhoun H, O'Brien KK. (2010) Scoping studies: Advancing the methodology. Implement Sci 5:69.
    [120] 131.Sandelowski M, Trimble F, Woodard EK, et al. (2006) From synthesis to script: Transforming qualitative research findings for use in practice. Qual Health Res 16:1350-1370.
    [121] 132.Grimshaw J, Santesso N, Cumpston M, et al. (2006) Knowledge for knowledge translation. The role of the Cochrane Collaboration. J Contin Educ Health 26:52-62.
    [122] 133.Graham ID, Logan J, Harrison MB, et al. (2006) Lost in translation: time for a map. J Contin Educ Health 26:13–24.
    [123] 134.Straus S, Tetroe J, Graham ID. (2009) Knowledge translation in health care: Moving from evidence to action. West Sussex: Wiley Blackwell.
    [124] 135.Miles MB, Huberman AM. (1994) Qualitative data analysis: An expanded sourcebook. 2nd ed. Thousand Oaks, CA: Sage.
    [125] 136.Oliver S, Harden A, Rees R, et al. (2008) Young people and mental health: Novel methods for systematic review of research on barriers and facilitators. Health Educ Res 23:770-790.
    [126] 137.Harden A, Thomas J. (2005) Methodological issues in combining diverse study types in systematic reviews. Int J Soc Res Meth 8:257-271.
    [127] 138.Dixon Woods M, Fitzpatrick R, Roberts K. (2001) Including qualitative research in systematic reviews. J Eval Clin Prac 7:125-133.
    [128] 139.Anello C, Fleiss JL. (1995) Exploratory or analytic meta-analysis: Should we distinguish between them. J Clin Epidemiol 48:109-116.
    [129] 140.Petticrew M. (2003) Why certain systematic reviews reach uncertain conclusions. Brit Med J 326:756-758.
    [130] 141.Avant C. (2000) The Wilson method of concept analysis. In: Rodgers BL, Knafl KA, editors. Concept Development in Nursing: Foundations, Techniques, and Applications. 2nd ed. Philadelphia: W. B. Saunders Company, 55-64.
    [131] 142.Knafl KA, Deatrick JA. (2000) Knowledge synthesis and concept development in nursing. In: Rodgers BL, Knafl KA, editors. Concept Development in Nursing: Foundations, Techniques, and Applications. 2nd ed. Philadelphia: W. B. Saunders Company, 39-54.
    [132] 143.Rodgers BL. (1991) Using concept analysis to enhance clinical practice and research. Dimens Crit Care Nurs 10:28-34.
    [133] 144.Duncan C, Cloutier JD, Bailey PH. (2007) Concept analysis: The importance of differentiating the ontological focus. J Adv Nurs 58:293-300.
    [134] 145.Chinn P, Jacobs M. (1983) Theory and nursing: A systematic approach. 2nd ed. St. Louis: Mosby.
    [135] 146.Chinn P, Kramer M. (1991) Theory and nursing: A systematic approach. 3rd ed. St. Louis: Mosby.
    [136] 147.Schwartz-Barcott D, Kim H. (1993) An expansion and elaboration of the Hybrid Model of Concept Development in nursing. In Rodgers BL, Knafl KA, editors. Concept Development in Nursing: Foundations, Techniques, and Applications. Philadelphia: W. B. Saunders Company, 107-134.
    [137] 148.Hupcey JE, Morse JM, Lenz ER, et al. (1996) Wilsonian methods of concept analysis: A critique. Sch Inq Nurs Prac 10:185-210.
    [138] 149.Davis K, Drey N, Gould D. (2009) What are scoping studies? A review of the nursing literature. Int J Nurs Stud 46:-1400.
    [139] 150.Valaitis R, Martin-Misener R, Wong S, et al. (2012) Strengthening Primary Health Care through Public Health and Primary Care Collaboration Team: Methods, strategies and technologies used to conduct a scoping literature review of collaboration between primary care and public health. Prim Health Care Res Dev 13:219-236.
    [140] 151.Grant M, Booth A. (2009) A typology of reviews: an analysis of 14 review types and associated methodologies. Health Info Libr J 26:91-108.
    [141] 152.Ganann R, Ciliska D, Thomas H. (2010) Expediting systematic reviews: Methods and implications of rapid reviews. Implement Sci doi:10.1186/1748-5908-5-56
    [142] 153.Khangura S, Konnyu K, Cushman R, et al. (2012) Evidence summaries: The evolution of a rapid review approach. Sys Rev doi: 10.1186/2046-4053-1-10
    [143] 154.Riley B, Norman CD, Best A. (2012) Knowledge integration in public health: A rapid review using system thinking. Evid Policy 8:417-431.
    [144] 155.Mercille G. (2008) A realist approach to the systematic review. In: Potvin L, McQueen D, editors. Promotion evaluation practices in the Americas. New York: Springer Science & Business Media, 81-100.
  • This article has been cited by:

