Rooftop harvesting of solar energy is a promising method to provide a great portion of household energy requirements in many parts of the world. However, the cost of solar energy systems sometimes makes the exploration of rooftop solar energy systems not attractive to property owners. This study evaluates the economic factors that could affect the decision on whether to consider the installation of solar energy systems using the estimated time that the cumulative solar savings would become positive. The economic implication of increasing the micro-generation capacity of individual households, and the impact of varied interest rates, and subsidies were also evaluated. Among the three factors that were presented, the result showed that increasing the amount of electricity that is allowed to be generated from individual rooftops will result in the highest economic attractiveness for end-users. This is also expected to move the world closer to the goal of sustainable management of non-renewable resources for present and future generations. Increasing the micro-generation capacity of electricity from photovoltaic (PV) rooftops by individual households without increasing the electricity distribution fees results in a reduction of the time to reach positive solar savings. In addition, increasing the micro-generation capacity of electricity from PV rooftops is expected to contribute to a reduction in the greenhouse gas (GHG) emissions from the electricity grid for the entire community. This study recommends the encouragement of policies that allow for the maximization of electricity generation potential from rooftops of residential and industrial buildings.
Citation: Adekunle Olubowale Mofolasayo. Evaluation of economic feasibility of rooftop solar energy systems under multiple variables[J]. Clean Technologies and Recycling, 2024, 4(1): 61-88. doi: 10.3934/ctr.2024004
[1] | Luigi Montoro, Berardino Sciunzi . Qualitative properties of solutions to the Dirichlet problem for a Laplace equation involving the Hardy potential with possibly boundary singularity. Mathematics in Engineering, 2023, 5(1): 1-16. doi: 10.3934/mine.2023017 |
[2] | Juan-Carlos Felipe-Navarro, Tomás Sanz-Perela . Semilinear integro-differential equations, Ⅱ: one-dimensional and saddle-shaped solutions to the Allen-Cahn equation. Mathematics in Engineering, 2021, 3(5): 1-36. doi: 10.3934/mine.2021037 |
[3] | Francesca G. Alessio, Piero Montecchiari . Gradient Lagrangian systems and semilinear PDE. Mathematics in Engineering, 2021, 3(6): 1-28. doi: 10.3934/mine.2021044 |
[4] | Filippo Gazzola, Gianmarco Sperone . Remarks on radial symmetry and monotonicity for solutions of semilinear higher order elliptic equations. Mathematics in Engineering, 2022, 4(5): 1-24. doi: 10.3934/mine.2022040 |
[5] | Elena Beretta, M. Cristina Cerutti, Luca Ratti . Lipschitz stable determination of small conductivity inclusions in a semilinear equation from boundary data. Mathematics in Engineering, 2021, 3(1): 1-10. doi: 10.3934/mine.2021003 |
[6] | Huyuan Chen, Laurent Véron . Weak solutions of semilinear elliptic equations with Leray-Hardy potentials and measure data. Mathematics in Engineering, 2019, 1(3): 391-418. doi: 10.3934/mine.2019.3.391 |
[7] | Marco Cirant, Kevin R. Payne . Comparison principles for viscosity solutions of elliptic branches of fully nonlinear equations independent of the gradient. Mathematics in Engineering, 2021, 3(4): 1-45. doi: 10.3934/mine.2021030 |
[8] | Yuzhe Zhu . Propagation of smallness for solutions of elliptic equations in the plane. Mathematics in Engineering, 2025, 7(1): 1-12. doi: 10.3934/mine.2025001 |
[9] | Antonio Greco, Francesco Pisanu . Improvements on overdetermined problems associated to the p-Laplacian. Mathematics in Engineering, 2022, 4(3): 1-14. doi: 10.3934/mine.2022017 |
[10] | Italo Capuzzo Dolcetta . The weak maximum principle for degenerate elliptic equations: unbounded domains and systems. Mathematics in Engineering, 2020, 2(4): 772-786. doi: 10.3934/mine.2020036 |
Rooftop harvesting of solar energy is a promising method to provide a great portion of household energy requirements in many parts of the world. However, the cost of solar energy systems sometimes makes the exploration of rooftop solar energy systems not attractive to property owners. This study evaluates the economic factors that could affect the decision on whether to consider the installation of solar energy systems using the estimated time that the cumulative solar savings would become positive. The economic implication of increasing the micro-generation capacity of individual households, and the impact of varied interest rates, and subsidies were also evaluated. Among the three factors that were presented, the result showed that increasing the amount of electricity that is allowed to be generated from individual rooftops will result in the highest economic attractiveness for end-users. This is also expected to move the world closer to the goal of sustainable management of non-renewable resources for present and future generations. Increasing the micro-generation capacity of electricity from photovoltaic (PV) rooftops by individual households without increasing the electricity distribution fees results in a reduction of the time to reach positive solar savings. In addition, increasing the micro-generation capacity of electricity from PV rooftops is expected to contribute to a reduction in the greenhouse gas (GHG) emissions from the electricity grid for the entire community. This study recommends the encouragement of policies that allow for the maximization of electricity generation potential from rooftops of residential and industrial buildings.
The notion of intuitionistic fuzzy normed subring and intuitionistic fuzzy normed ideal was characterized by Abed Alhaleem and Ahmad in [10], after that the necessity has arisen to introduce the concepts of intuitionistic fuzzy normed prime ideals and intuitionistic fuzzy normed maximal ideals. Following the work of Emniyent and Şahin in [17] which outlined the concepts of fuzzy normed prime ideal and maximal ideal we implement the conception of intuitionistic fuzzy to prime and maximal normed ideals. After the establishment of fuzzy set by Zadeh [28] which showed that the membership of an element in a fuzzy set is at intervals [0, 1], many researchers investigated on the properties of fuzzy set because it handles uncertainty and vagueness, and due to its applications in many fields of studies. A lot of work has been done on various aspects and for the last 50 years, the relation betwee maximal and prime ideals has become the core of many researchers work. Swamy and Swamy in 1988 [27] presented the conceptions of fuzzy ideal and fuzzy prime ideal with truth values in a complete lattice fulfilling the infinite distributive law. Later, many researchers studied the generalization of fuzzy ideals and fuzzy prime (maximal) ideals of rings: Dixit et al [16], Malik and Mordeson in [22] and Mukherjee and Sen in [24]. The notion of intuitionistic fuzzy set was initiated by Atanassov [6], as a characterization of fuzzy set which assigned the degree of membership and the degree of non-membership for set elements, he also delineated some operations and connections over basic intuitionistic fuzzy sets. In [5], Atanassov introduced essential definitions and properties of the interval-valued intuitionistic fuzzy sets and the explanation of mostly extended modal operator through interval-valued intuitionistic fuzzy sets were presented in [4], and some of its main properties were studied. Banerjee and Basnet [13] investigated intuitionistic fuzzy rings and intuitionistic fuzzy ideals using intuitionistic fuzzy sets. In 2005 [20], an identification of intuitionistic fuzzy ideals, intuitionistic fuzzy prime ideals and intuitionistic fuzzy completely prime ideals was given. In [14], Bakhadach et al. implemented the terms of intuitionistic fuzzy ideals and intuitionistic fuzzy prime (maximal) ideals, investigated these notions to show new results using the intuitionistic fuzzy points and membership and nonmembership functions. The paper comprises the following: we begin with the preliminary section, we submit necessary notations and elementary outcomes. In Section 3, we characterize some properties of intuitionistic fuzzy normed ideals and identify the image and the inverse image of intuitionistic fuzzy normed ideals. In Section 4, we describe the notions of intuitionistic fuzzy normed prime ideals and intuitionistic fuzzy normed maximal ideals and we characterize the relation between the intuitionistic characteristic function and prime (maximal) ideals. In Section 5, the conclusions are outlined.
