In this study, we formulate a mathematical model in the framework of the Atangana-Baleanu fractional derivative in Caputo sense to study the transmission of tungiasis. In this formulation, interactions between the human host and the sand fleas are taken into consideration, including factors like infestation rate, incubation duration, and recovery rate. We calculate the basic reproduction parameter for the system, symbolized by R0 with the help of the next-generation matrix technique. A novel numerical scheme for encapsulating the non-local and memory-dependent aspects of the system is conceptualized via the Atangana-Baleanu fractional derivative. We prove the existence and uniqueness of the solution of the model of the infection and establish stability of the steady-states of the model. In addition to this, numerical simulations are carried out to evaluate the efficiency of interventions like campaigns for better sanitation and treatment, and to investigate the influence of various management techniques on the prevalence of tungiasis. The outcomes of the numerical simulations give us information about the possible efficacy of different control strategies in lowering the incidence of tungiasis. This research gives quantitative tools to enhance decision-making processes in public health treatments and advances our understanding of the dynamics of the tungiasis.
Citation: Norliyana Nor Hisham Shah, Rashid Jan, Hassan Ahmad, Normy Norfiza Abdul Razak, Imtiaz Ahmad, Hijaz Ahmad. Enhancing public health strategies for tungiasis: A mathematical approach with fractional derivative[J]. AIMS Bioengineering, 2023, 10(4): 384-405. doi: 10.3934/bioeng.2023023
[1] | Jorge Rebaza . On a model of COVID-19 dynamics. Electronic Research Archive, 2021, 29(2): 2129-2140. doi: 10.3934/era.2020108 |
[2] | Khongorzul Dashdondov, Mi-Hye Kim, Mi-Hwa Song . Deep autoencoders and multivariate analysis for enhanced hypertension detection during the COVID-19 era. Electronic Research Archive, 2024, 32(5): 3202-3229. doi: 10.3934/era.2024147 |
[3] | Yazao Yang, Haodong Tang, Tangzheng Weng . Changes in public travel willingness in the post-COVID-19 era: Evidence from social network data. Electronic Research Archive, 2023, 31(7): 3688-3703. doi: 10.3934/era.2023187 |
[4] | Zimeng Lv, Jiahong Zeng, Yuting Ding, Xinyu Liu . Stability analysis of time-delayed SAIR model for duration of vaccine in the context of temporary immunity for COVID-19 situation. Electronic Research Archive, 2023, 31(2): 1004-1030. doi: 10.3934/era.2023050 |
[5] | Hao Nong, Yitan Guan, Yuanying Jiang . Identifying the volatility spillover risks between crude oil prices and China's clean energy market. Electronic Research Archive, 2022, 30(12): 4593-4618. doi: 10.3934/era.2022233 |
[6] | Chengtian Ouyang, Huichuang Wu, Jiaying Shen, Yangyang Zheng, Rui Li, Yilin Yao, Lin Zhang . IEDO-net: Optimized Resnet50 for the classification of COVID-19. Electronic Research Archive, 2023, 31(12): 7578-7601. doi: 10.3934/era.2023383 |
[7] | Gaohui Fan, Ning Li . Application and analysis of a model with environmental transmission in a periodic environment. Electronic Research Archive, 2023, 31(9): 5815-5844. doi: 10.3934/era.2023296 |
[8] | Liling Huang, Yong Tan, Jinzhu Ye, Xu Guan . Coordinated location-allocation of cruise ship emergency supplies under public health emergencies. Electronic Research Archive, 2023, 31(4): 1804-1821. doi: 10.3934/era.2023093 |
[9] | Zhiliang Li, Lijun Pei, Guangcai Duan, Shuaiyin Chen . A non-autonomous time-delayed SIR model for COVID-19 epidemics prediction in China during the transmission of Omicron variant. Electronic Research Archive, 2024, 32(3): 2203-2228. doi: 10.3934/era.2024100 |
[10] | Cong Cao, Chengxiang Chu, Jinjing Yang . "If you don't buy it, it's gone!": The effect of perceived scarcity on panic buying. Electronic Research Archive, 2023, 31(9): 5485-5508. doi: 10.3934/era.2023279 |
In this study, we formulate a mathematical model in the framework of the Atangana-Baleanu fractional derivative in Caputo sense to study the transmission of tungiasis. In this formulation, interactions between the human host and the sand fleas are taken into consideration, including factors like infestation rate, incubation duration, and recovery rate. We calculate the basic reproduction parameter for the system, symbolized by R0 with the help of the next-generation matrix technique. A novel numerical scheme for encapsulating the non-local and memory-dependent aspects of the system is conceptualized via the Atangana-Baleanu fractional derivative. We prove the existence and uniqueness of the solution of the model of the infection and establish stability of the steady-states of the model. In addition to this, numerical simulations are carried out to evaluate the efficiency of interventions like campaigns for better sanitation and treatment, and to investigate the influence of various management techniques on the prevalence of tungiasis. The outcomes of the numerical simulations give us information about the possible efficacy of different control strategies in lowering the incidence of tungiasis. This research gives quantitative tools to enhance decision-making processes in public health treatments and advances our understanding of the dynamics of the tungiasis.
The class of normalized analytic functions in the open unit disc Δ={z∈C:|z|<1} denoted by Ω consists of the functions f of the form
f(z)=z+∞∑n=2anzn, | (1.1) |
where f′(0)−1=f(0)=0. Let ℓ(z)∈Ω defined by
ℓ(z)=z+∞∑n=2bnzn. | (1.2) |
Then the Hadamard product, also known as the convolution of two function f(z) and ℓ(z) denoted by f∗ℓ is defined as
(f∗ℓ)(z)=f(z)∗ℓ(z)=z+∞∑n=2anbnzn,z∈Δ. |
Moreover, f(z)≺ℓ(z), if there exist a Schwartz function χ(z) in A, satisfying the conditions χ(0)=0 and |χ(z)|<1, such that f(z)=ℓ(χ(z)). The symbol ≺ is used to denote subordination.
Let S denote the subclass of Ω of univalent functions in Δ. Let P,C,S∗ and K represent the subclasses of S known as the classes of Caratheodory functions, convex funtions, starlike functions, and close-to-convex functions, respectively.
The concept of bounded rotations was introduced by Brannan in [7]. A lot of quality work on the generalization of this concept has already been done. Working in the same manner, we have defined the following new classes.
Definition 1.1. Let
ν(z)=1+∞∑n=1pnzn | (1.3) |
be analytic in Δ such that ν(0)=1. Then for m≥2, ν(z)∈Pm(ℏ(z)), if and only if
ν(z)=(m4+12)ν1(z)−(m4−12)ν2(z), | (1.4) |
where ℏ(z) is a convex univalent function in Δ and νi(z)≺ℏ(z) for i=1,2.
Particularly, for m=2, we get the class P(ℏ(z)).
Definition 1.2. Let f(z) and ℓ(z) be two analytic functions as defined in (1.1) and (1.2) such that (f∗ℓ)′(z)≠0. Let ℏ(z) be a convex univalent function. Then for m≥2, f∈Vm[ℏ(z);ℓ(z)] if and only if
(z(f∗ℓ)′)′(f∗ℓ)′∈Pm(ℏ(z)),z∈Δ. | (1.5) |
Particularly, for m=2, we will get the class C[ℏ(z);ℓ(z)]. So, a function f∈C[ℏ(z);ℓ(z)] if and only if
(z(f∗ℓ)′)′(f∗ℓ)′≺ℏ(z),z∈Δ. |
Definition 1.3. Let f(z) and ℓ(z) be the functions defined in (1.1) and (1.2), then f(z)∈Rm[ℏ(z);ℓ(z)] if and only if
z(f∗ℓ)′(f∗ℓ)∈Pm(ℏ(z)),z∈Δ. | (1.6) |
Particularly, for m=2, we get the class SΛ[ℏ(z);ℓ(z)], i.e., f∈SΛ[ℏ(z);ℓ(z)] if and only if
z(f∗ℓ)′(f∗ℓ)≺ℏ(z),z∈Δ. |
From (1.5) and (1.6) it can be easily noted that f∈Vm[ℏ(z);ℓ(z)] if and only if zf′(z)∈Rm[ℏ(z);ℓ(z)]. For m=2, this relation will hold for the classes C[ℏ(z);ℓ(z)] and SΛ[ℏ(z);ℓ(z)].