    1. Zhan‐Ping Ma, Hai‐Feng Huo, Hong Xiang, Spatiotemporal patterns induced by delay and cross‐fractional diffusion in a predator‐prey model describing intraguild predation, 2020, 43, 0170-4214, 5179, 10.1002/mma.6259
    2. Hai-Feng Huo, Shuang-Lin Jing, Xun-Yang Wang, Hong Xiang, Modeling and analysis of a H1N1 model with relapse and effect of Twitter, 2020, 560, 03784371, 125136, 10.1016/j.physa.2020.125136
    3. Zizhen Zhang, Fangfang Yang, Wanjun Xia, Influence of time delay on bifurcation of a synthetic drug transmission model with psychological addicts, 2020, 2020, 1687-1847, 10.1186/s13662-020-02607-y
    4. Shuang-Lin Jing, Hai-Feng Huo, Hong Xiang, Modeling the Effects of Meteorological Factors and Unreported Cases on Seasonal Influenza Outbreaks in Gansu Province, China, 2020, 82, 0092-8240, 10.1007/s11538-020-00747-6
    5. Zhong-Kai Guo, Hong Xiang, Hai-Feng Huo, Analysis of an age-structured tuberculosis model with treatment and relapse, 2021, 82, 0303-6812, 10.1007/s00285-021-01595-1
    6. Hai-Feng Huo, Li-Na Gu, Hong Xiang, MODELLING AND ANALYSIS OF AN HIV/AIDS MODEL WITH DIFFERENT WINDOW PERIOD AND TREATMENT, 2021, 11, 2156-907X, 1927, 10.11948/20200279
    7. Cheng-Cheng Zhu, Jiang Zhu, Spread trend of COVID-19 epidemic outbreak in China: using exponential attractor method in a spatial heterogeneous SEIQR model, 2020, 17, 1551-0018, 3062, 10.3934/mbe.2020174
    8. Qian Yang, Hai-Feng Huo, Hong Xiang, Analysis of an edge-based SEIR epidemic model with sexual and non-sexual transmission routes, 2023, 609, 03784371, 128340, 10.1016/j.physa.2022.128340
    9. Banan Maayah, Omar Abu Arqub, Hilbert approximate solutions and fractional geometric behaviors of a dynamical fractional model of social media addiction affirmed by the fractional Caputo differential operator, 2023, 25900544, 100092, 10.1016/j.csfx.2023.100092
    10. SHAHER MOMANI, R. P. CHAUHAN, SUNIL KUMAR, SAMIR HADID, ANALYSIS OF SOCIAL MEDIA ADDICTION MODEL WITH SINGULAR OPERATOR, 2023, 31, 0218-348X, 10.1142/S0218348X23400972
    11. Ning Li, Yuequn Gao, Modified fractional order social media addiction modeling and sliding mode control considering a professionally operating population, 2024, 32, 2688-1594, 4043, 10.3934/era.2024182
    12. Yasir Nadeem Anjam, Saira Tabassum, Muhammad Arshad, Mati ur Rahman, Muhammad Ateeq Tahir, Mathematical insights of social media addiction: fractal-fractional perspectives, 2024, 99, 0031-8949, 055230, 10.1088/1402-4896/ad348c
    13. Saduri Das, Prashant K. Srivastava, Pankaj Biswas, The role of social media in a tuberculosis compartmental model: Exploring Hopf-bifurcation and nonlinear oscillations, 2024, 03784754, 10.1016/j.matcom.2024.11.015
    14. V. Madhusudanan, L. Guerrini, B. S. N. Murthy, Nhu-Ngoc Dao, Sungrae Cho, Exploring the Dynamics of Social Media Addiction and Depression Models With Discrete and Distributed Delays, 2025, 13, 2169-3536, 55682, 10.1109/ACCESS.2025.3555306
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(18427) PDF downloads(3066) Cited by(126)

Figures and Tables

Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog