Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Transfer learning for robust urban network-wide traffic volume estimation with uncertain detector deployment scheme

  • Real-time and accurate network-wide traffic volume estimation/detection is an essential part of urban transport system planning and management. As it is impractical to install detectors on every road segment of the city network, methods on the network-wide flow estimation based on limited detector data are of considerable significance. However, when the plan of detector deployment is uncertain, existing methods are unsuitable to be directly used. In this study, a transfer component analysis (TCA)-based network-wide volume estimation model, considering the different traffic volume distributions of road segments and transforming traffic features into common data space, is proposed. Moreover, this study applied taxi GPS (global positioning system) data and cellular signaling data with the same spatio-temporal coverage to improve feature extraction. In numerical experiments, the robustness and stability of the proposed network-wide estimation method outperformed other baselines in the two subnetworks selected from the urban centers and suburbs.

    Citation: Jiping Xing, Yunchi Wu, Di Huang, Xin Liu. Transfer learning for robust urban network-wide traffic volume estimation with uncertain detector deployment scheme[J]. Electronic Research Archive, 2023, 31(1): 207-228. doi: 10.3934/era.2023011

    Related Papers:

    [1] Liqin Liu, Chunrui Zhang . A neural network model for goat gait. Mathematical Biosciences and Engineering, 2024, 21(8): 6898-6914. doi: 10.3934/mbe.2024302
    [2] Van Dong Nguyen, Dinh Quoc Vo, Van Tu Duong, Huy Hung Nguyen, Tan Tien Nguyen . Reinforcement learning-based optimization of locomotion controller using multiple coupled CPG oscillators for elongated undulating fin propulsion. Mathematical Biosciences and Engineering, 2022, 19(1): 738-758. doi: 10.3934/mbe.2022033
    [3] Jiacan Xu, Donglin Li, Peng Zhou, Chunsheng Li, Zinan Wang, Shenghao Tong . A multi-band centroid contrastive reconstruction fusion network for motor imagery electroencephalogram signal decoding. Mathematical Biosciences and Engineering, 2023, 20(12): 20624-20647. doi: 10.3934/mbe.2023912
    [4] Yong Yao . Dynamics of a delay turbidostat system with contois growth rate. Mathematical Biosciences and Engineering, 2019, 16(1): 56-77. doi: 10.3934/mbe.2019003
    [5] Changyong Xu, Qiang Li, Tonghua Zhang, Sanling Yuan . Stability and Hopf bifurcation for a delayed diffusive competition model with saturation effect. Mathematical Biosciences and Engineering, 2020, 17(6): 8037-8051. doi: 10.3934/mbe.2020407
    [6] Ranjit Kumar Upadhyay, Swati Mishra, Yueping Dong, Yasuhiro Takeuchi . Exploring the dynamics of a tritrophic food chain model with multiple gestation periods. Mathematical Biosciences and Engineering, 2019, 16(5): 4660-4691. doi: 10.3934/mbe.2019234
    [7] Qianqian Zheng, Jianwei Shen, Lingli Zhou, Linan Guan . Turing pattern induced by the directed ER network and delay. Mathematical Biosciences and Engineering, 2022, 19(12): 11854-11867. doi: 10.3934/mbe.2022553
    [8] Shunyi Li . Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays. Mathematical Biosciences and Engineering, 2019, 16(6): 6934-6961. doi: 10.3934/mbe.2019348
    [9] Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006
    [10] Ranjit Kumar Upadhyay, Swati Mishra . Population dynamic consequences of fearful prey in a spatiotemporal predator-prey system. Mathematical Biosciences and Engineering, 2019, 16(1): 338-372. doi: 10.3934/mbe.2019017
  • Real-time and accurate network-wide traffic volume estimation/detection is an essential part of urban transport system planning and management. As it is impractical to install detectors on every road segment of the city network, methods on the network-wide flow estimation based on limited detector data are of considerable significance. However, when the plan of detector deployment is uncertain, existing methods are unsuitable to be directly used. In this study, a transfer component analysis (TCA)-based network-wide volume estimation model, considering the different traffic volume distributions of road segments and transforming traffic features into common data space, is proposed. Moreover, this study applied taxi GPS (global positioning system) data and cellular signaling data with the same spatio-temporal coverage to improve feature extraction. In numerical experiments, the robustness and stability of the proposed network-wide estimation method outperformed other baselines in the two subnetworks selected from the urban centers and suburbs.



    With the development of neuroscience, the controlling mechanism and mode of biological motion have been paid much attention by biologists [1,2,3,4], and rhythmic movement is a common mode of motion in biology. Rhythmic movement refers to periodic movement with symmetry of time and space, such as walking, running, jumping, flying, swimming and so on. Biologists have shown that rhythmic movement is not related to the consciousness of the brain, but to the self-excitation of the lower nerve centers. It is a spatiotemporal motion mode controlled by a central pattern generator located in the spinal cord of vertebrates or in the thoracic and abdominal ganglia of invertebrates [5]. They have the ability to automatically generate complex high dimensional control signals for the coordination of the muscles during rhythmic movements [6,7,8,9].

    In engineering, CPG can be regarded as a distributed system consisting of a group of coupled nonlinear oscillators. The generation of rhythmic signals can be realized by phase coupling. Changing the coupling relationship of oscillators can produce spatiotemporal sequence signals with different phase relations, and realize different movement modes. CPG of animals lays a foundation for the research of bionic robots. For example, in [10,11] the gait control of quadruped robots based on CPG is studied. Mathematically, there are several common types of CPG oscillators systems, such as Hopf oscillators systems [12,13], Kimura oscillators systems, Rayleigh oscillators systems, Matsuoa oscillators systems and VDP oscillator systems [14,15], etc.

    Quadrupedal gait is a kind of gait that people are very concerned. The gait of quadruped is an important type described by a symmetrical system [16,17,18]. For example, in [17,18], base on the symmetry property, the primary and secondary gait modes of quadruped are described, respectively. In animal gait movement, the legs are coupled with each other, and the coupling strength affects the complexity of animal gait. In this paper, the delay of leg signal is considered according to CPG model, the basic gait CPG model of a class of quadruped is constructed by using VDP oscillators, and the ranges of coupling strength between legs under four basic gaits are given. This paper is organized as follows. Firstly, a kind of delay CPG network system is constructed by using VDP oscillator. Secondly, the conditions of Hopf bifurcation in VDP-CPG network corresponding to the four basic gaits are given, and the coupling ranges between legs in four basic gaits are given. Finally, the theoretical results are supported by numerical simulations.

    CPG, as the control center of rhythmic motion, is a kind of neural network that can generate the output of rhythmic mode without sensor feedback. It sends out motion instructions from the high-level center to control the initial state of rhythmic motion, and integrates the feedback information and perception information of CPG to regulate the motion organically. The CPG network in this paper adopts the following network structure [14].

    In Figure 1, LF, RF, LH and RH represent the animal's left foreleg, right foreleg, left hind leg and right hind leg, respectively. The black arrows represent the leg raising sequence, and the numbers in the circles are the phase difference between other legs and LF leg. In order to generate the rhythmic signal of each leg, the VDP oscillator used in this paper can refer to [14], the equation is as follows.

    {˙x=y,˙y=α(p2x2)˙xw2x,
    Figure 1.  The CPG network structures of four primary gaits.

    where x is the output signal from oscillator, α, p and w are variable parameters which can influence the character of oscillators. Commonly, the shape of the wave is affected by parameter α, and the amplitude of an output counts on the parameter p mostly. The output frequency is mainly relying on the parameter w when the amplitude parameter p is fixed. But the alteration of parameter p can lightly change the frequency of the signal, and α also can effect the output frequency.

    Four-legged muscle groups are regarded as VDP oscillators for feedback motion signals, respectively. The animal's left foreleg, right foreleg, right hind leg and left hind leg are recorded as oscillator x1,x2,x3 and x4, respectively.

    Then the oscillator of the ith leg is as follows

    {˙xi=yi,˙yi=αi(p2ix2ki)yiw2ixki,i=1,2,3,4,

    where xki=xi+4j=1,jiKijxj denotes the coupling variable. Here Kij is the coupling coefficient, which represents strength of coupling from j oscillator to i oscillator.

    Because the motion state of each leg depends on the motion state of the other three legs in the past short time, the time delay is introduced as follows

    xki=xi(t)+4j=1,jiKijxj(tτ).

    Assuming that the biological mechanism of each leg is similar and the degree of excitation or inhibition is the same between legs, and the excitation is positive coupling, then the inhibition is negative coupling. Therefore,

    α1=α2=α3=α4=α,
    p1=p2=p3=p4=p,
    w1=w2=w3=w4=w,
    Kij={K,whenthejlegexcitestheileg,K,whenthejlegrestrainstheileg.K>0.

    Thus, we study the following VDP-CPG system

    {˙xi=yi,˙yi=α(p2(xi(t)+4j=1,jiKijxj(tτ))2)yiw2(xi(t)+4j=1,jiKijxj(tτ)), (1)

    where i=1,2,3,4. It is clear that the origin (0, 0, 0, 0, 0, 0, 0, 0) is an equilibrium of Eq (1).

    In this section, we construct a VDP-CPG network which is used for generation four basic gaits patterns (walk, trot, pace and bound). Then we analyze the conditions for four gait systems to produce Hopf bifurcation.

    In order to analyses the four basic gaits, we make the following assumptions.

    (H1) h<0,

    (H2) 2sh2>0,19m<K2<19,

    (H3) K2<m,

    where h=αp2,s=w2,m=4h2sh44s2.

    In walking gait, one leg is inhibited by the other three legs, then there are

    Kij=K,i,j=1,2,3,4,ij.

    So the VDP-CPG network in walking gait is as follows

    {˙xi=yi,˙yi=α(p2(xi(t)+4j=1,ji(K)xj(tτ))2)yiw2(xi(t)+4j=1,ji(K)xj(tτ)). (2)

    This is a symmetric system. We first explore the symmetry of system (2), then study the existence of Hopf bifurcation of system (2).

    Let Yi=(xiyi)R2,i=1,2,3,4, system (2) can be written in block form as follows

    ˙Yi=MYi(t)+NYi+1(tτ)+NYi+2(tτ)+NYi+3(tτ)+g(Yi(t)),i=1,2,3,4(mod4), (3)

    where

    M=(01w2αp2),N=(00Kw20),
    g(xiyi)=(0α(xiKxi+1(tτ)Kxi+2(tτ)Kxi+3(tτ))2yi).

    Let Γ be a compact Lie group. It follows from [19], system ˙u(t)=G(ut) is said to be Γ equivariant if G(γut)=γG(ut) for all γΓ. Let Γ=D4 be the dihedral group of order 8, which is generated by the cyclic group Z4 of order 4 together with the flip of order 2. Denote by ρ the generator of the cyclic subgroup Z4 and k the flip. Define the action of D4 on R8 by

    (ρU)i=Ui+1,(kU)i=U6i,UiR2,i=1,2,3,4(mod4).

    Then it is easy to get the following lemma.

    Lemma 3.1. System (3) is D4 equivariant.

    The linearization of Eq (3) at the origin is

    ˙Yi=MYi(t)+NYi+1(tτ)+NYi+2(tτ)+NYi+3(tτ),i=1,2,3,4(mod4). (4)

    The characteristic matrix of Eq (4) is given by

    A(τ,λ)=(λI2MNeλτNeλτNeλτNeλτλI2MNeλτNeλτNeλτNeλτλI2MNeλτNeλτNeλτNeλτλI2M),

    where I2 is a 2×2 identity matrix. This is a block circulant matrix, from [20], we have

    det(A(τ,λ))=3j=0det(λI2MχjNeλτ(χj)2Neλτ(χj)3Neλτ),

    where χj=eπj2i,i is the imaginary unit. The characteristic equation of Eq (4) at the zero solution is

    Δ(τ,λ)=det(A(τ,λ))=Δ1(Δ2)3, (5)

    with

    Δ1=λ(λh)+s(13Keλτ)),Δ2=λ(λh)+s(1+Keλτ),h=αp2,s=w2.

    Lemma 3.2. If (H1) and (H2) hold, for the equation Δ1=0, we have the following results.

    (1) when τ=0, all roots of equation Δ1=0 have negative real parts,

    (2) when τ>0, there exist τj, such that when τ=τj(j=0,1,2,), Δ1(±iβ)=0 holds,

    (3) the transversality condition:

    Re(dλdτ)|λ=iβ+,τ=τjwalk+>0,Re(dλdτ)|λ=iβ,τ=τjwalk<0,

    where

    β=β±=2sh2±(h22s)24s2(19K2)2,
    τj=τjwalk±=1β±(arccossβ2±3Ks+2jπ+2π),j=0,1,2,.

    Proof. (1) When τ=0, equation Δ1=0 becomes λ(λh)+s(13K)=0, and the solution is obtained as follows

    λ=h±h24s(13K)2.

    By (H1) and (H2), the roots of equation Δ1=0 have negative real parts.

    (2) When τ>0, let λ=iβ(β>0) be a root of Δ1=0. Substituting iβ into Δ1=0, then we have

    β2iβh+s(13Keiβτ)=0.

    Separating the real and imaginary parts, we get the following form

    {sβ2=3Kscos(βτ),βh=3Kssin(βτ). (6)

    If (H2) holds, by solving the above equation, we have

    β±=β=2sh2±(h22s)24s2(19K2)2, (7)
    τjwalk±=τj=1β(arccossβ23Ks+2jπ+2π),j=0,1,2,.

    (3) Let λ(τ)=α(τ)+iβ(τ) be the root of equation Δ1=0, satisfying α(τj)=0 and β(τj)=β. Taking the derivative of the equation Δ1=0 with respect to τ, we can get

    dλdτ=3Ksλeλτ2λh+3Ksτeλτ.

    Then

    Re(dλdτ)|λ=iβ,τ=τj=3Ksβhsin(βτj)6Ksβ2cos(βτj)(h+3Ksτcos(βτj))2+(2β3Ksτjsin(βτj))2,

    by (6) and (7), we have

    Re(dλdτ)|λ=iβ+,τ=τjwalk+>0,Re(dλdτ)|λ=iβ,τ=τjwalk<0,

    which means that the transversality condition holds at τjwalk±,j=0,1,2,.

    The lemma 3.2 holds.

    Lemma 3.3. For Δ2=0, we have the following results.