We first include some definitions needed for the subsequent sections:
Definition 2.1. [25] A linear space L is called a normed space if for any element r there is a real number ‖r‖ satisfying:
∙‖r‖≥0 for every r∈L, when r=0 then ‖r‖=0;
∙‖α.r‖=|α|.‖r‖;
∙‖r+v‖≤‖r‖+‖v‖ for all r,v∈L.
Definition 2.2. [18] A ring R is said to be a normed ring (NR) if it possesses a norm ‖‖, that is, a non-negative real-valued function ‖‖:NR→R such that for any r,v∈R,
1)‖r‖=0⇔r=0,
2)‖r+v‖≤‖r‖+‖v‖,
3)‖r‖=‖−r‖, (and hence ‖1A‖=1=‖−1‖ if identity exists), and
4)‖rv‖≤‖r‖‖v‖.
Definition 2.3. [1] Let ∗:[0,1]×[0,1]→[0,1] be a binary operation. Then ∗ is a t-norm if ∗ conciliates the conditions of commutativity, associativity, monotonicity and neutral element 1.
We shortly use t-norm and write r∗v instead of ∗(r,v).
Two examples of continuous t-norm are: r∗v=rv and r∗v=min{r,v} [26].
Proposition 2.4. [21] A t-norm T has the property, for every r,v∈[0,1]
T(r,v)≤min(r,v) |
Definition 2.5. [19] Let ⋄:[0,1]×[0,1]→[0,1] be a binary operation. Then ⋄ is a s-norm if ⋄ conciliates the conditions of commutativity, associativity, monotonicity and neutral element 0.
We shortly use s-norm and write r⋄v instead of ⋄(r,v).
Two examples of continuous s-norm are: r⋄v=min(r+v,1) and r⋄v=max{r,v} [26].
Proposition 2.6. [21] A s-norm S has the property, for every r,v∈[0,1]
max(r,v)≤S(r,v) |
Definition 2.7. [28] A membership function μA(r):X→[0,1] specifies the fuzzy set A over X, where μA(r) defines the membership of an element r∈X in a fuzzy set A.
Definition 2.8. [6] An intuitionistic fuzzy set A in set X is in the form IFSA={(r,μA(r),γA(r):r∈X}, such that the degree of membership is μA(r):X→[0,1] and the degree of non-membership is γA(r):X→[0,1], where 0≤μA(r)+γA(r))≤1 for all r∈X. We shortly use A=(μA,γA).
Definition 2.9. [7] Let A be an intuitionistic fuzzy set in a ring R, we indicate the (α,β)-cut set by Aα,β={r∈R:μA≥α and γA≤β} such that α+β≤1 and α,β∈[0,1].
Definition 2.10. [23] The support of an intuitionistic fuzzy set A, is denoted by A∘ and defined as A∘={r:μA(r)>0 and γA(r)<1}.
Definition 2.11. [2] The complement, union and intersection of two IFSA=(μA,γA) and B=(μB,γB), in a ring R, are defined as follows:
1)Ac={⟨r,γA(r),μA(r)⟩:r∈R},
2)A∪B={⟨r,max(μA(r),μB(r)),min(γA(r),γB(r))⟩:r∈R},
3)A∩B={⟨r,min(μA(r),μB(r)),max(γA(r),γB(r))⟩:r∈R}.
Definition 2.12. [12] Let NR be a normed ring. Then an IFS A={(r,μA(r),γA(r)):r∈NR} of NR is an intuitionistic fuzzy normed subring (IFNSR) of NR if:
i. μA(r−v)≥μA(r)∗μA(v),
ii. μA(rv)≥μA(r)∗μA(v),
iii. γA(r−v)≤γA(r)⋄γA(v),
iv. γA(rv)≤γA(r)⋄γA(v).
Definition 2.13. [9] Let NR be a normed ring. Then an IFS A={(r,μA(r),γA(r)):r∈NR} of NR is an intuitionistic fuzzy normed ideal (IFNI) of NR if:
i. μA(r−v)≥μA(r)∗μA(v),
ii. μA(rv)≥μA(r)⋄μA(v),
iii. γA(r−v)≤γA(r)⋄γA(v)),
iv. γA(rv))≤γA(r)∗γA(v)}.
Definition 2.14. [3] If A and B are two fuzzy subsets of the normed ring NR. Then the product A∘B(r) is defined by:
A∘B(r)={⋄r=vz(μA(v)∗μB(z)),ifr=vz0,otherwise |
Definition 2.15. [22] A fuzzy ideal A (non-constant) of a ring R is considered to be a fuzzy prime ideal if B∘C⊆A for a fuzzy ideals B, C of R indicates that either B⊆A or C⊆A.
In this section, we characterize several properties of intuitionistic fuzzy normed ideals and elementary results are obtained.
Definition 3.1. [8] Let A and B be two intuitionistic fuzzy subsets of the normed ring NR. The operations are defined as:
μA⊛B(r)={⋄r=vz(μA(v)∗μB(z)),ifr=vz0,otherwise |
and
γA⊗B(r)={∗r=vz(γA(v)⋄γB(z)),ifr=vz1,otherwise |
Therefore, the intrinsic product of A and B is considered to be the intuitionistic fuzzy normed set A∘B=(μA⊛B,γA⊗B)=(μA⊛μB,γA⊗γB).
Theorem 3.2. [10] Let A and B be two intuitionistic fuzzy ideals of a normed ring NR. Then A∩B is an intuitionistic fuzzy normed ideal of NR.
Example 3.1. Let NR=Z the ring of integers under ordinary addition and multiplication of integers.
Define the intuitionistic fuzzy normed subsets as A=(μA,γA) and B=(μB,γB), by
μA(r)={0.7,ifr∈5Z0.2,otherwiseandγA(r)={0.1,ifr∈5Z0.4,otherwise |
μB(r)={0.8,ifr∈5Z0.3,otherwiseandγB(r)={0.2,ifr∈5Z0.7,otherwise |
As μA∩B(r)=min{μA(r),μB(r)} and γA∩B(r)=max{γA(r),γB(r)}. Then,
μA∩B(r)={0.7,ifr∈5Z0.2,otherwiseandγA∩B(r)={0.2,ifr∈5Z0.7,otherwise |
It can be verified that A, B and A∩B are intuitionistic fuzzy normed ideals of NR.
Lemma 3.3. Let A and B be an intuitionistic fuzzy normed right ideal and an intuitionistic fuzzy normed left ideal of a normed ring NR, respectively, then A∘B⊆A∩B i.e, A⊛B(r)≤A∩B(r)≤A⊗B(r), where
A∩B(r)={(r,μA∩B(r),γA∩B(r)):r∈NR}={(r,min{μA(r),μB(r)},max{γA(r),γB(r)}):r∈NR}. |
Proof. Let A∩B be an intuitionistic fuzzy normed ideal of NR. Assume that A is an intuitionistic fuzzy normed right ideal and B is an intuitionistic fuzzy normed left ideal. Let μA⊛B(r)=⋄r=vz(μA(v)∗μB(z)) and let γA⊗B(r)=∗r=vz(γA(v)⋄γB(z)).