Definition 1.4. Let f(z) and ℓ(z) be analytic function as defined in (1.1) and (1.2) and m≥2. Let ℏ(z) be the convex univalent function. Then, f∈Tm[ℏ(z);ℓ(z)] if and only if there exists a function ψ(z)∈SΛ[ℏ(z);ℓ(z)] such that
z(f∗ℓ)′ψ∗ℓ∈Pm(ℏ(z)),z∈Δ. | (1.7) |
It is interesting to note that the particular cases of our newly defined classes will give us some well-known classes already discussed in the literature. Some of these special cases have been elaborated below.
Special Cases: Let ℓ(z) be the identity function defined as z1−z denoted by I i.e., f∗ℓ=f∗I=f. Then
(1) For ℏ(z)=1+z1−z we have Pm(ℏ(z))=Pm,Rm[ℏ(z);ℓ(z)]=Rm introduced by Pinchuk [23] and the class Vm[ℏ(z);ℓ(z)]=Vm defined by Paatero [21]. For m=2, we will get the well-known classes of convex functions C and the starlike functions SΛ.
(2) Taking ℏ(z)=1+(1−2δ)z1−z, we get the classes Pm(δ),Rm(δ) and Vm(δ) presented in [22]. For m=2, we will get the classes C(δ) and SΛ(δ).
(3) Letting ℏ(z)=1+Az1+Bz, with −1≤B<A≤1 introduced by Janowski in [12], the classes Pm[A,B],Rm[A,B] and Vm[A,B] defined by Noor [16,17] can be obtained. Moreover, the classes C[A,B] and SΛ[A,B] introduced by [12] can be derived by choosing m=2.
A significant work has already been done by considering ℓ(z) to be different linear operators and ℏ(z) to be any convex univalent function. For the details see ([4,9,18,19,24]).
The importance of Mittag-Leffler functions have tremendously been increased in the last four decades due to its vast applications in the field of science and technology. A number of geometric properties of Mittag-Leffler function have been discussed by many researchers working in the field of Geometric function theory. For some recent and detailed study on the Geometric properties of Mittag-Leffler functions see ([2,3,31]).
Special function theory has a vital role in both pure and applied mathematics. Mittag-Leffler functions have massive contribution in the theory of special functions, they are used to investigate certain generalization problems. For details see [11,26]
There are numerous applications of Mittag-Leffler functions in the analysis of the fractional generalization of the kinetic equation, fluid flow problems, electric networks, probability, and statistical distribution theory. The use of Mittag-Leffler functions in the fractional order integral equations and differential equations attracted many researchers. Due to its connection and applications in fractional calculus, the significance of Mittag-Leffler functions has been amplified. To get a look into the applications of Mittag-Leffler functions in the field of fractional calculus, (see [5,27,28,29,30]).
Here, in this article we will use the operator Hγ,κλ,η:Ω→Ω, introduced by Attiya [1], defined as
Hγ,κλ,η(f)=μγ,κλ,η∗f(z),z∈Δ, | (1.8) |
where η,γ∈C, ℜ(λ)>max{0,ℜ(k)−1} and ℜ(k)>0. Also, ℜ(λ)=0 when ℜ(k)=1;η≠0. Here, μγ,κλ,η is the generalized Mittag-Leffler function, defined in [25]. The generalized Mittag-Leffler function has the following representation.
μγ,κλ,η=z+∞∑n=2Γ(γ+nκ)Γ(λ+η)Γ(γ+κ)Γ(η+λn)n!zn. |
So, the operator defined in (1.8) can be rewritten as:
Hγ,κλ,η(f)(z)=z+∞∑n=2Γ(γ+nκ)Γ(λ+η)Γ(γ+κ)Γ(η+λn)n!anzn,z∈Δ. | (1.9) |
Attiya [1] presented the properties of the aforesaid operator as follows:
z(Hγ,κλ,η(f(z)))′=(γ+κκ)(Hγ+1,κλ,η(f(z)))−(γκ)(Hγ,κλ,η(f(z))), | (1.10) |
and
z(Hγ,κλ,η+1(f(z)))′=(λ+ηλ)(Hγ,κλ,η(f(z)))−(ηλ)(Hγ,κλ,η+1(f(z))). | (1.11) |
However, as essential as real-world phenomena are, discovering a solution for the commensurate scheme and acquiring fundamentals with reverence to design variables is challenging and time-consuming. Among the most pragmatically computed classes, we considered the new and novel class which is very useful for efficiently handling complex subordination problems. Here, we propose a suitably modified scheme in order to compute the Janowski type function of the form ℏ(z)=(1+Az1+Bz)β, where 0<β≤1 and −1≤B<A≤1, which is known as the strongly Janowski type function. Moreover, for ℓ(z), we will use the function defined in (1.9). So, the classes defined in Definition 1.1–1.4 will give us the following novel classes.
Definition 1.5. A function ν(z) as defined in Eq (1.3) is said to be in the class P(m,β)[A,B] if and only if for m≥2 there exist two analytic functions ν1(z) and ν2(z) in Δ, such that
ν(z)=(m4+12)ν1(z)−(m4−12)ν2(z), |
where νi(z)≺(1+Az1+Bz)β for i=1,2. For m=2, we get the class of strongly Janowki type functions Pβ[A,B].
Moreover,
V(m,β)[A,B;γ,η]={f∈Ω:(z(Hγ,κλ,ηf(z))′)′(Hγ,κλ,ηf(z))′∈P(m,β)[A,B]}, |
R(m,β)[A,B;γ,η]={f∈Ω:z(Hγ,κλ,ηf(z))′Hγ,κλ,ηf(z)∈P(m,β)[A,B]}, |
Cβ[A,B,γ,η]={f∈Ω:(z(Hγ,κλ,ηf(z))′)′(Hγ,κλ,ηf(z))′∈Pβ[A,B]}, |
SΛβ[A,B,γ,η]={f∈Ω:z(Hγ,κλ,ηf(z))′Hγ,κλ,ηf(z)∈Pβ[A,B]}, |
T(m,β)[A,B;γ,η]={f∈Ω:z(Hγ,κλ,ηf(z))′Hγ,κλ,ηψ(z)∈P(m,β)[A,B],whereψ(z)∈SΛβ[A,B,γ,η]}, |
where η,γ∈C, ℜ(λ)>max{0,ℜ(k)−1} and ℜ(k)>0. Also, ℜ(λ)=0 when ℜ(k)=1;η≠0. It can easily be noted that there exists Alexander relation between the classes V(m,β)[A,B;γ,η] and R(m,β)[A,B;γ,η], i.e.,
f∈V(m,β)[A,B;γ,η]⟺zf′∈R(m,β)[A,B;γ,η]. | (1.12) |
Throughout this investigation, −1≤B<A≤1, m≥2 and 0<β≤1 unless otherwise stated.
Lemma 2.1. ([13]) Let ν(z) as defined in (1.3) be in P(m,β)[A,B]. Then ν(z)∈Pm(ϱ), where 0≤ϱ=(1−A1−B)β<1.