    (1) if (H1) holds, when τ=0 all roots of equation Δ2=0 have negative real parts,

    (2) if (H3) holds, when τ>0 equation Δ2=0 has no pure imaginary root.

    Proof. (1) When τ=0, equation Δ2=0 becomes λ(λh)+s(1+K)=0, and the solution is obtained as follows

    λ=h±h24s(1+K)2.

    By (H1), the roots of equation Δ2=0 have negative real parts.

    (2) When τ>0, let λ=iβ(β>0) be a root of Δ2=0. Substituting iβ into Δ2=0 then we have

    β2iβh+s(1+Keiβτ)=0.

    The real and imaginary parts of the above equation are separated, then we obtain

    {sβ2=Kscos(βτ),βh=Kssin(βτ).

    By solving the above equation, we have

    β=2sh2±(h22s)24s2(1K2)2.

    By (H3), we obtain (h22s)24s2(1K2)<0, then the formula above is not valid. So the lemma 3.3 holds.

    From lemma 3.2 and 3.3, we have following theorem.

    Theorem 3.1. If (H1), (H2) and (H3) hold, then we have the following results.

    (1) all roots of Eq (5) have negative real parts for 0τ<τ0walk, and at least a pair of roots with positive real parts for τ(τ0walk,τ0walk+ε), for some ε>0,

    (2) zero equilibrium of system (2) is asymptotically stable for 0τ<τ0walk, and unstable for τ(τ0walk,τ0walk+ε), for some ε>0,

    (3) when τ=τ0walk, system (2) undergoes a Hopf bifurcation at zero equilibrium, where τ0walk=min{τ0walk+,τ0walk}.

    Remark 3.1. Near the critical value τ=τ0walk, the periodic solution of system (2) at the origin accords with walking gait.

    In a trot, a leg on the same diagonal as the current leg stimulates the current leg, and two legs on the other diagonal suppress the current leg, thus

    K12=K,K13=K,K14=K,K21=K,K23=K,K24=K,K31=K,K32=K,K34=K,K41=K,K42=K,K43=K.

    The VDP-CPG network for trotting is as follows.

    {˙xi=yi,˙yi=αp2yiw2(xi(t)+(K)xi+1(tτ)+Kxi+2(tτ)+(K)xi+3(tτ))α(xi(t)+(K)xi+1(tτ)+Kxi+2(tτ)+(K)xi+3(tτ))2yi. (8)

    This is also a symmetric system. Similarly, by lemma 3.1, we have

    Lemma 3.4. System (8) is D4 equivariant.

    The characteristic matrix of linearization of Eq (8) is given by

    A1(τ,λ)=(λI2MNeλτNeλτNeλτNeλτλI2MNeλτNeλτNeλτNeλτλI2MNeλτNeλτNeλτNeλτλI2M).

    This is a block circulant matrix, and we have

    det(A1(τ,λ))=3j=0det(λI2MχjNeλτ+(χj)2Neλτ(χj)3Neλτ),

    with χj=eπj2i.

    The characteristic equation of linearization of Eq (8) at zero solution is

    Δ(τ,λ)=det(A1(τ,λ))=Δ3(Δ4)3, (9)

    where

    Δ3=λ(λh)+s(1+3Keλτ),
    Δ4=λ(λh)+s(1Keλτ).

    Similarly, by lemma 3.2 and 3.3, we have following lemmas.

    Lemma 3.5. For the equation Δ3=0, we have the following results.

    (1) if (H1) holds, when τ=0, all roots of equation Δ3=0 have negative real parts,

    (2) if (H2) holds, when τ>0, there exist τj, such that when τ=τj(j=0,1,2,), Δ3(±iβ)=0 holds,

    (3) the transversality condition:

    Re(dλdτ)|λ=iβ+,τ=τjtrot+>0,Re(dλdτ)|λ=iβ,τ=τjtrot<0,

    where

    β=β±=2sh2±(h22s)24s2(19K2)2,
    τj=τjtrot±=1β±(arccossβ2±3Ks+2jπ),j=0,1,2,

    Lemma 3.6. For Δ4=0, we have the following results.

    (1) if (H1)and K<1 hold, when τ=0, all roots of equation Δ4=0 have negative real parts,

    (2) if (H3) holds, when τ>0, equation Δ4=0 has no pure imaginary root.

    From lemma 3.5 and 3.6, we have following theorem.

    Theorem 3.2. If (H1), (H2) and (H3) hold, we have the following results.

    (1) all roots of Eq (9) have negative real parts for 0τ<τ0trot, and at least a pair of roots with positive real parts for τ(τ0trot,τ0trot+ε), for some ε>0,

    (2) zero equilibrium of Eq (8) is asymptotically stable for 0τ<τ0trot, and unstable for τ(τ0trot,τ0trot+ε), for some ε>0,

    (3) when τ=τ0trot, system (8) undergoes a Hopf bifurcation at zero equilibrium, where τ0trot=min{τ0trot+,τ0trot}

    Remark 3.2. Near the critical value τ=τ0trot, the periodic solution of system (8) at the origin accords with trotting gait.