Since, A is an intuitionistic fuzzy normed right ideal and B is an intuitionistic fuzzy normed left ideal, we have
μA(v)≤μA(vz)=μA(r)andμB(z)≤μB(vz)=μB(r) |
and
γA(r)=γA(vz)≥γA(v)andγB(r)=γB(vz)≥γB(z). |
Thus,
μA⊛B(r)=⋄r=vz(μA(v)∗μB(z))=min(μA(v),μB(z))≤min(μA(r),μB(r))≤μA∩B(r) | (3.1) |
and
γA⊗B(r)=∗r=vz(γA(v)⋄γB(z))=max(γA(v),γB(z))≥max(γA(r),γB(r))≥γA∩B(r). | (3.2) |
By (3.1) and (3.2) the proof is concluded.
Remark 3.4. The union of two intuitionistic fuzzy normed ideals of a ring NR needs not be always intuitionistic fuzzy normed ideal.
Example 3.2. Let NR=Z the ring of integers under ordinary addition and multiplication of integers.
Let the intuitionistic fuzzy normed subsets A=(μA,γA) and B=(μB,γB), define by
μA(r)={0.85,ifr∈3Z0.3,otherwiseandγA(r)={0.2,ifr∈3Z0.4,otherwise |
μB(r)={0.75,ifr∈2Z0.35,otherwiseandγB(r)={0.3,ifr∈2Z0.5,otherwise |
It can be checked that A and B are intuitionistic fuzzy normed ideals of NR.
As μA∪B(r)=max{μA(r),μB(r)} and γA∪B(r)=min{γA(r),γB(r)}. Then,
μA∪B(r)={0.85,ifr∈3Z0.75,ifr∈2Z−3Z0.35,ifr∉2Zorr∉3ZandγA∪B(r)={0.2,ifr∈3Z0.3,ifr∈2Z−3Z0.4,ifr∉2Zorr∉3Z |
Let r=15 and v=4, then μA∪B(15)=0.85, μA∪B(4)=0.75 and γA∪B(15)=0.2, γA∪B(4)=0.3.
Hence, μA∪B(15−4)=μA∪B(11)=0.35≯μA∪B(15)∗μA∪B(4)=min{0.85,0.75} and γA∪B(15−4)=γA∪B(11)=0.4≮γA∪B(15)⋄γA∪B(4)=max{0.2,0.3}. Thus, the union of two intuitionistic fuzzy normed ideals of NR need not be an intuitionistic fuzzy normed ideal.
Proposition 3.5. Let A=(μA,γA) be an intuitionistic fuzzy normed ideal of a ring NR, then we have for all r∈NR:
i. μA(0)≥μA(r) and γA(0)≤γA(r),
ii. μA(−r)=μA(r) and γA(−r)=γA(r),
iii. If μA(r−v)=μA(0) then μA(r)=μA(v),
iv. If γA(r−v)=γA(0) then γA(r)=γA(v).
Proof. i. As A is an intuitionistic fuzzy normed ideal, then
μA(0)=μA(r−r)≥μA(r)∗μA(r)=μA(r) |
and
γA(0)=γA(r−r)≤γA(r)⋄γA(r)=γA(r) |
ii. μA(−r)=μA(0−r)≥μA(0)∗μA(r)=μA(r) and μA(r)=μA(0−(−r))≥μA(0)∗μA(−r)=μA(−r).
Therefore, μA(−r)=μA(r)
also,
γA(−r)=γA(0−r)≤γA(0)⋄γA(r)=γA(r) and γA(r)=γA(0−(−r))≤γA(0)⋄γA(−r)=γA(−r).
Therefore, γA(−r)=γA(r).
iii. Since μA(r−v)=μA(0), then
μA(v)=μA(r−(r−v))≥μA(r)∗μA(r−v)=μA(r)∗μA(0)≥μA(r) |
similarly
μA(r)=μA((r−v)−(−v))≥μA(r−v)∗μA(−v)=μA(0)∗μA(v)≥μA(v) |
Consequently, μA(r)=μA(v).
iv. same as in iii.
Proposition 3.6. Let A be an intuitionistic fuzzy normed ideal of a normed ring NR, then △A=(μA,μcA) is an intuitionistic fuzzy normed ideal of NR.
Proof. Let r,v∈NR
μcA(r−v)=1−μA(r−v)≤1−min{μA(r),μA(v)}=max{1−μA(r),1−μA(v)}=max{μcA(r),μcA(v)} |
Then μcA(r−v)≤μcA(r)⋄μcA(v).
μcA(rv)=1−μA(rv)≤1−max{μA(r),μA(v)}=min{1−μA(r),1−μA(v)}=min{μcA(r),μcA(v)} |
Then μcA(rv)≤μcA(r)∗μcA(v).
Accordingly, △A=(μA,μcA) is an intuitionistic fuzzy normed ideal of NR.
Proposition 3.7. If A is an intuitionistic fuzzy normed ideal of a normed ring NR, then ◊A=(γcA,γA) is an intuitionistic fuzzy normed ideal of NR.
Proof. Let r,v∈NR
γcA(r−v)=1−γA(r−v)≥1−max{γA(r),γA(v)}=min{1−γA(r),1−γA(v)}=min{γcA(r),γcA(v)} |
Then γcA(r−v)≥γcA(r)∗γcA(v).
γAc(rv)=1−γA(rv)≥1−min{γA(r),γA(v)}=max{1−μA(r),1−γA(v)}=max{γcA(r),γcA(v)} |
Then γcA(rv)≥γcA(r)⋄γcA(v).
Therefore, ◊A=(γcA,γA) is an intuitionistic fuzzy normed ideal of NR.
Proposition 3.8. An IFSA=(μA,γA) is an intuitionistic fuzzy normed ideal of NR if the fuzzy subsets μA and γcA are intuitionistic fuzzy normed ideals of NR.
Proof. Let r,v∈NR
1−γA(r−v)=γcA(r−v)≥min{γcA(r),γcA(v)}=min{(1−γA(r)),(1−γA(v))}=1−max{γA(r),γA(v)} |
Then, γA(r−v)≤γA(r)⋄γA(v).
1−γA(rv)=γcA(rv)≥max{γcA(r),γcA(v)}=max{(1−γA(r)),(1−γA(v))}=1−min{γA(r),γA(v)} |
Then, γA(rv)≤γA(r)∗γA(v).
Consequently, A=(μA,γA) is an intuitionistic fuzzy normed ideal of NR.
Definition 3.9. Let A be a set (non-empty) of the normed ring NR, the intuitionistic characteristic function of A is defined as λA=(μλA,γλA), where
μλA(r)={1,ifr∈A0,ifr∉AandγλA(r)={0,ifr∈A1,ifr∉A |
Lemma 3.10. Let A and B be intuitionistic fuzzy sets of a normed ring NR, then:
(i) λA∩λB=λA∩B (ii) λA∘λB=λA∘B (iii) If A⊆B, then λA⊆λB
Theorem 3.11. For a non-empty subset A of NR, A is a subring of NR if and only if λA=(μλA,γλA) is an intuitionistic fuzzy normed subring of NR.