Lemma 2.2. ([8]) Let ℏ(z) be convex univalent in Δ with h(0)=1 and ℜ(ζℏ(z)+α)>0(ζ∈C). Let p(z) be analytic in Δ with p(0)=1, which satisfy the following subordination relation
p(z)+zp′(z)ζp(z)+α≺ℏ(z), |
then
p(z)≺ℏ(z). |
Lemma 2.3. ([10]) Let ℏ(z)∈P. Then for |z|<r, 1−r1+r≤ℜ(ℏ(z))≤ |ℏ(z)|≤1+r1−r, and |h′(z)|≤2rℜℏ(z)1−r2.
Theorem 3.1. Let ϱ=(1−A1−B)β. Then for ℜ(γκ)>−ϱ,
R(m,β)[A,B,γ+1,η]⊂R(m,β)[A,B,γ,η]. |
Proof. Let f(z)∈R(m,β)[A,B,γ+1,η]. Set
φ(z)=z(Hγ+1,κλ,ηf(z))′Hγ+1,κλ,ηf(z), | (3.1) |
then φ(z)∈P(m,β)[A,B]. Now, Assume that
ψ(z)=z(Hγ,κλ,ηf(z))′Hγ,κλ,ηf(z). | (3.2) |
Plugging (1.10) in (3.2), we get
ψ(z)=(γ+κκ)(Hγ+1,κλ,ηf(z))−(γκ)(Hγ,κλ,ηf(z))Hγ,κλ,ηf(z). |
It follows that
Hγ,κλ,ηf(z)(κγ+κ)(ψ(z)+γκ)=Hγ+1,κλ,ηf(z). |
After performing logarithmic differentiation and simple computation, we get
ψ(z)+zψ′(z)ψ(z)+γκ=φ(z). | (3.3) |
Now, for m≥2, consider
ψ(z)=(m4+12)ψ1(z)−(m4−12)ψ2(z). | (3.4) |
Combining (3.3) and (3.4) with the similar technique as used in Theorem 3.1 of [20], we get
φ(z)=(m4+12)φ1(z)−(m4−12)φ2(z), |
where
φi(z)=ψi(z)+zψ′i(z)ψi(z)+γκ, |
for i=1,2. Since φ(z)∈P(m,β)[A,B], therefore
φi(z)=ψi(z)+zψ′i(z)ψi(z)+γκ≺(1+Az1+Bz)β, |
for i=1,2. By using Lemma 2.1 and the condition ℜ(γκ)>−ϱ, we have
ℜ(γκ+(1+Az1+Bz)β)>0, |
where ϱ=(1−A1−B)β. Hence, in view of Lemma 2.2, we have
ψi(z)≺(1+Az1+Bz)β, |
for i = 1, 2. This implies ψ(z)∈P(m,β)[A,B], so
f(z)∈R(m,β)[A,B,γ,η], |
which is required to prove.
Theorem 3.2. If ℜ(λη)>−ϱ, where ϱ=(1−A1−B)β, then
R(m,β)[A,B,γ,η]⊂R(m,β)[A,B,γ,η+1]. |
Proof. Let f(z)∈R(m,β)[A,B,γ,η]. Taking
φ(z)=z(Hγ,κλ,ηf(z))′Hγ,κλ,ηf(z), | (3.5) |
we have φ(z)∈P(m,β)[A,B]. Now, suppose that
ψ(z)=z(Hγ,κλ,η+1f(z))′Hγ,κλ,η+1f(z). | (3.6) |
Applying the relation (1.11) in the Eq (3.6), we have
ψ(z)=(λ+ηλ)(Hγ,κλ,ηf(z))−(ηλ)(Hγ,κλ,η+1f(z))Hγ,κλ,η+1f(z). |
arrives at
Hγ,κλ,η+1f(z)(λη+λ)(ψ(z)+ηλ)=Hγ,κλ,ηf(z). |
So by the logarithmic differentiation and simple computation we get,
ψ(z)+zψ′(z)ψ(z)+ηλ=φ(z). | (3.7) |
Therefore, for m≥2, take
ψ(z)=(m4+12)ψ1(z)−(m4−12)ψ2(z). | (3.8) |
Combining Eqs (3.6) and (3.7) using the similar technique as in Theorem 3.1 of [20], we get
φ(z)=(m4+12)φ1(z)−(m4−12)φ2(z), |
where
φi(z)=ψi(z)+zψ′i(z)ψi(z)+ηλ, |
for i=1,2. Since φ(z)∈P(m,β)[A,B], therefore
φi(z)=ψi(z)+zψ′i(z)ψi(z)+ηλ≺(1+Az1+Bz)β, |
for i=1,2. Applying Lemma 2.1 and the condition ℜ(ηλ)>−ϱ, we get
ℜ(ηλ+(1+Az1+Bz)β)>0, |
where ϱ=(1−A1−B)β. Hence, by Lemma 2.2, we have
ψi(z)≺(1+Az1+Bz)β, |
for i = 1, 2. This implies ψ(z)∈P(m,β)[A,B], so
f(z)∈R(m,β)[A,B,γ,η+1], |
which completes the proof.
Corollary 3.1. For m=2, if ℜ(γκ)>−ϱ, where ϱ=(1−A1−B)β. Then
SΛβ[A,B,γ+1,η]⊂SΛβ[A,B,γ,η]. |
Moreover, if ℜ(λη)>−ϱ, then
SΛβ[A,B,γ,η]⊂SΛβ[A,B,γ,η+1]. |
Theorem 3.3. Let ϱ=(1−A1−B)β. Then for ℜ(γκ)>−ϱ,
V(m,β)[A,B,γ+1,η]⊂V(m,β)[A,B,γ,η]. |
Proof. By means of theorem 3.1 and Alexander relation defined in (1.12), we get
f∈V(m,β)[A,B,γ+1,η]⟺zf′∈R(m,β)[A,B,γ+1,η]⟺zf′∈R(m,β)[A,B,γ,η]⟺f∈V(m,β)[A,B,γ,η]. |
Hence the result.
Analogously, we can prove the following theorem.