    In a pace, the leg on the same side (left or right) of the current leg stimulates the current leg, and the other two legs inhibit the current leg, thus

    K12=K,K13=K,K14=K,K21=K,K23=K,K24=K,K31=K,K32=K,K34=K,K41=K,K42=K,K43=K.

    Thus Eq (1) becomes the following VDP-CPG pacing system.

    {˙xi=yi,˙yi=α(p2(xi(t)+(K)xi+1(tτ)+(K)xi+2(tτ)+Kxi+3(tτ))2)yiw2(xi(t)+(K)xi+1(tτ)+(K)xi+2(tτ)+Kxi+3(tτ)),i=1,3(mod4) (10)
    {˙xi=yi,˙yi=α(p2(xi(t)+(K)xi1(tτ)+Kxi+1(tτ)+(K)xi+2(tτ))2)yiw2(xi(t)+(K)xi1(tτ)+Kxi+1(tτ)+(K)xi+2(tτ)),i=2,4(mod4)

    and the linearization of Eq (10) at the origin is

    {˙xi=yi,˙yi=αp2yiw2(xi(t)+(K)xi+1(tτ)+(K)xi+2(tτ)+Kxi+3(tτ))i=1,3(mod4) (11)
    {˙xi=yi,˙yi=αp2yiw2(xi(t)+(K)xi1(tτ)+Kxi+1(tτ)+(K)xi+2(tτ)),i=2,4(mod4)

    the characteristic equation of system (11) is

    |Rmmm+mRm+mmm+Rmm+mmR|=Δ5(Δ6)3=0, (12)

    where

    Δ5=λ(λh)+s(1+3Keλτ),Δ6=λ(λh)+s(1Keλτ).
    R=(λ1w2λαp2),m+=(00Kw2eλτ0),m=(00Kw2eλτ0),

    Similarly, by theorem 3.1, we have following theorem.

    Theorem 3.3. If (H1), (H2) and (H3) hold, we have the following results.

    (1) all roots of Eq (12) have negative real parts for 0τ<τ0pace, and at least a pair of roots with positive real parts for τ(τ0pace,τ0pace+ε), for some ε>0,

    (2) zero equilibrium of system (10) is asymptotically stable for 0τ<τ0pace, and unstable for τ(τ0pace,τ0pace+ε), for some ε>0,

    (3) when τ=τ0pace, system (10) undergoes a Hopf bifurcation at zero equilibrium,

    where

    τ0pace=min{τ0pace+,τ0pace},
    τjpace±=1β±(arccossβ2±3Ks+2jπ),j=0,1,2,,
    β±=2sh2±(h22s)24s2(19K2)2.

    Remark 3.3. Near the critical value τ=τ0pace, the periodic solution of system (10) at the origin accords with pacing gait.

    In a bound, legs on the same side (front or hind) as the current leg stimulate the current leg, and the other two legs inhibit the current leg, thus

    K12=K,K13=K,K14=K,K21=K,K23=K,K24=K,
    K31=K,K32=K,K34=K,K41=K,K42=K,K43=K.

    Eq (1) becomes the following bounding VDP-CPG system.

    {˙xi=yi,˙yi=α(p2(xi(t)+Kxi+1(tτ)+(K)xi+2(tτ)+(K)xi+3(tτ))2)yiw2(xi(t)+Kxi+1(tτ)+(K)xi+2(tτ)+(K)xi+3(tτ)),i=1,3(mod4) (13)
    {˙xi=yi,˙yi=α(p2(xi(t)+Kxi1(tτ)+(K)xi+1(tτ)+(K)xi+2(tτ))2)yiw2(xi(t)+Kxi1(tτ)+(K)xi+1(tτ)+(K)xi+2(tτ)),i=2,4(mod4)

    and the linearization of Eq (13) at the origin is

    {˙xi=yi,˙yi=αp2yiw2(xi(t)+Kxi+1(tτ)+(K)xi+2(tτ)+(K)xi+3(tτ)),i=1,3(mod4) (14)
    {˙xi=yi,˙yi=αp2yiw2(xi(t)+Kxi1(tτ)+(K)xi+1(tτ)+(K)xi+2(tτ)),i=2,4(mod4)

    the characteristic equation of system (14) is

    |Rm+mmm+RmmmmRm+mmm+R|=Δ7(Δ8)3=0, (15)

    where

    Δ7=λ(λh)+s(1+3Keλτ),Δ8=λ(λh)+s(1Keλτ).

    Similarly, by theorem 3.1, we have following theorem.

    Theorem 3.4. If (H1), (H2) and (H3) hold, we have the following results.