Proof. Suppose A to be a subring of NR and let r,v∈NR. If r,v∈A, then by the intuitionistic characteristic function properties μλA(r)=1=μλA(v) and γλA(r)=0=γλA(v). As A is a subring, then r−v and rv∈A. Thus, μλA(r−v)=1=1∗1=μλA(r)∗μλA(v) and μλA(rv)=1=1∗1=μλA(r)∗μλA(v), also γλA(r−v)=0=0⋄0=γλA(r)⋄γλA(v) and γλA(rv)=0=0⋄0=γλA(r)⋄γλA(v). This implies,
μλA(r−v)≥μλA(r)∗μλA(v)andμλA(rv)≥μλA(r)∗μλA(v),γλA(r−v)≤γλA(r)⋄γλA(v)andγλA(rv)≤γλA(r)⋄γλA(v). |
Similarly we can prove the above expressions if r,v∉A.
Hence, λA=(μλA,γλA) is an intuitionistic fuzzy normed subring of NR.
Conversely, we hypothesise that the intuitionistic characteristic function λA=(μλA,γλA) is an intuitionistic fuzzy normed subring of NR. Let r,v∈A, then μλA(r)=1=μλA(v) and γλA(r)=0=γλA(v). So,
μλA(r−v)≥μλA(r)∗μλA(v)≥1∗1≥1,alsoμλA(r−v)≤1,μλA(rv)≥μλA(r)∗μλA(v)≥1∗1≥1,alsoμλA(rv)≤1,γλA(r−v)≤γλA(r)⋄γλA(v)≤0⋄0≤0,alsoγλA(r−v)≥0,γλA(rv)≤γλA(r)⋄γλA(v)≤0⋄0≤0,alsoγλA(rv)≥0, |
then μλA(r−v)=1, μλA(rv)=1 and γλA(r−v)=0, γλA(rv)=0, which implies that r−v and rv∈A. Therefore, A is a subring of NR.
Theorem 3.12. Let I be a non-empty subset of a normed ring NR, then I is an ideal of NR if and only if λI=(μλI,γλI) is an intuitionistic fuzzy normed ideal of NR.
Proof. Let I be an ideal of NR and let r,v∈NR.
Case I. If r,v∈I then rv∈I and μλI(r)=1, μλI(v)=1 and γλI(r)=0, γλI(v)=0. Thus, μλI(rv)=1 and γλI(rv)=0. Accordingly, μλI(rv)=1=μλI(r)⋄μλI(v) and γλI(rv)=0=γλI(r)∗γλI(v).
Case II. If r∉I or v∉I so rv∉I, then μλI(r)=0 or μλI(v)=0 and γλI(r)=1 or γλI(v)=1. So, μλI(rv)=1≥μλI(r)⋄μλI(v) and γλI(rv)=0≤γλI(r)∗γλI(v). Hence, λI=(μλI,γλI) is an intuitionistic fuzzy normed ideal of NR.
On the hand, we suppose λI=(μλI,γλI) is an intuitionistic fuzzy normed ideal of NR. The proof is similar to the second part of the proof of Theorem 3.11.
Proposition 3.13. If A is an intuitionistic fuzzy normed ideal of NR, then A∗ is an ideal of NR where A∗ is defined as,
A∗={r∈NR:μA(r)=μA(0)andγA(r)=γA(0)} |
Proof. See [10] (p. 6)
Lemma 3.14. Let A and B be two intuitionistic fuzzy normed left (right) ideal of NR. Therefore, A∗∩B∗⊆(A∩B)∗.
Proof. Let r∈A∗∩B∗, then μA(r)=μA(0), μB(r)=μB(0) and γA(r)=γA(0), γB(r)=γB(0).
μA∩B(r)=min{μA(r),μB(r)}=min{μA(0),μB(0)}=μA∩B(0) |
and
γA∩B(r)=max{γA(r),γB(r)}=max{γA(0),γB(0)}=γA∩B(0) |
So, r∈(A∩B)∗. Thus, A∗∩B∗⊆(A∩B)∗.
Theorem 3.15. Let f:NR→NR′ be an epimorphism mapping of normed rings. If A is an intuitionistic fuzzy normed ideal of the normed ring NR, then f(A) is also an intuitionistic fuzzy normed ideal of NR′.
Proof. Suppose A={(r,μA(r),γA(r)):r∈NR},
f(A)={(v,⋄f(r)=vμA(r),∗f(r)=vγA(r):r∈NR,v∈NR′}.
Let v1,v2∈NR′, then there exists r1,r2∈NR such that f(r1)=v1 and f(r2)=v2.
i.
μf(A)(v1−v2)=⋄f(r1−r2)=v1−v2μA(r1−r2)≥⋄f(r1)=v1,f(r2)=v2(μA(r1)∗μA(r2))≥(⋄f(r1)=v1μA(r1))∗(⋄f(r2)=v2μA(r2))≥μf(A)(v1)∗μf(A)(v2) |
ii.
μf(A)(v1v2)=⋄f(r1r2)=v1v2μA(r1r2)≥⋄f(r2)=v2μA(r2)≥μf(A)(v2) |
iii.
γf(A)(v1−v2)=∗f(r1−r2)=v1−v2γA(r1−r2)≤∗f(r1)=v1,f(r2)=v2(γA(r1)⋄γA(r2))≤(∗f(r1)=v1γA(r1))⋄(∗f(r2)=v2γA(r2))≤γf(A)(v1)⋄γf(A)(v2) |
iv.
γf(A)(v1v2)=∗f(r1r2)=v1v2γA(r1r2)≤∗f(r2)=v2γA(r2)≤γf(A)(v2) |
Hence, f(A) is an intuitionistic fuzzy normed left ideal. Similarly, it can be justified that f(A) is an intuitionistic fuzzy normed right ideal. Then, f(A) is a intuitionistic fuzzy normed ideal of NR′.
Proposition 3.16. Define f:NR→NR′ to be an epimorphism mapping. If B is an intuitionistic fuzzy normed ideal of the normed ring NR′, then f−1(B) is also an intuitionistic fuzzy normed ideal of NR.
Proof. Suppose B={(v,μB(v),γB(v)):v∈NR′}, f−1(B)={(r,μf−1(B)(r),γf−1(B)(r):r∈NR}, where μf−1(B)(r)=μB(f(r)) and γf−1(B)(r)=γB(f(r)) for every r∈NR. Let r1,r2∈NR, then
i.
μf−1(B)(r1−r2)=μB(f(r1−r2))=μB(f(r1)−f(r2))≥μB(f(r1))∗μB(f(r2))≥μf−1(B)(r1)∗μf−1(B)(r2) |
ii.
μf−1(B)(r1r2)=μB(f(r1r2))=μB(f(r1)f(r2))≥μB(f(r2))≥μf−1(B)(r2) |
iii.
γf−1(B)(r1−r2)=γB(f(r1−r2))=γB(f(r1)−f(r2))≤γB(f(r1))⋄γB(f(r2))≤γf−1(B)(r1)⋄γf−1(B)(r2) |
iv.
γf−1(B)(r1r2)=γB(f(r1r2))=γB(f(r1)f(r2))≤γB(f(r2))≤γf−1(B)(r2) |
Therefore, f−1(B) is an intuitionistic fuzzy normed left ideal of NR. Similarly, it can be justified that f−1(B) is an intuitionistic fuzzy normed right ideal. So, f−1(B) is a intuitionistic fuzzy normed ideal of NR.