Theorem 3.4. If ℜ(λη)>−ϱ, where ϱ=(1−A1−B)β, then
V(m,β)[A,B,γ,η]⊂V(m,β)[A,B,γ,η+1]. |
Corollary 3.2. For m=2, if ℜ(γκ)>−ϱ, where ϱ=(1−A1−B)β. Then
Cβ[A,B,γ+1,η]⊂Cβ[A,B,γ,η]. |
Moreover, if ℜ(λη)>−ϱ, then
Cβ[A,B,γ,η]⊂Cβ[A,B,γ,η+1]. |
Theorem 3.5. Let ϱ=(1−A1−B)β, and ℜ(γκ)>−ϱ. Then
T(m,β)[A,B;γ+1,η]⊂T(m,β)[A,B;γ,η]. |
Proof. Let f(z)∈T(m,β)[A,B,γ+1,η]. Then there exist ψ(z)∈SΛβ[A,B,γ+1,η] such that
φ(z)=z(Hγ+1,κλ,ηf(z))′Hγ+1,κλ,ηψ(z)∈P(m,β)[A,B]. | (3.9) |
Now consider
ϕ(z)=z(Hγ,κλ,ηf(z))′Hγ,κλ,ηψ(z). | (3.10) |
Since ψ(z)∈SΛβ[A,B,γ+1,η] and ℜ(γκ)>−ϱ, therefore by Corollary 3.3, ψ(z)∈SΛβ[A,B,γ,η]. So
q(z)=z(Hγ,κλ,ηψ(z))′Hγ,κλ,ηψ(z)∈Pβ[A,B]. | (3.11) |
By doing some simple calculations on (3.11), we get
(κq(z)+γ)Hγ,κλ,ηψ(z)=(γ+κ)Hγ+1,κλ,ηψ(z). | (3.12) |
Now applying the relation (1.10) on (3.10), we get
ϕ(z)Hγ,κλ,ηψ(z)=γ+κκHγ+1,κλ,ηf(z)−γκHγ,κλ,ηf(z). | (3.13) |
Differentiating both sides of (3.13), we have
ϕ(z)(Hγ,κλ,ηψ(z))′+ϕ′(z)Hγ,κλ,ηψ(z)=γ+κκ(Hγ+1,κλ,ηf(z))′−γκ(Hγ,κλ,ηf(z))′. |
By using (3.12) and with some simple computations, we get
ϕ(z)+zϕ′(z)q(z)+γκ=φ(z)∈P(m,β)[A,B], | (3.14) |
with ℜ(q(z)+γκ)>0, since q(z)∈Pβ[A,B], so by Lemma 2.1, ℜ(q(z)>ϱ and ℜ(γκ)>−ϱ. Now consider
ϕ(z)=(m4+12)ϕ1(z)−(m4−12)ϕ2(z). | (3.15) |
Combining (3.14) and (3.15) with the similar technique as used in Theorem 3.1 of [20], we get
φ(z)=(m4+12)φ1(z)−(m4−12)φ2(z), | (3.16) |
where
φi(z)=ϕ(z)+zϕ′zq(z)+γκ, |
for i=1,2. Since φ(z)∈P(m,β)[A,B], therefore
φi(z)≺(1+Az1+Bz)β,i=1,2. |
Using the fact of Lemma 2.2, we can say that
ϕi(z)≺(1+Az1+Bz)β,i=1,2. |
So, ϕ(z)∈P(m,β)[A,B]. Hence we get the required result.
Theorem 3.6. If ℜ(λη)>−ϱ, where ϱ=(1−A1−B)β, then
T(m,β)[A,B,γ,η]⊂T(m,β)[A,B,γ,η+1]. |
Let f(z)∈T(m,β)[A,B,γ,η]. Then there exist ψ(z)∈SΛβ[A,B,γ,η] such that
φ(z)=z(Hγ,κλ,ηf(z))′Hγ,κλ,ηψ(z)∈P(m,β)[A,B]. | (3.17) |
Taking
ϕ(z)=z(Hγ,κλ,η+1f(z))′Hγ,κλ,η+1ψ(z). | (3.18) |
As we know that, ψ(z)∈SΛβ[A,B,γ,η] and ℜ(ηλ)>−ϱ, therefore by Corollary 3.3, ψ(z)∈SΛβ[A,B,γ,η+1]. So
q(z)=z(Hγ,κλ,η+1ψ(z))′Hγ,κλ,η+1ψ(z)∈Pβ[A,B]. | (3.19) |
By doing some simple calculations on (3.19) with the help of (1.11), we get
(λq(z)+η)Hγ,κλ,η+1ψ(z)=(η+λ)Hγ,κλ,ηψ(z). | (3.20) |
Now, applying the relation (1.11) on (3.18), we get
ϕ(z)Hγ,κλ,η+1ψ(z)=η+λλHγ,κλ,ηf(z)−ηλHγ,κλ,η+1f(z). | (3.21) |
Differentiating both sides of Eq (3.21), we have
ϕ(z)(Hγ,κλ,η+1ψ(z))′+ϕ′(z)Hγ,κλ,η+1ψ(z)=η+λλ(Hγ,κλ,ηf(z))′−ηλ(Hγ,κλ,η+1f(z))′, |
some simple calculations along with using (3.20) give us
ϕ(z)+zϕ′(z)q(z)+ηλ=φ(z)∈P(m,β)[A,B], | (3.22) |
with ℜ(q(z)+ηλ)>0. Since q(z)∈Pβ[A,B], so applying Lemma 2.1, we have ℜ(q(z)>ϱ and ℜ(ηλ)>−ϱ.
Assume that
ϕ(z)=(m4+12)ϕ1(z)−(m4−12)ϕ2(z). | (3.23) |
Combining (3.22) and (3.23), along with using the similar technique as in Theorem 3.1 of [20], we get
φ(z)=(m4+12)φ1(z)−(m4−12)φ2(z), | (3.24) |
where
φi(z)=ϕ(z)+zϕ′zq(z)+ηλ, |
for i=1,2. Since φ(z)∈P(m,β)[A,B], therefore
φi(z)≺(1+Az1+Bz)β,i=1,2. |
Applying the fact of Lemma 2.2, we have
ϕi(z)≺(1+Az1+Bz)β,i=1,2. |
So ϕ(z)∈P(m,β)[A,B]. Which gives us the required result.
Corollary 3.3. If ϱ>−min{ℜ(γκ),ℜ(λη)}, where ϱ=(1−A1−B)β, then we have the following inclusion relations:
(i) R(m,β)[A,B,γ+1,η]⊂R(m,β)[A,B,γ,η]⊂R(m,β)[A,B,γ,η+1].
(ii)V(m,β)[A,B,γ+1,η]⊂V(m,β)[A,B,γ,η]⊂V(m,β)[A,B,γ,η+1].
(iii)T(m,β)[A,B,γ+1,η]⊂T(m,β)[A,B,γ,η]⊂T(m,β)[A,B,γ,η+1].
Now, we will discuss some radius results for our defined classes.
Theorem 3.7. Let ϱ=(1−A1−B)β, and ℜ(γκ)>−ϱ. Then
R(m,β)[A,B,γ,η]⊂R(m,β)[ϱ,γ+1,η] |
whenever
|z|<ro=1−ϱ2−ϱ+√3−2ϱ,where0≤ϱ<1. |
Proof. Let f(z)∈R(m,β)[A,B,γ,η]. Then
ψ(z)=z(Hγ,κλ,ηf(z))′Hγ,κλ,ηf(z)∈P(m,β)[A,B]. | (3.25) |
In view of Lemma 2.1 P(m,β)[A,B]⊂Pm(ϱ), for ϱ=(1−A1−B)β, therefore ψ(z)∈Pm(ϱ). So by the Definition of Pm(ϱ) given in [22], there exist two functions ψ1(z),ψ2(z)∈P(ϱ) such that
ψ(z)=(m4+12)ψ1(z)−(m4−12)ψ2(z), | (3.26) |
with m≥2 and ℜ(ψi(z))>ϱ,i=1,2. We can write
ψi(z)=(1−ϱ)hi(z)+ϱ, | (3.27) |
where hi(z)∈P and ℜ(hi(z)>0, for i=1,2. Now, let
ϕ(z)=z(Hγ+1,κλ,ηf(z))′Hγ+1,κλ,ηf(z). | (3.28) |
We have to check when ϕ(z)∈Pm(ϱ). Using relation (1.10) in (3.25), we get
ψ(z)Hγ+1,κλ,ηf(z)=(γ+κκ)(Hγ+1,κλ,η(f(z)))−(γκ)(Hγ,κλ,η(f(z))). |
So, by simple calculation and logarithmic differentiation, we get
ψ(z)+zψ′zψ(z)+γκ=ϕ(z). | (3.29) |
Now, consider
ϕ(z)=(m4+12)ϕ1(z)−(m4−12)ϕ2(z), |
where
ϕi(z)=ψi(z)+zψ′izψi(z)+γκ,i=1,2. |
To derive the condition for ϕi(z) to be in P(ϱ), consider
ℜ(ϕi(z)−ϱ)=ℜ(ψi(z)+zψ′izψi(z)+γκ−ϱ). |
In view of (3.27), we have
ℜ(ϕi(z)−ϱ)=ℜ((1−ϱ)hi(z)+ϱ+z(1−ϱ)h′i(z)γκ+ϱ+(1−ϱ)hi(z)−ϱ)≥(1−ϱ)ℜ(hi(z))−(1−ϱ)|zh′i(z)|ℜ(γκ+ϱ)+(1−ϱ)ℜ(hi(z)). | (3.30) |
We have, ℜ(γκ+ϱ)>0 since ℜ(γκ)>−ϱ. Since hi(z)∈P, hence by using Lemma 2.3 in inequality (3.30), we have
ℜ(ϕi(z)−ϱ)≥(1−ϱ)ℜ(hi(z))−1−ϱ2r1−r2ℜ(hi(z))(1−ϱ)(1−r1+r)=(1−ϱ)ℜ(hi(z))[(1−r)2(1−ϱ)−2r(1−r)2(1−ϱ)]≥(1−ϱ)(1−r1+r)[(1−r)2(1−ϱ)−2r(1−r)2(1−ϱ)]=r2(1−ϱ)−2r(2−ϱ)+(1−ϱ)1−r2. | (3.31) |
Since 1−r2>0, letting T(r)=r2(1−ϱ)−2r(2−ϱ)+(1−ϱ). It is easy to note that T(0)>0 and T(1)<0. Hence, there is a root of T(r) between 0 and 1. Let ro be the root then by simple calculations, we get
ro=1−ϱ2−ϱ+√3−2ϱ. |
Hence ϕ(z)∈Pm(ϱ) for |z|<ro. Thus for this radius ro the function f(z) belongs to the class R(m,β)[ϱ,γ+1,η], which is required to prove.