    (1) all roots of Eq (15) have negative real parts for 0τ<τ0bound, and at least a pair of roots with positive real parts for τ(τ0bound,τ0bound+ε), for some ε>0,

    (2) zero equilibrium of system (13) is asymptotically stable for 0τ<τ0bound, and unstable for τ(τ0bound,τ0bound+ε), for some ε>0,

    (3) when τ=τ0bound, system (13) undergoes a Hopf bifurcation at zero equilibrium,

    where

    τ0bound=min{τ0bound+,τ0bound},
    τjbound±=1β±(arccossβ2±3Ks+2jπ),j=0,1,2,,
    β±=2sh2±(h22s)24s2(19K2)2.

    Remark 3.4. Near the critical value τ=τ0bound , the periodic solution of system (13) at the origin accords with bounding gait.

    In this section, the numerical simulation of model is carried out to verify the results obtained in the previous sections. Let α=1.5, p=1,w=4, K=0.3, according to the calculation, we obtain the h=1.5,s=16,m=0.1357,K2=0.09,19m=0.0151. Thus 2sh2=29.7500>0,19m<K2<min{m,19} and the critical value τ0walk=0.7039, τ0trot=τ0pace=τ0bound=0.1103 are obtained. Basing on Theorem 3.2, we know the zero equilibrium is asymptotically stable when τ<τ0trot (shown in Figure 2a), when τ>τ0trot, the zero equilibrium of system (8) is unstable, and the periodic solution corresponding to the trot gait occurs (see Figure 2b). From theorem 3.3, we know the zero equilibrium is asymptotically stable when τ<τ0pace (shown in Figure 3a), when τ>τ0pace, the zero equilibrium of system (10) is unstable, and the periodic solution corresponding to the pace gait occurs (see Figure 3b). From theorem 3.4, we know the zero equilibrium is asymptotically stable when τ<τ0bound (shown in Figure 4a), when τ>τ0bound, the zero equilibrium of system (13) is unstable, and the periodic solution corresponding to the bound gait occurs (see Figure 4b).

    Figure 2.  Trajectories x1(t),x2(t),x3(t) and x4(t) of system (8) at τ=0.1 (a) and τ=0.111 (b). (a) represents that the zero equilibrium is asymptotically stable at τ=0.1<τ0trot=0.1103. (b) represents that periodic solution corresponds to the trot gait at τ=0.111>τ0trot=0.1103.
    Figure 3.  Trajectories x1(t),x2(t),x3(t) and x4(t) of system (10) at τ=0.1 (a) and τ=0.111 (b). (a) represents that the zero equilibrium is asymptotically stable at τ=0.1<τ0pace=0.1103. (b) represents that periodic solution corresponds to the pace gait at τ=0.111>τ0pace=0.1103.
    Figure 4.  Trajectories x1(t),x2(t),x3(t) and x4(t) of system (13) at τ=0.1 (a) and τ=0.111 (b). (a) represents that the zero equilibrium is asymptotically stable at τ=0.1<τ0bound=0.1103. (b) represents that periodic solution corresponds to the bound gait at τ=0.111>τ0bound=0.1103.

    In this paper, a kind of CPG network system is constructed by using VDP oscillators, and a VDP-CPG network system with four basic gaits (walk, trot, pace and bound) is presented. By studying the corresponding characteristic equations of four gaits systems, it is found that the conditions for the periodic solutions of four gaits systems are h<0,2sh2>0 and 19m<K2<min{m,19} and the critical values τjwalk,τjtrot,τjpace andτjbound,j=0,1,2. Thus, the range of coupling strength between legs in four gaits is 19m<K2<min{m,19}. Finally, the numerical simulations show that the gait systems (trot, pace and bound) produce corresponding gaits near the corresponding critical value.

    This research is supported by the Fundamental Research Funds for the Central Universities (No.2572019BC12). The authors wish to express their gratitude to the editors and the reviewers for the helpful comments.