In what follows, we produce the terms of intuitionistic fuzzy normed prime ideals and intuitionistic fuzzy normed maximal ideals and we investigate some associated properties.
Definition 4.1. An intuitionistic fuzzy normed ideal A=(μA,γA) of a normed ring NR is said to be an intuitionistic fuzzy normed prime ideal of NR if for an intuitionistic fuzzy normed ideals B=(μB,γB) and C=(μC,γC) of NR where B∘C⊆A indicates that either B⊆A or C⊆A, which imply that μB⊆μA and γA⊆γB or μC⊆μA and γA⊆γC.
Proposition 4.2. An intuitionistic fuzzy normed ideal A=(μA,γA) is an intuitionistic fuzzy normed prime ideal if for any two intuitionistic fuzzy normed ideals B=(μB,γB) and C=(μC,γC) of NR satisfies:
i. μA⊇μB⊛C i.e. μA(r)≥⋄r=vz(μA(v)∗μB(z));
ii. γA⊆γB⊗C i.e.γA(r)≤∗r=vz(γA(v)⋄γB(z)).
Theorem 4.3. Let A be an intuitionistic fuzzy normed prime ideal of NR. Then ∣Im μA∣ = ∣Im γA∣=2; in other words A is two-valued.
Proof. As A is not constant, ∣Im μA∣≥2. assume that ∣Im μA∣≥3. Aα,β={r∈R:μA≥α and γA≤β} where α+β≤1. Let r∈NR and let B and C be two intuitionistic fuzzy subsets in NR, such that: μA(0)=s and k=glb{μA(r):r∈NR}, so there exists t,α∈ Im(μA) such that k≤t<α<s with μB(r)=12(t+α), μC(r)={s,ifr∈Aα,βk,ifr∉Aα,β and γA(0)=c and h=lub{γA(r):r∈NR}, then there exists d,β∈ Im(γA) such that c<β<d≤h with γB(r)=12(d+β) and γC(r)={c,ifr∈Aα,βh,ifr∉Aα,β for all r∈NR. Clearly B is an intuitionistic fuzzy normed ideal of NR. Now we claim that C is an intuitionistic fuzzy normed ideal of NR.
Let r,v∈NR, if r,v∈Aα,β then r−v∈Aα,β and μC(r−v)=s=μC(r)∗μC(v), γC(r−v)=c=γC(r)⋄γC(v). If r∈Aα,β and v∉Aα,β then r−v∉Aα,β so, μC(r−v)=k=μC(r)∗μC(v), γC(r−v)=h=γC(r)⋄γC(v). If r,v∉Aα,β then r−v∉Aα,β so, μC(r−v)≥k=μC(r)∗μC(v), γC(r−v)≤h=γC(r)⋄γC(v). Hence, μC(r−v)≥μC(r)∗μC(v) and γC(r−v)≤γC(r)⋄γC(v) for all r,v∈NR.
Now if r∈Aα,β then rv∈Aα,β, thus μC(rv)=s=μC(r)⋄μC(v) and γC(rv)=c=γC(r)∗γC(v). If r∉Aα,β, then μC(rv)≥k=μC(r)⋄μC(v) and γC(rv)≤h=γC(r)∗γC(v). Therefore C is an intuitionistic fuzzy normed ideal of NR.
To prove that B∘C⊆A. Let r∈NR, we discuss the following cases:
(i) If r=0, consequently
μB⊛C(0)=⋄r=uv(μB(u)∗μC(v))≤12(t+α)<s=μA(0); |
γB⊗C(r)=∗r=uv(γB(u)⋄γC(v))≥12(d+β)>c=γA(0). |
(ii) If r≠0, r∈Aα,β. Then μA(r)≥α and γA(r)≤β. Thus,
μB⊛C(r)=⋄r=uv(μB(u)∗μC(v))≤12(t+α)<α≤μA(r); |
γB⊗C(r)=∗r=uv(γB(u)⋄γC(v))≥12(d+β)>β≥γA(r). |
Since μB(u)∗μC(v)≤μB(u) and γB(u)⋄γC(v)≥γB(u).
(iii) If r≠0, r∉Aα,β. Then in that case u,v∈NR such that r=uv, u∉Aα,β and v∉Aα,β. Then,
μB⊛C(r)=⋄r=uv(μB(u)∗μC(v))=k≤μA(r); |
γB⊗C(r)=∗r=uv(γB(u)⋄γC(v))=h≥γA(r). |
Therefore, in any case μB⊛C(r)≤μA(r) and γB⊗C(r)≥γA(r) for all r∈NR. Hence, B∘C⊆A.
Let a,b∈NR such that μA(a)=t, μA(b)=α and γA(a)=d, γA(b)=β. Thus, μB(a)=12(t+α)>t=μA(r) and γB(a)=12(d+β)<d=γA(r) which implies that B⊈A. Also, μA(b)=α and γA(b)=β imply that b∈Aα,β so, μC(b)=s>α and γC(b)=c<β, so C⊈A. Therefore, neither B⊈A nor C⊈A. This indicates that A could not be an intuitionistic fuzzy normed prime ideal of NR, so its a contradiction. Thus, ∣Im μA∣ = ∣ImγA∣=2.
Proposition 4.4. If A is an intuitionistic fuzzy normed prime ideal of NR, so the following are satisfied:
i. μA(0NR)=1 and γA(0NR)=0;
ii. Im(μA)={1,α} and Im(γA)={0,β}, where α,β∈[0,1];
iii. A∗ is a prime ideal of NR.
Theorem 4.5. Let A be a fuzzy subset of NR where A is two-valued, μA(0)=1 and γA(0)=0, and the set A∗={r∈NR:μA(r)=μA(0) and γA(r)=γA(0)} is a prime ideal of NR. Hence, A is an intuitionistic fuzzy normed prime ideal of NR.
Proof. We have Im(μA)={1,α} and Im(γA)={0,β}. Let r,v∈NR. If r,v∈A∗, then r−v∈A∗ so, μA(r−v)=1=μA(r)∗μA(v) and γA(r−v)=0=γA(r)⋄γA(v). If r,v∉A∗, then μA(r−v)=α≥μA(r)∗μA(v) and γA(r−v)=β≤γA(r)⋄γA(v).
Therefore, for all r,v∈NR,
μA(r−v)≥μA(r)∗μA(v)γA(r−v)≤γA(r)⋄γA(v) |
Similarly,
μA(rv)≥μA(r)⋄μA(v)γA(rv)≤γA(r)∗γA(v) |
Thus A is an intuitionistic fuzzy ideal of NR.
Assume B and C be fuzzy ideals of NR where B∘C⊆A. Assume that B⊈A and C⊈A. Then, we have r,v∈NR in such a way that μB(r)>μA(r) and γB(r)<γA(r), μC(v)>μA(v) and γC(r)<γA(r), so for all a∈A∗, μA(a)=1=μA(0) and γA(a)=0=γA(0), r∉A∗ and v∉A∗. Since, A∗ is a prime ideal of NR, we have n∈NR in such a way that rnv∉A∗. Let a=rnv then μA(a)=μA(r)=μA(v)=α and γA(a)=γA(r)=γA(v)=β, now
μB⊛C(a)=⋄a=st(μB(s)∗μC(t))≥μB(r)∗μC(nv)≥μB(r)∗μC(v)>α=μA(a)[Since,μB(r)≥μA(r)=αandμC(nv)≥μC(v)≥μA(v)=α]. |
and
γB⊗C(a)=∗a=st(γB(s)⋄γC(t))≤γB(r)⋄γC(nv)≤γB(r)⋄γC(v)<β=γA(a)[Since,γB(r)≤γA(r)=βandγC(nv)≤γC(v)≤γA(v)=β]. |
Which means that B∘C⊈A. Which contradicts with the hypothesis that B∘C⊆A. Therefore, either B⊆A or C⊆A. Then A is an intuitionistic fuzzy normed prime ideal.