Theorem 3.8. Let ϱ=(1−A1−B)β, and ℜ(λη)>−ϱ. Then
R(m,β)[A,B,γ,η+1]⊂R(m,β)[ϱ,γ,η], |
whenever
|z|<ro=1−ϱ2−ϱ+√3−2ϱ,where0≤ϱ<1. |
Proof. Let f(z)∈R(m,β)[A,B,γ,η+1]. Then
ψ(z)=z(Hγ,κλ,η+1f(z))′Hγ,κλ,η+1f(z)∈P(m,β)[A,B]. | (3.32) |
By applying of Lemma 2.1, we get P(m,β)[A,B]⊂Pm(ϱ), for ϱ=(1−A1−B)β, therefore ψ(z)∈Pm(ϱ). Hence, the Definition of Pm(ϱ) given in [22], there exist two functions ψ1(z),ψ2(z)∈P(ϱ) such that
ψ(z)=(m4+12)ψ1(z)−(m4−12)ψ2(z), | (3.33) |
with m≥2 and ℜ(ψi(z))>ϱ,i=1,2. We can say that
ψi(z)=(1−ϱ)hi(z)+ϱ, | (3.34) |
where hi(z)∈P and ℜ(hi(z)>0, for i=1,2. Now, assume
ϕ(z)=z(Hγ,κλ,ηf(z))′Hγ,κλ,ηf(z). | (3.35) |
Here, We have to obtain the condition for which ϕ(z)∈Pm(ϱ). Using relation (1.11) in (3.51), we get
ψ(z)Hγ,κλ,ηf(z)=(η+λλ)(Hγ,κλ,η(f(z)))−(ηλ)(Hγ,κλ,η+1(f(z))). |
Thus, by simple calculation and logarithmic differentiation, we have
ψ(z)+zψ′zψ(z)+ηλ=ϕ(z). | (3.36) |
Now, consider
ϕ(z)=(m4+12)ϕ1(z)−(m4−12)ϕ2(z), |
where
ϕi(z)=ψi(z)+zψ′izψi(z)+ηλ,i=1,2. |
To derive the condition for ϕi(z) to be in P(ϱ), consider
ℜ(ϕi(z)−ϱ)=ℜ(ψi(z)+zψ′izψi(z)+ηλ−ϱ). |
In view of (3.34), we have
ℜ(ϕi(z)−ϱ)=ℜ((1−ϱ)hi(z)+ϱ+z(1−ϱ)h′i(z)ηλ+ϱ+(1−ϱ)hi(z)−ϱ)≥(1−ϱ)ℜ(hi(z))−(1−ϱ)|zh′i(z)|ℜ(ηλ+ϱ)+(1−ϱ)ℜ(hi(z)). | (3.37) |
Here, ℜ(ηλ+ϱ)>0 since ℜ(ηλ)>−ϱ. We know that hi(z)∈P, therefore by using Lemma 2.3 in inequality (3.37), we have
ℜ(ϕi(z)−ϱ)≥(1−ϱ)ℜ(hi(z))−1−ϱ2r1−r2ℜ(hi(z))(1−ϱ)(1−r1+r)=(1−ϱ)ℜ(hi(z))[(1−r)2(1−ϱ)−2r(1−r)2(1−ϱ)]≥(1−ϱ)(1−r1+r)[(1−r)2(1−ϱ)−2r(1−r)2(1−ϱ)]=r2(1−ϱ)−2r(2−ϱ)+(1−ϱ)1−r2. | (3.38) |
Since 1−r2>0, letting T(r)=r2(1−ϱ)−2r(2−ϱ)+(1−ϱ). It can easily be seen that T(0)>0 and T(1)<0. Hence, there is a root of T(r) between 0 and 1. Let ro be the root then by simple calculations, we get
ro=1−ϱ2−ϱ+√3−2ϱ. |
Hence ϕ(z)∈Pm(ϱ) for |z|<ro. Thus for this radius ro the function f(z) belongs to the class R(m,β)[ϱ,γ,η], which is required to prove.
Corollary 3.4. Let ϱ=(1−A1−B)β. Then, for m=2, and |z|<ro=1−ϱ2−ϱ+√3−2ϱ,
(i) If ℜ(γκ)>−ϱ, then SΛβ[A,B,γ,η]⊂SΛβ[ϱ,γ+1,η].
(ii) Ifℜ(λη)>−ϱ, then SΛβ[A,B,γ,η+1]⊂SΛβ[ϱ,γ,η].
Theorem 3.9. Let ϱ=(1−A1−B)β. Then for |z|<ro=1−ϱ2−ϱ+√3−2ϱ, we have
(1)V(m,β)[A,B,γ,η]⊂V(m,β)[ϱ,γ+1,η], if ℜ(γκ)>−ϱ.
(2)V(m,β)[A,B,γ,η+1]⊂V(m,β)[ϱ,γ,η], if ℜ(λη)>−ϱ.
Proof. The above results can easily be proved by using Theorem 3.10, Theorem 3.11 and the Alexander relation defined in (1.12).