    The authors declare there is no conflict of interest



    [1] Z. He, W. Zhang, N. Jia, Estimating carbon dioxide emissions of freeway traffic: a spatiotemporal cell-based model, IEEE Trans. Intell. Transp. Syst., 21 (2020), 1976–1986. https://doi.org/10.1109/tits.2019.2909316 doi: 10.1109/tits.2019.2909316
    [2] Q. Cheng, Z. Liu, Y. Lin, X. Zhou, An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship, Transp. Res. Part B Methodol., 153 (2021), 246–271. https://doi.org/10.1016/j.trb.2021.09.004 doi: 10.1016/j.trb.2021.09.004
    [3] Q. Cheng, Z. Liu, J. Guo, X. Wu, R. Pendyala, B. Belezamo, et al., Estimating key traffic state parameters through parsimonious spatial queue models, Transp. Res. Part C Emerging Technol., 137 (2022), 103596. https://doi.org/10.1016/j.trc.2022.103596 doi: 10.1016/j.trc.2022.103596
    [4] Z. Shan, D. Zhao, Y. Xia, Urban road traffic speed estimation for missing probe vehicle data based on multiple linear regression model, in 16th International IEEE Conference on Intelligent Transportation Systems, 1 (2013), 118–123. https://doi.org/10.1109/ITSC.2013.6728220
    [5] Z. Liu, Z. Li, M. Li, W. Xing, D. Lu, Mining road network correlation for traffic estimation via compressive sensing, IEEE Trans. Intell. Transp. Syst., 17 (2016), 1880–1893. https://doi.org/10.1109/tits.2016.2514519 doi: 10.1109/tits.2016.2514519
    [6] Z. He, G. Qi, L. Lu, Y. Chen, Network-wide identification of turn-level intersection congestion using only low-frequency probe vehicle data, Transp. Res. Part C Emerging Technol., 108 (2019), 320–339. https://doi.org/10.1016/j.trc.2019.10.001 doi: 10.1016/j.trc.2019.10.001
    [7] J. Aslam, S. Lim, X. Pan, D. Rus, City-scale traffic estimation from a roving sensor network, in Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, 2012 (2012), 141–154. https://doi.org/10.1145/2426656.2426671
    [8] Y. Song, X. Wang, G. Wright, D. Thatcher, P. Wu, P. Felix, Traffic volume prediction with segment-based regression kriging and its implementation in assessing the impact of heavy vehicles, IEEE Trans. Intell. Transp. Syst., 20 (2019), 232–243. https://doi.org/10.1109/tits.2018.2805817 doi: 10.1109/tits.2018.2805817
    [9] Z. Liu, Z. Wang, Q. Cheng, R. Yin, M. Wang, Estimation of urban network capacity with second-best constraints for multimodal transport systems, Transp. Res. Part B Methodol., 152 (2021), 276–294. https://doi.org/10.1016/j.trb.2021.08.011 doi: 10.1016/j.trb.2021.08.011
    [10] Z. Cheng, J. Lu, H. Zhou, Y. Zhang, L. Zhang, Short-Term traffic flow prediction: an integrated method of econometrics and hybrid deep learning, IEEE Trans. Intell. Transp. Syst., 23 (2022), 5231–5244. https://doi.org/10.1109/TITS.2021.3052796 doi: 10.1109/TITS.2021.3052796
    [11] L. Li, J. Zhang, Y. Wang, B. Ran, Missing value imputation for traffic-related time series data based on a multi-view learning method, IEEE Trans. Intell. Transp. Syst., 20 (2019), 2933–2943. https://doi.org/10.1109/tits.2018.2869768 doi: 10.1109/tits.2018.2869768
    [12] C. Meng, X. Yi, L. Su, J. Gao, Y. Zheng, City-wide traffic volume inference with loop detector data and taxi trajectories, in Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2 (2017), 1–10. https://doi.org/10.1145/3139958.3139984
    [13] Z. Yi, X. C. Liu, N. Markovic, J. Phillips, Inferencing hourly traffic volume using data-driven machine learning and graph theory, Comput. Environ. Urban Syst., 85 (2021), 101548. https://doi.org/10.1016/j.compenvurbsys.2020.101548 doi: 10.1016/j.compenvurbsys.2020.101548
    [14] Z. Pan, Y. Liang, W. Wang, Y. Yu, Y. Zheng, J. Zhang, Urban traffic prediction from spatio-temporal data using deep meta learning, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019 (2019), 1720–1730. https://doi.org/10.1145/3292500.3330884
    [15] J. Li, N. Xie, K. Zhang, F. Guo, S. Hu, X. Chen, Network-scale traffic prediction via knowledge transfer and regional MFD analysis, Transp. Res. Part C Emerging Technol., 141 (2022), 12–34. https://doi.org/10.1016/j.trc.2022.103719 doi: 10.1016/j.trc.2022.103719
    [16] S. Luan, R. Ke, Z. Huang, X. Ma, Traffic congestion propagation inference using dynamic Bayesian graph convolution network, Transp. Res. Part C Emerging Technol., 135 (2022), 103526. https://doi.org/10.1016/j.trc.2021.103526 doi: 10.1016/j.trc.2021.103526