Theorem 4.6. Let P be a subset (non-empty) of NR. P is a prime ideal if and only if the intuitionistic characteristic function λP=(μλP,γλP) is an intuitionistic fuzzy normed prime ideal.
Proof. presume that P is a prime ideal of NR. So by Theorem 3.12, λP is an intuitionistic fuzzy normed ideal of NR. Let A=(μA,γA) and B=(μB,γB) be any intuitionistic fuzzy normed ideals of NR with A∘B⊆λP while A⊈λP and B⊈λP. Then there exist r,v∈NR such that
μA(r)≠0,γA(r)≠1andμB(v)≠0,γB(v)≠1 |
but
μλP(r)=0,γλP(r)=1andμλP(v)=0,γλP(v)=1 |
Therefore, r∉P and v∉P. Since P is a prime ideal, there exist n∈NR such that rnv∉P.
Let a=rnv, then μλP(a)=0 and γλP(a)=1. Thus, μA⊛b(a)=0 and γA⊗B(a)=1. but
μA⊛B(a)=⋄a=st(μA(s)∗μB(t))≥μA(r)∗μB(nv)≥μA(r)∗μB(v)≥min{μA(r),μB(v)}≠0[Since,μA(r)≠0andμB(v)≠0]. |
and
γA⊗B(a)=∗a=st(γA(s)⋄γB(t))≤γA(r)⋄γB(nv)≤γA(r)⋄γB(v)≤max{γA(r),γB(v)}≠1[Since,γA(r)≠1andγB(v)≠1]. |
This is a contradiction with μλP(a)=0 and γλP(a)=1. Thus for any intuitionistic fuzzy normed ideals A and B of NR we have A∘B⊆λP imply that A⊆λP or B⊆λP. So, λP=(μλP,γλP) is an intuitionistic fuzzy normed prime ideal of NR.
Conversely, suppose λP is an intuitionistic fuzzy normed prime ideal. Let A and B be two intuitionistic fuzzy normed prime ideal of NR such that A∘B⊆P. Let r∈NR, suppose μλA⊛λB(r)≠0 and γλA⊗λB(r)≠1, then μλA⊛λB(r)=⋄r=cd(μλA(c)∗μλB(d))≠0 and γλA⊗λB(r)=∗r=cd(γλA(c)⋄γλB(d))≠1. Then we have c,d∈NR such that r=cd, μλA(c)≠0, μλB(d)≠0 and γλA(c)≠1, γλB(d)≠1. Then, μλA(c)=1, μλB(d)=1 and γλA(c)=0, γλB(d)=0. Which implies c∈A and d∈B, therefore r=cd∈A∘B⊆P. Then, μλP(r)=1 and γλP(r)=0. Thus, for all r∈NR, μλA⊛λB(r)≤μλP(r) and γλA⊗λB(r)≥γλP(r). So, λA∘λB⊆λP. Since λP is an intuitionistic fuzzy normed prime ideal. Then either λA⊆λP or λB⊆λP. Therefore, either A⊆P or B⊆P. Hence P is a prime ideal in NR.
Definition 4.7. [15] Given a ring R and a proper ideal M of R, M is a maximal ideal of R if any of the following equivalent conditions hold:
i. There exists no other proper ideal J of R so that M⊊J.
ii. For any ideal J with M⊆J, either J=M or J=R.
Definition 4.8. An intuitionistic fuzzy normed ideal A of a normed ring NR is said to be an intuitionistic fuzzy normed maximal ideal if for any intuitionistic fuzzy normed ideal B of NR, A⊆B, implies that either B∗=A∗ or B=λNR. Intuitionistic fuzzy normed maximal left (right) ideal are correspondingly specified.
Proposition 4.9. Let A be an intuitionistic fuzzy normed maximal left (right) ideal of NR. Then, ∣ImμA∣ = ∣ImγA∣=2
Theorem 4.10. Let A be an intuitionistic fuzzy normed maximal left (right) ideal of a normed ring NR. Then A∗={r∈NR:μA(r)=μA(0) and γA(r)=γA(0)} is a maximal left (right) ideal of NR.
Proof. As A is not constant, A∗≠NR. Then using Proposition 4.9, A is two-valued. Let Im(μA)={1,α} and Im(γA)={0,β}, where 0≤α<1 and 0<β≤1. Assume M to be a left ideal of NR in away that A∗⊆M. Take B be an intuitionistic fuzzy subset of NR where if r∈M then μB(r)=1 and γB(r)=0 and if r∉M then μB(r)=c and γB(r)=d, where α<c<1 and 0<d<β. Then B is an intuitionistic fuzzy normed left ideal. Obviously A⊆B. As A is an intuitionistic fuzzy normed maximal left ideal of NR then A∗=B∗ or B=λNR. If A∗=B∗ then A∗=M given that B∗=M. If B=λNR subsequently M=NR. Therefore, A∗ is a maximal left ideal of NR.
Theorem 4.11. If A is an intuitionistic fuzzy normed maximal left (right) ideal of NR, then μA(0)=1 and γA(0)=0.
Proof. Suppose μA(0)≠1 and γA(0)≠0 and B to be an intuitionistic fuzzy subset of NR defined as B={r∈NR:μB(r)=h and γB(r)=k}, where μA(0)<h<1 and 0<k<γA(0). Then, B is an intuitionistic fuzzy normed ideal of NR. We can simply check that A⊂B, B≠λNR and B∗={r∈NR:μB(r)=μB(0) and γB(r)=γB(0)}=NR. Hence, A⊂B but A∗≠B∗ and B≠λNR which contradicts with the assumption that A is an intuitionistic fuzzy normed maximal ideal of NR. Therefore, μA(0)=1 and γA(0)=0.
Theorem 4.12. Let A be a intuitionistic fuzzy normed left (right) ideal of NR. If A∗ is a maximal left (right) ideal of NR with μA(0)=1 and γA(0)=0, then A is an intuitionistic fuzzy normed maximal left (right) ideal of NR.
Proof. By Proposition 4.9 A is two-valued. Let Im(μA)={1,α} and Im(γA)={0,β}, where 0≤α<1 and 0<β≤1. Define B to be an intuitionistic fuzzy normed left ideal of NR where A⊆B. Hence, μB(0)=1 and γB(0)=0. Let r∈A∗. Then 1=μA(0)=μA(r)≤μB(r) and 0=γA(0)=γA(r)≥γB(r). Thus μB(r)=1=μB(0) and γB(r)=0=γB(0), hence r∈B∗ then A∗⊆B∗. Given that A∗ a maximal left ideal of NR, then A∗=B∗ or B∗=NR. If B∗=NR subsequently B=λNR. Therefore, A is an intuitionistic fuzzy normed maximal left ideal of NR.