Theorem 3.10. Let ϱ=(1−A1−B)β, and ℜ(γκ)>−ϱ. Then
T(m,β)[A,B,γ,η]⊂T(m,β)[ϱ,γ+1,η], |
whenever
|z|<ro=1−ϱ2−ϱ+√3−2ϱ,where0≤ϱ<1. |
Proof. Let f∈T(m,β)[A,B,γ,η], then there exist ψ(z)∈SΛβ[A,B,γ,η] such that
φ(z)=z(Hγ,κλ,ηf(z))′Hγ,κλ,ηψ(z)∈P(m,β)[A,B]. | (3.39) |
Since by Lemma 2.1 we know that P(m,β)[A,B]⊂Pm(ϱ), where ϱ=(1−A1−B)β, therefore φ(z)∈Pm(ϱ). So by using the Definition of Pm(ϱ) defined in [22], there exist two functions φ1(z) and φ2(z) such that
φ(z)=(m4+12)φ1(z)−(m4−12)φ2(z), | (3.40) |
where φi(z)∈P(ϱ),i=1,2. We can write
φi(z)=ϱ+(1−ϱ)hi(z), | (3.41) |
where hi(z)∈P. Now, let
ϕ(z)=z(Hγ+1,κλ,ηf(z))′Hγ+1,κλ,ηψ(z). |
Since ψ(z)∈SΛβ[A,B,γ,η], therefore
q(z)=z(Hγ,κλ,ηψ(z))′Hγ,κλ,ηψ(z)∈Pβ[A,B], | (3.42) |
then by using relation (1.10) and doing some simple computation on Eq (3.42), we have
(κq(z)+γ)Hγ,κλ,ηψ(z)=(γ+κ)Hγ+1,κλ,ηψ(z). | (3.43) |
Now, using relation (1.10) in (3.39), we get
φ(z)=(γ+κκ)(Hγ+1,κλ,ηf(z))−(γκ)(Hγ,κλ,ηf(z))Hγ,κλ,ηψ(z). | (3.44) |
By some simple calculations along with differentiation of both sides of (3.44) and then applying (3.43) we get the following relation
φ(z)+zφ′(z)q(z)+(γκ)=ϕ(z). |
Let us consider
ϕ(z)=(m4+12)ϕ1(z)−(m4−12)ϕ2(z), |
where
ϕi(z)=φi(z)+zφ′i(z)q(z)+(γκ), |
i=1,2. Since q(z)∈Pβ[A,B]⊂P(ϱ). Therefore, we can write
q(z)=ϱ+(1−ϱ)qo(z), | (3.45) |
where qo(z)∈P. We have to check when ϕi(z)∈Pm(ϱ). For this consider
ℜ(ϕi(z)−ϱ)=ℜ(φi(z)+zφ′i(z)q(z)+(γκ)−ϱ). |
Using (3.41) and (3.45), we have
ℜ(ϕi(z)−ϱ)=ℜ(ϱ+(1−ϱ)hi(z)+(1−ϱ)zh′i(z)ϱ+(1−ϱ)qo(z)+(γκ)−ϱ), |
where hi(z),qo(z)∈P.
ℜ(ϕi(z)−ϱ)=(1−ϱ)ℜ(hi(z))−(1−ϱ)|zh′i(z)|ℜ(ϱ+γκ)+(1−ϱ)ℜqo(z). |
Since ℜ(γκ)>−ϱ, so ℜ(ϱ+γκ)>0. Now by using the distortion results of Lemma 2.3, we have
ℜ(ϕi(z)−ϱ)=ℜ((1−ϱ)hi(z)+ϱ+z(1−ϱ)h′i(z)γκ+ϱ+(1−ϱ)hi(z)−ϱ)≥(1−ϱ)ℜ(hi(z))−(1−ϱ)|zh′i(z)|ℜ(γκ+ϱ)+(1−ϱ)ℜ(hi(z)). | (3.46) |
Since hi(z)∈P, so ℜ(hi(z))>0 and ℜ(γκ+ϱ)>0 for ℜ(γκ)>−ϱ. Hence, by using Lemma 2.3 in inequality (3.46), we have
ℜ(ϕi(z)−ϱ)≥(1−ϱ)ℜ(hi(z))−1−ϱ2r1−r2ℜ(hi(z))(1−ϱ)(1−r1+r)≥r2(1−ϱ)−2r(2−ϱ)+(1−ϱ)1−r2. |
Since 1−r2>0, taking T(r)=r2(1−ϱ)−2r(2−ϱ)+(1−ϱ). Let ro be the root then by simple calculations, we get
ro=1−ϱ2−ϱ+√3−2ϱ. |
Hence ϕ(z)∈Pm(ϱ) for |z|<ro. Thus for this radius ro the function f(z) belongs to the class T(m,β)[ϱ,γ+1,η], which is required to prove.
Using the analogous approach used in Theorem 3.14, one can easily prove the following theorem.
Theorem 3.11. Let ϱ=(1−A1−B)β, and ℜ(ηλ)>−ϱ. Then
T(m,β)[A,B,γ,η+1]⊂T(m,β)[ϱ,γ,η] |
whenever
|z|<ro=1−ϱ2−ϱ+√3−2ϱ,where0≤ϱ<1. |
Integral Preserving Property: Here, we will discuss some integral preserving properties of our aforementioned classes. The generalized Libera integral operator Iσ introduced and discussed in [6,14] is defined by:
Iσ(f)(z)=σ+1zσ∫z0tσ−1f(t)dt, | (3.47) |
where f(z)∈A and σ>−1.
Theorem 3.12. Let σ>−ϱ, where ϱ=(1−A1−B)β. If f∈R(m,β)[A,B,γ,η] then Iσ(f)∈R(m,β)[A,B,γ,η].
Proof. Let f∈R(m,β)[A,B,γ,η], and set
ψ(z)=z(Hγ,κλ,ηIσ(f)(z))′Hγ,κλ,ηIσ(f)(z), | (3.48) |
where ψ(z) is analytic and ψ(0)=1. From definition of Hγ,κλ,η(f) given by [1] and using Eq (3.47), we have
z(Hγ,κλ,ηIσ(f)(z))′=(σ+1)Hγ,κλ,ηf(z)−σHγ,κλ,ηIσ(f)(z). | (3.49) |
Then by using Eqs (3.48) and (3.49), we have
(σ+1)Hγ,κλ,ηf(z)Hγ,κλ,ηIσ(f)(z)=ψ(z)+σ. |
Logarithmic differentiation and simple computation results in
ϕ(z)=ψ(z)+zψ′(z)ψ(z)+σ=z(Hγ,κλ,ηf(z))′Hγ,κλ,ηf(z)∈P(m,β)[A,B], | (3.50) |
with ℜ(ψ(z)+σ)>0, since ℜ(σ)>−ϱ. Now, consider
ψ(z)=(m4+12)ψ1(z)−(m4−12)ψ2(z). | (3.51) |
Combining (3.50) and (3.51), we get
ϕ(z)=(m4+12)ϕ1(z)−(m4−12)ϕ2(z), |
where ϕi(z)=ψi(z)+zψ′i(z)ψi(z)+σ, i=1,2. Since ϕ(z)∈P(m,β)[A,B], therefore
ϕi(z)≺(1+Az1+Bz)β, |
which implies
ψi(z)+zψ′i(z)ψi(z)+σ≺(1+Az1+Bz)βi=1,2. |
Therefore, using Lemma 2.2 we get
ψi(z)≺(1+Az1+Bz)β, |
or ψ(z)∈P(m,β)[A,B]. Hence the result.
Corollary 3.5. Let σ>−ϱ. Then for m=2, if f∈SΛβ[A,B,γ,η] then Iσ(f)∈SΛβ[A,B,γ,η], where ϱ=(1−A1−B)β.
Theorem 3.13. Let σ>−ϱ, where ϱ=(1−A1−B)β. If f∈V(m,β)[A,B,γ,η] then Iσ(f)∈V(m,β)[A,B,γ,η].
Proof. Let f∈V(m,β)[A,B,γ,η]. Then by using relation (1.12), we have
zf′(z)∈R(m,β)[A,B,γ,η], |
so by using Theorem 3.16, we can say that
Iσ(zf′(z))∈R(m,β)[A,B,γ,η], |
equivalently
z(Iσ(f(z)))′∈R(m,β)[A,B,γ,η], |
so again by using the relation (1.12), we get
Iσ(f)∈V(m,β)[A,B,γ,η]. |
Theorem 3.14. Let σ>−ϱ, where ϱ=(1−A1−B)β. If f∈T(m,β)[A,B,γ,η] then Iσ(f)∈T(m,β)[A,B,γ,η].
Proof. Let f∈T(m,β)[A,B,γ,η]. Then there exists ψ(z)∈SΛβ[A,B,γ,η], such that
φ(z)=z(Hγ,κλ,ηf(z))′(Hγ,κλ,ηψ(z)∈P(m,β)[A,B]. | (3.52) |
Consider
ϕ(z)=z(Hγ,κλ,ηIσ(f)(z))′Hγ,κλ,ηIσ(ψ)(z). | (3.53) |
Since ψ(z)∈SΛβ[A,B,γ,η], then by Corollary 3.17, Iσ(ψ)(z)∈SΛβ[A,B,γ,η]. Therefore
q(z)=z(Hγ,κλ,ηIσ(ψ)(z))′Hγ,κλ,ηIσ(ψ)(z)∈Pβ[A,B]. | (3.54) |
By using (3.47) and Definition of Hγ,κλ,η, we get
q(z)Hγ,κλ,ηIσ(ψ)(z)=(σ+1)Hγ,κλ,η(ψ)(z)−σHγ,κλ,ηIσ(ψ)(z), |
or we can write it as
Hγ,κλ,ηIσ(ψ)(z)=σ+1q(z)+σHγ,κλ,η(ψ)(z). | (3.55) |
Now using the relation (3.47) and the Definition of Hγ,κλ,η, in (3.53), we have
ϕ(z)Hγ,κλ,ηIσ(ψ)(z)=(σ+1)Hγ,κλ,η(f)(z)−σHγ,κλ,ηIσ(f)(z). | (3.56) |
Differentiating both sides of (3.56), we have
ϕ′(z)Hγ,κλ,ηIσ(ψ)(z)+ϕ(z)(Hγ,κλ,ηIσ(ψ)(z))′=(σ+1)(Hγ,κλ,η(f)(z))′−σ(Hγ,κλ,ηIσ(f)(z))′, |
then by simple computations and using (3.53)–(3.55), we get
ϕ(z)+zϕ′(z)q(z)+σ=φ(z), | (3.57) |
with ℜ(σ)>−ϱ, so ℜ(q(z)+σ)>0, since q(z)∈Pβ[A,B]⊂P(ϱ). Consider
ϕ(z)=(m4+12)ϕ1(z)−(m4−12)ϕ2(z), | (3.58) |
Combining Eqs (3.57) and (3.58), we have
φ(z)=(m4+12)φ1(z)−(m4−12)φ2(z), | (3.59) |
where φi(z)=ϕi(z)+zϕ′i(z)q(z)+σ, i=1,2.
Since φ(z)∈P(m,β)[A,B], thus we have
φi(z)≺(1+Az1+Bz)β, |
then
ϕi(z)+zϕ′i(z)q(z)+σ≺(1+Az1+Bz)β,i=1,2. |
Since ℜ(q(z)+σ)>0, therefore using Lemma 2.2 we get
ϕi(z)≺(1+Az1+Bz)β,i=1,2, |
thus ϕ(z)∈P(m,β)[A,B]. Hence the result.
Due to their vast applications, Mittag-Leffler functions have captured the interest of a number of researchers working in different fields of science. The present investigation may help researchers comprehend some stimulating consequences of the special functions. In the present article, we have used generalized Mittag-Leffler functions to define some novel classes related to bounded boundary and bounded radius rotations. Several inclusion relations and radius results for these classes have been discussed. Moreover, it has been proved that these classes are preserved under the generalized Libera integral operator. Finally, we can see that the projected solution procedure is highly efficient in solving inclusion problems describing the harmonic analysis. It is hoped that our investigation and discussion will be helpful in cultivating new ideas and applications in different fields of science, particularly in mathematics.
Δ Open Unit Disc.
Ω Class of normalized analytic functions.
ℜ Real part of complex number.
Γ Gamma function.
χ(z) Schwartz function.
The authors declare that they have no competing interests.
The authors would like to thank the Rector of COMSATS Univeristy Islamabad, Pakistan for providing excellent research oriented environment. The author Thabet Abdeljawad would like to thank Prince Sultan University for the support through TAS research Lab.
[1] |
Feldmeier H, Keysers A (2013) Tungiasis–a Janus-faced parasitic skin disease. Travel Med Infect Dis 11: 357-365. https://doi.org/10.1016/j.tmaid.2013.10.001 ![]() |
[2] |
Obebe OO, Aluko OO (2020) Epidemiology of tungiasis in sub-saharan Africa: a systematic review and meta-analysis. Pathog Glob Health 114: 360-369. https://doi.org/10.1080/20477724.2020.1813489 ![]() |
[3] |
Chauhan P, Jindal R, Errichetti E (2022) Dermoscopy of skin parasitoses, bites and stings: a systematic review of the literature. J Eur Acad Dermatol Venereol 36: 1722-1734. https://doi.org/10.1111/jdv.18352 ![]() |
[4] |
Razanakolona LRS, Raharisoa A, Soankasina AH, et al. (2022) Clinical and epidemiological survey of tungiasis in Madagascar. J Travel Med 50: 102449. https://doi.org/10.1016/j.tmaid.2022.102449 ![]() |
[5] |
Feldmeier H, Sentongo E, Krantz I (2013) Tungiasis (sand flea disease): a parasitic disease with particular challenges for public health. Eur J Clin Microbiol 32: 19-26. https://doi.org/10.1007/s10096-012-1725-4 ![]() |
[6] | Campollo MLO, Lievanos SJG, Amparán YIL, et al. (2022) Tungiasis: an underdiagnosed problem. IJMSCRS 2: 1484-1486. https://doi.org/10.47191/ijmscrs/v2-i12-23 |
[7] |
Mutebi F, Krücken J, Feldmeier H, et al. (2021) Clinical implications and treatment options of tungiasis in domestic animals. Parasitol Res 120: 4113-4123. https://doi.org/10.1007/s00436-021-07121-y ![]() |
[8] | Michael BG, Fikru C, Teka T (2018) Tungiasis: an overview. J Parasitol Vector Biol 10: 66-72. https://doi.org/10.5897/JPVB2016.0274 |
[9] |
Jan R, Khan MA, Kumam P, et al. (2019) Modeling the transmission of dengue infection through fractional derivatives. Chaos Soliton Fract 127: 189-216. https://doi.org/10.1016/j.chaos.2019.07.002 ![]() |
[10] | Tang TQ, Shah Z, Bonyah E, et al. (2022) Modeling and analysis of breast cancer with adverse reactions of chemotherapy treatment through fractional derivative. Comput Math Methods Med 2022: 5636844. https://doi.org/10.1155/2022/5636844 |
[11] | Li P, Lu Y, Xu C, et al. (2023) Insight into hopf bifurcation and control methods in fractional order BAM neural networks incorporating symmetric structure and delay. Cogn Comput 2023: 1-43. https://doi.org/10.1007/s12559-023-10155-2 |
[12] | Xu C, Mu D, Pan Y, et al. (2023) Exploring bifurcation in a fractional-order predator-prey system with mixed delays. J Appl Anal Comput 13: 1119-1136. https://doi.org/10.11948/20210313 |
[13] |
Jan R, Boulaaras S (2022) Analysis of fractional-order dynamics of dengue infection with non-linear incidence functions. Trans Inst Meas Control 44: 2630-2641. https://doi.org/10.1177/01423312221085049 ![]() |
[14] | Jan R, Qureshi S, Boulaaras S, et al. (2023) Optimization of the fractional-order parameter with the error analysis for human immunodeficiency virus under Caputo operator. Discrete Cont Dyn-S 16: 2118-2140. https://doi.org/10.3934/dcdss.2023010 |
[15] | Jan R, Khan A, Boulaaras S, et al. (2022) Dynamical behaviour and chaotic phenomena of HIV infection through fractional calculus. Discrete Dyn Nat Soc 2022: 5937420. https://doi.org/10.1155/2022/5937420 |
[16] |
Alyobi S, Jan R (2023) Qualitative and quantitative qnalysis of fractional dynamics of infectious diseases with control measures. Fractal Fract 7: 400. https://doi.org/10.3390/fractalfract7050400 ![]() |
[17] |
Jan R, Shah Z, Deebani W, et al. (2022) Analysis and dynamical behavior of a novel dengue model via fractional calculus. Int J Biomath 15: 2250036. https://doi.org/10.1142/S179352452250036X ![]() |