Remark 4.13. Let A⊆NR and let 0≤α≤1 and 0≤β≤1. Let λAα,β be an intuitionistic fuzzy subset of NR where μλAα(r)=1 if r∈A, μλAα(r)=α if r∉A and γλAβ(r)=0 if r∈A, γλAβ(r)=β if r∉A. If α=0 and β=1, the λAα,β is the intuitionistic characteristic function of A, which identified by λA=(μλA,γλA). If NR is a ring and A is an intuitionistic fuzzy normed left (right) ideal of NR, then:
- μλAα(0)=1, γλAβ(0)=0;
- (λAα,β)∗=A, [(λAα,β)∗={r∈NR:μλAα(r)=μλAα(0), γλAβ(r)=γλAβ(0)}=A];
- Im(μA)={1,α} and Im(γA)={0,β};
- λAα,β is an intuitionistic fuzzy normed left (right) ideal of NR.
In this article, we defined the intrinsic product of two intuitionistic fuzzy normed ideals and proved that this product is a subset of their intersection. Also, we characterized some properties of intuitionistic fuzzy normed ideals. We initiated the concepts of intuitionistic fuzzy normed prime ideal and intuitionistic fuzzy normed maximal ideal and we established several results related to these ideals. Further, we specified the conditions under which a given intuitionistic fuzzy normed ideal is considered to be an intuitionistic fuzzy normed prime (maximal) ideal. We generalised the relation between the intuitionistic characteristic function and prime (maximal) ideals.
The author declares no conflict of interest in this paper
[1] |
Jahangiri M, Soulouknga MH, Bardei FK, et al. (2019) Techno-econo-environmental optimal operation of grid-wind-solar electricity generation with hydrogen storage system for domestic scale, case study in Chad. Int J Hydrog Energy 44: 28613–28628. https://doi.org/10.1016/j.ijhydene.2019.09.130 doi: 10.1016/j.ijhydene.2019.09.130
![]() |
[2] |
Kumar CMS, Sigh S, Gupta MK, et al. (2023) Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustain Energy Technol 55: 102905. https://doi.org/10.1016/j.seta.2022.102905 doi: 10.1016/j.seta.2022.102905
![]() |
[3] |
Zhang Y, Ren J, Pu Y, et al. (2019) Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis. Renew Energ 149: 577–586. https://doi.org/10.1016/j.renene.2019.12.071 doi: 10.1016/j.renene.2019.12.071
![]() |
[4] |
Narjabadifam N, Fouladvand J, Gul M (2023) Critical review on community-shared solar〞advantages, challenges, and future directions. Energies 16: 3412. https://doi.org/10.3390/en16083412 doi: 10.3390/en16083412
![]() |
[5] |
Chaianong A, Pharina C (2015) Outlook and challenges for promoting solar photovoltaic rooftops in Thailand. Renew Sust Energ Rev 48: 356–372. https://doi.org/10.1016/j.rser.2015.04.042 doi: 10.1016/j.rser.2015.04.042
![]() |
[6] |
Tan L, Ji X, Li M, et al. (2014) The experimental study of a two-stage photovoltaic thermal system based on solar trough concentration. Energy Convers Manag 86: 410–417. https://doi.org/10.1016/j.enconman.2014.05.029 doi: 10.1016/j.enconman.2014.05.029
![]() |
[7] |
Luo W, Khoo YS, Hacke P, et al. (2017) Potential-induced degradation in photovoltaic modules: A critical review. Energy Environ Sci 10: 43. https://doi.org/10.1039/C6EE02271E doi: 10.1039/C6EE02271E
![]() |
[8] |
Olczak P (2023) Evaluation of degradation energy productivity of photovoltaic installations in long-term case study. Appl Energy 343: 121109. https://doi.org/10.1016/j.apenergy.2023.121109 doi: 10.1016/j.apenergy.2023.121109
![]() |
[9] |
Bodis K, Kougias I, Jager-Waldau A, et al. (2019) A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew Sust Energ Rev 114: 109309. https://doi.org/10.1016/j.rser.2019.109309 doi: 10.1016/j.rser.2019.109309
![]() |
[10] |
Aljafari B, Alqaed S, Mustafa J, et al. (2023) Energy-Economic-Environmental (3E) modeling of a near-zero energy community using the solar-power system: A case study of Najran city. J Taiwan Inst Chem Eng 148: 104685. https://doi.org/10.1016/j.jtice.2023.104685 doi: 10.1016/j.jtice.2023.104685
![]() |
[11] |
Atasoy AT, Schmitz H, Madlener R (2021) Mechanisms for rebound effects and solar electricity prosuming in Germany. SSRN https://doi.org/10.2139/ssrn.4706396 doi: 10.2139/ssrn.4706396
![]() |
[12] |
Fang H, Li J, Song W (2018) Sustainable site selection for photovoltaic power plant: An integrated approach based on prospect theory. Energ Convers Manage 174: 755–768. https://doi.org/10.1016/j.enconman.2018.08.092 doi: 10.1016/j.enconman.2018.08.092
![]() |
[13] |
Grimm M, Lenz L, Peters J, et al. (2020) Demand for off-grid solar electricity: Experimental evidence from Rwanda. J Assoc Environ Resour Econ 7: 417–454. https://doi.org/10.1086/707384 doi: 10.1086/707384
![]() |
[14] |
Ren H, Xu C, Ma Z, et al. (2021) A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities. Appl Energy Part A 306: 117985. https://doi.org/10.1016/j.apenergy.2021.117985 doi: 10.1016/j.apenergy.2021.117985
![]() |
[15] |
Ren H, Sun Y, Tse CFN, et al. (2023) Optimal packing and planning for large-scale distributed rooftop photovoltaic systems under complex shading effects and rooftop availabilities. Energy 274: 127280. https://doi.org/10.1016/j.energy.2023.127280 doi: 10.1016/j.energy.2023.127280
![]() |
[16] |
Goel M (2016) Solar rooftop in India: Policies, challenges and outlook. Green Energy Environ 1: 129–137. https://doi.org/10.1016/j.gee.2016.08.003 doi: 10.1016/j.gee.2016.08.003
![]() |
[17] |
Zheng N, Zhang H, Duan L, et al. (2023) Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage. Appl Energy 331: 120400. https://doi.org/10.1016/j.apenergy.2022.120400 doi: 10.1016/j.apenergy.2022.120400
![]() |
[18] |
Ghose D, Pradhan S, Tamuli P, et al. (2023) Optimal material for solar electric vehicle application using an integrated Fuzzy-COPRAS model. Energ Source Part A 45: 3859–3878. https://doi.org/10.1080/15567036.2019.1668879 doi: 10.1080/15567036.2019.1668879
![]() |
[19] |
Ren H, Ma Z, Fong AML, et al. (2022) Optimal deployment of distributed rooftop photovoltaic systems and batteries for achieving net-zero energy of electric bus transportation in high-density cities. Appl Energy 319: 119274. https://doi.org/10.1016/j.apenergy.2022.119274 doi: 10.1016/j.apenergy.2022.119274
![]() |
[20] |
Kim HJ, Hu J, Kim SM, et al. (2022) A new GIS-based algorithm to estimate photovoltaic potential of solar train: Case study in Gyeongbu line, Korea. Renew Energy 190: 713–729. https://doi.org/10.1016/j.renene.2022.03.130 doi: 10.1016/j.renene.2022.03.130
![]() |