[18] |
Tang TQ, Shah Z, Jan R, et al. (2022) Modeling the dynamics of tumor–immune cells interactions via fractional calculus. Eur Phys J Plus 137: 367. https://doi.org/10.1140/epjp/s13360-022-02591-0 ![]() |
[19] |
Zucconi M, Ferini-Strambi L (2004) Epidemiology and clinical findings of restless legs syndrome. Sleep Med 5: 293-299. https://doi.org/10.1016/j.sleep.2004.01.004 ![]() |
[20] |
Eisele M, Heukelbach J, Van Marck E, et al. (2003) Investigations on the biology, epidemiology, pathology and control of Tunga penetrans in Brazil: I. Natural history of tungiasis in man. Parasitol Res 90: 87-99. https://doi.org/10.1007/s00436-002-0817-y ![]() |
[21] | Kong L, Li L, Kang S, et al. (2022) Dynamic behavior of a stochastic tungiasis model for public health education. Discrete Dyn Nat Soc 2022: 4927261. https://doi.org/10.1155/2022/4927261 |
[22] |
Lv W, Liu L, Zhuang SJ (2022) Dynamics and optimal control in transmission of tungiasis diseases. Int J Biomath 15: 2150076. https://doi.org/10.1142/S1793524521500765 ![]() |
[23] |
Kahuru J, Luboobi LS, Nkansah-Gyekye Y (2017) Optimal control techniques on a mathematical model for the dynamics of tungiasis in a community. Int J Math Math Sci 2017: 4804897. https://doi.org/10.1155/2017/4804897 ![]() |
[24] |
Feldmeier H, Eisele M, Van Marck E, et al. (2004) Investigations on the biology, epidemiology, pathology and control of Tunga penetrans in Brazil: IV. Clinical and histopathology. Parasitol Res 94: 275-282. https://doi.org/10.1007/s00436-004-1197-2 ![]() |
[25] | Ahmad I, Zaman S (2020) Local meshless differential quadrature collocation method for time-fractional PDEs. Discrete Cont Dyn-S 13: 2641-2654. https://doi.org/10.3934/dcdss.2020223 |
[26] |
Li JF, Ahmad I, Ahmad H, et al. (2020) Numerical solution of two-term time-fractional PDE models arising in mathematical physics using local meshless method. Open Phys 18: 1063-1072. https://doi.org/10.1515/phys-2020-0222 ![]() |
[27] |
Wang F, Ahmad I, Ahmad H, et al. (2021) Meshless method based on RBFs for solving three-dimensional multi-term time fractional PDEs arising in engineering phenomenons. J King Saud Univ Sci 33: 101604. https://doi.org/10.1016/j.jksus.2021.101604 ![]() |
[28] |
Shakeel M, Khan MN, Ahmad I, et al. (2023) Local meshless collocation scheme for numerical simulation of space fractional PDE. Therm Sci 27: 101-109. https://doi.org/10.2298/TSCI23S1101S ![]() |
[29] |
Almutairi B, Ahmad I, Almohsen B, et al. (2023) Numerical simulations of time-fractional PDEs arising in mathematics and physics using the local Meshless differential quadrature method. Therm Sci 27: 263-272. https://doi.org/10.2298/TSCI23S1263A ![]() |
[30] |
Ahmad H, Khan MN, Ahmad I, et al. (2023) A meshless method for numerical solutions of linear and nonlinear time-fractional Black-Scholes models. AIMS Math 8: 19677-19698. https://doi.org/10.3934/math.20231003 ![]() |
[31] |
Xu C, Mu D, Liu Z, et al. (2023) Bifurcation dynamics and control mechanism of a fractional–order delayed Brusselator chemical reaction model. Match 89: 73-106. https://doi.org/10.46793/match.89-1.073x ![]() |
[32] |
Ahmad I, Bakar AA, Ali A, et al. (2023) Computational analysis of time-fractional models in energy infrastructure applications. Alex Eng J 82: 426-436. https://doi.org/10.1016/j.aej.2023.09.057 ![]() |
[33] |
Jan R, Alyobi S, Inc M, et al. (2023) A robust study of the transmission dynamics of malaria through non-local and non-singular kernel. AIMS Math 8: 7618-7640. https://doi.org/10.3934/math.2023382 ![]() |
[34] |
Thabet STM, Abdo MS, Shah K, et al. (2020) Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative. Results Phys 19: 103507. https://doi.org/10.1016/j.rinp.2020.103507 ![]() |
[35] |
Jan R, Khurshaid A, Alotaibi H, et al. (2023) A robust study of the transmission dynamics of syphilis infection through non-integer derivative. AIMS Math 8: 6206-6232. https://doi.org/10.3934/math.2023314 ![]() |
[36] |
Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent—II. Geophys J Int 13: 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x ![]() |
[37] |
Atangana A, Baleanu D (2016) New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm Sci 20: 763-769. https://doi.org/10.2298/TSCI160111018A ![]() |
[38] |
Delamater PL, Street EJ, Leslie TF, et al. (2019) Complexity of the basic reproduction number (R0). Emerg Infect Dis 25: 1-4. https://doi.org/10.3201/eid2501.171901 ![]() |
[39] |
Toufik M, Atangana A (2017) New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models. Eur Phys J Plus 132: 1-16. https://doi.org/10.1140/epjp/i2017-11717-0 ![]() |
[40] |
Xu C, Cui X, Li P, et al. (2023) Exploration on dynamics in a discrete predator–prey competitive model involving feedback controls. J Biol Dyn 17: 2220349. https://doi.org/10.1080/17513758.2023.2220349 ![]() |
[41] |
Mua D, Xub C, Liua Z, et al. (2023) Further insight into bifurcation and hybrid control tactics of a chlorine dioxide–iodine–malonic acid chemical reaction model incorporating delays. MATCH Commun Math Comput Chem 89: 529-566. https://doi.org/10.46793/match.89-3.529M ![]() |
[42] |
Xu C, Cui Q, Liu Z, et al. (2023) Extended hybrid controller design of bifurcation in a delayed chemostat model. MATCH Commun Math Comput Chem 90: 609-648. https://doi.org/10.46793/match.90-3.609X ![]() |
[43] | Ou W, Xu C, Cui Q, et al. (2023) Mathematical study on bifurcation dynamics and control mechanism of tri-neuron bidirectional associative memory neural networks including delay. Math Methods Appl Sci 2023: 1-25. https://doi.org/10.1002/mma.9347 |
1. | Georgia Irina Oros, Gheorghe Oros, Shigeyoshi Owa, Subordination Properties of Certain Operators Concerning Fractional Integral and Libera Integral Operator, 2022, 7, 2504-3110, 42, 10.3390/fractalfract7010042 | |
2. | Bushra Kanwal, Saqib Hussain, Afis Saliu, Fuzzy differential subordination related to strongly Janowski functions, 2023, 31, 2769-0911, 10.1080/27690911.2023.2170371 | |
3. | Bushra Kanwal, Kashmala Sarfaraz, Munnaza Naz, Afis Saliu, Fuzzy differential subordination associated with generalized Mittag-Leffler type Poisson distribution, 2024, 31, 2576-5299, 206, 10.1080/25765299.2024.2319366 |