[21] | Rooij RV, Dutch Solar Bike Path Solar Road Successful and Expanding. 2017. Available from https://cleantechnica.com/2017/03/12/dutch-solar-bike-path-solaroad-successful-expanding/. |
[22] | Singh G, What Are the Disadvantages of Solar Energy? A Full Breakdown. 2024. Available from: https://blog.feniceenergy.com/what-are-the-disadvantages-of-solar-energy-a-full-breakdown/#:~:text=Solar%20panels%20need%20sunlight%20to%20work%20well%2C%20so,cloudy%20days%2C%20are%20expensive%20and%20need%20regular%20upkeep. |
[23] |
Bisengimana E, Zhou J, Binama M, et al. (2023) Numerical investigation of PVT coverage on an integrated building-solar-heat pump system: Technical and economic study. Sol Energy 249: 507–520. https://doi.org/10.1016/j.solener.2022.12.005 doi: 10.1016/j.solener.2022.12.005
![]() |
[24] | Duffie JA, Beckman WA (2013) Solar Engineering of Thermal Processes, 4 Eds., Hoboken: Wiley. |
[25] | Urban R, Solar Power Alberta (2021 Guide). 2021. Available from: https://www.energyhub.org/alberta/#rebates-tax-breaks. |
[26] | Urban R, Solar Energy Maps Canada (Every Province). 2021. Available from: https://www.energyhub.org/solar-energy-maps-canada/. |
[27] | Thakur M, Discount Rate Versus Interest Rate. 2023. Available from: https://www.educba.com/discount-rate-vs-interest-rate/. |
[28] | Bayat H, The Prime Rate Will Rise to 7.2% As the Bank of Canada Increases the Policy Rate to 5%. 2023. Available from: https://wowa.ca/banks/prime-rates-canada. |
[29] | Hseih JS (1986) Solar Energy Engineering, Amsterdam: Elsevier. |
[30] | RI, Canadian Inflation Rates: 1990 to 2023. 2023. Available from: https://www.rateinflation.com/inflation-rate/canada-historical-inflation-rate/#:~:text=Historical%20inflation%20rates%20for%20Canada%20%20%20,%20%200.7%25%20%2025%20more%20rows%20. |
[31] | Peurifoy RL, Schexnayder CJ, Schmitt RL, et al. (2018) Construction Planning Equipment, and Methods. 9 Eds., New York: McGraw-Hill. |
[32] | Marshal A, A Guide to Mortgage Interest Calculations in Canada. Available from: http://www.yorku.ca/amarshal/mortgage.htm. |
[33] | Elias G, Nominal Vs. Effective Rates. Available from: https://www.csun.edu/~ghe59995/docs/Interpreting%20Nominal%20&%20Effective%20Interest%20Rates.pdf. |
[34] | Natural Resources Canada, Canada Greener Homes Loan. 2023. Available from: https://natural-resources.canada.ca/energy-efficiency/homes/canada-greener-homes-initiative/canada-greener-homes-loan/24286. |
[35] |
Yoomak S, Patcharoen T, Ngaopitakkul A (2019) Performance and economic evaluation of solar rooftop systems in different regions of Thailand. Sustainability 11: 6647. https://doi.org/10.3390/su11236647 doi: 10.3390/su11236647
![]() |
[36] |
Ren H, Ma Z, Chan AB, et al. (2023) Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities. Energy Part A 263: 125686. https://doi.org/10.1016/j.energy.2022.125686 doi: 10.1016/j.energy.2022.125686
![]() |
[37] | Mofolasayo A (2024) Evaluating the potential of using solar energy in commercial and residential buildings. SSRN 4599960. https://www.elivabooks.com/en/book/book-191780 |
[38] | EPCOR, Solar Panel and Solar Power for Home and Business. 2023. Available from: https://www.epcor.com/products-services/power/micro-generation/Pages/solar-power.aspx?gad=1&gclid=EAIaIQobChMIwrWxp5e-_wIVdiqtBh2cVAglEAAYASAAEgJ6h_D_BwE. |
[39] |
Kannan R, Leong KC, Osman R, et al. (2006) Life cycle assessment study of solar PV systems: An example of a 2.7 kWp distributed solar PV system in Singapore. Sol Energy 80: 555–563. https://doi.org/10.1016/j.solener.2005.04.008 doi: 10.1016/j.solener.2005.04.008
![]() |
[40] |
Sherwani AF, Usmani JA (2010) Life cycle assessment of solar PV based electricity generation systems: A review. Renew Sust Energ Rev 14: 540–544. https://doi.org/10.1016/j.rser.2009.08.003 doi: 10.1016/j.rser.2009.08.003
![]() |
[41] |
Peng J, Lu L, Yang H (2013) Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renew Sust Energ Rev 19: 255–274. https://doi.org/10.1016/j.rser.2012.11.035 doi: 10.1016/j.rser.2012.11.035
![]() |
[42] |
Kimura K, Kudo Y, Sato A (2016) Techno-economic analysis of solar hybrid vehicles part 1: Analysis of solar hybrid vehicle potential considering well-to-wheel GHG emissions. SAE Technical Papers 1287. https://doi.org/10.4271/2016-01-1287 doi: 10.4271/2016-01-1287
![]() |
[43] |
Li M, Zhang X, Li G, et al. (2016) A feasibility study of microgrids for reducing energy use and GHG emissions in an industrial application. Appl Energy 176: 138–148. https://doi.org/10.1016/j.apenergy.2016.05.070 doi: 10.1016/j.apenergy.2016.05.070
![]() |
[44] |
Marchi M, Niccolucci V, Pulselli RM, et al. (2018) Environmental policies for GHG emissions reduction and energy transition in the medieval historic centre of Siena (Italy): The role of solar energy. J Clean Prod 185: 829–840. https://doi.org/10.1016/j.jclepro.2018.03.068 doi: 10.1016/j.jclepro.2018.03.068
![]() |
[45] |
Awad H (2018) Integrating solar PV systems into residential buildings in cold-climate regions: The impact of energy-efficient homes on shaping the future smart grid. University of Alberta. https://doi.org/10.7939/R3BK17567 doi: 10.7939/R3BK17567
![]() |
[46] |
Kaya O, Klepacka AM, Florkowski WJ (2019) Achieving renewable energy, climate, and air quality policy goals: Rural residential investment in solar panel. J Environ Manage 248: 109309. https://doi.org/10.1016/j.jenvman.2019.109309 doi: 10.1016/j.jenvman.2019.109309
![]() |
[47] |
Farangi M, Soleimani EA, Zahedifar M, et al. (2020) The environmental and economic analysis of grid-connected photovoltaic power systems with silicon solar panels, in accord with the new energy policy in Iran. Energy 202: 117771. https://doi.org/10.1016/j.energy.2020.117771 doi: 10.1016/j.energy.2020.117771
![]() |
[48] | Canada Energy Regulator, Provincial and Territorial Energy Profiles〞Alberta. 2023. Available from: https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/provincial-territorial-energy-profiles/provincial-territorial-energy-profiles-alberta.html#:~:text=Alberta's%20electricity%20sector%20produces%20more,GHG%20emissions%20from%20power%20generation. |
[49] |
Mofolasayo A (2023) Assessing and managing the direct and indirect emissions from electric and fossil-powered vehicles. Sustainability 15: 1138. https://doi.org/10.3390/su15021138 doi: 10.3390/su15021138
![]() |