    [17] Z. Liu, Y. Liu, Q. Meng, Q. Cheng, A tailored machine learning approach for urban transport network flow estimation, Transp. Res. Part C Emerging Technol., 108 (2019), 130–150. https://doi.org/10.1016/j.trc.2019.09.006 doi: 10.1016/j.trc.2019.09.006
    [18] Q. Cheng, Z. Liu, W. Y. Szeto, A cell-based dynamic congestion pricing scheme considering travel distance and time delay, Transportmetrica B Transport Dyn., 7 (2019), 1286–1304 https://doi.org/10.1080/21680566.2019.1602487 doi: 10.1080/21680566.2019.1602487
    [19] Q. Cheng, S. Wang, Z. Liu, Y. Yuan, Surrogate-based simulation optimization approach for day-to-day dynamics model calibration with real data, Transp. Res. Part C Emerging Technol., 105 (2019), 422–438. https://doi.org/10.1016/j.trc.2019.06.009 doi: 10.1016/j.trc.2019.06.009
    [20] D. Huang, J. Xing, Z. Liu, Q. An, A multi-stage stochastic optimization approach to the stop-skipping and bus lane reservation schemes, Transportmetrica A Transport Sci., 17 (2021), 1272–1304. https://doi.org/10.1080/23249935.2020.1858206 doi: 10.1080/23249935.2020.1858206
    [21] D. Huang, Y. Wang, S. Jia, Z. Liu, S. Wang, A Lagrangian relaxation approach for the electric bus charging scheduling optimisation problem, Transportmetrica A Transport Sci., 202232 (2022). https://doi.org/10.1080/23249935.2021.2023690 doi: 10.1080/23249935.2021.2023690
    [22] Z. Liu, X. Chen, Q. Meng, I. Kim, Remote park-and-ride network equilibrium model and its applications, Transp. Res. Part B Methodol., 117 (2018), 37–62. https://doi.org/https://doi.org/10.1016/j.trb.2018.08.004 doi: 10.1016/j.trb.2018.08.004
    [23] J. Xing, W. Wu, Q. Cheng, R. Liu, Traffic state estimation of urban road networks by multi-source data fusion: review and new insights, Physica A Stat. Mech. Appl., 595 (2022), 127079. https://doi.org/https://doi.org/10.1016/j.physa.2022.127079 doi: 10.1016/j.physa.2022.127079
    [24] Z. Zhang, X. Lin, M. Li, Y. Wang, A customized deep learning approach to integrate network-scale online traffic data imputation and prediction, Transp. Res. Part C Emerging Technol., 132 (2021), 103372. https://doi.org/10.1016/j.trc.2021.103372 doi: 10.1016/j.trc.2021.103372
    [25] L. Li, R. Jiang, Z. He, X. Chen, X. Zhou, Trajectory data-based traffic flow studies: a revisit, Transp. Res. Part C Emerging Technol., 114 (2020), 225–240. https://doi.org/10.1016/j.trc.2020.02.016 doi: 10.1016/j.trc.2020.02.016
    [26] Z. Liu, P. Zhou, Z. Li, M. Li, Think like a graph: real-time traffic estimation at city-scale, IEEE Trans. Mobile Comput., 18 (2019), 2446–2459. https://doi.org/10.1109/tmc.2018.2873642 doi: 10.1109/tmc.2018.2873642
    [27] Q. Cao, G. Ren, D. Li, J. Ma, H. Li, Semi-supervised route choice modeling with sparse automatic vehicle identification data, Transp. Res. Part C Emerging Technol., 121 (2020). https://doi.org/10.1016/j.trc.2020.102857 doi: 10.1016/j.trc.2020.102857
    [28] Y. Yu, X. Tang, H. Yao, X. Yi, Z. Li, Citywide traffic volume inference with surveillance camera records, IEEE Trans. Big Data, 7 (2021), 900–912. https://doi.org/10.1109/tbdata.2019.2935057 doi: 10.1109/tbdata.2019.2935057
    [29] X. Zhan, Z. Yu, X. Yi, S. V. Ukkusuri, Citywide traffic volume estimation using trajectory data, IEEE Trans. Knowl. Data Eng., 29 (2017), 272–285. https://doi.org/10.1109/TKDE.2016.2621104 doi: 10.1109/TKDE.2016.2621104
    [30] P. Wang, Z. Huang, J. Lai, Z. Zheng, Y. Liu, T. Lin, Traffic speed estimation based on multi-source GPS data and mixture model, IEEE Trans. Intell. Transp. Syst., 23 (2021), 10708–10720. https://doi.org/10.1109/tits.2021.3095408 doi: 10.1109/tits.2021.3095408
    [31] M. Seppecher, L. Leclercq, A. Furno, D. Lejri, T. V. da Rocha, Estimation of urban zonal speed dynamics from user-activity-dependent positioning data and regional paths, Transp. Res. Part C Emerging Technol., 129 (2021), 103183. https://doi.org/10.1016/j.trc.2021.103183 doi: 10.1016/j.trc.2021.103183
    [32] E. Saffari, M. Yildirimoglu, M. Hickman, Data fusion for estimating Macroscopic Fundamental Diagram in large-scale urban networks, Transp. Res. Part C Emerging Technol., 137 (2022), 103555. https://doi.org/10.1016/j.trc.2022.103555 doi: 10.1016/j.trc.2022.103555
    [33] M. Rodriguez-Vega, C. Canudas-de-Wit, H. Fourati, Dynamic density and flow reconstruction in large-scale urban networks using heterogeneous data sources, Transp. Res. Part C Emerging Technol., 137 (2022), 103569. https://doi.org/10.1016/j.trc.2022.103569 doi: 10.1016/j.trc.2022.103569
    [34] M. Yun, W. Qin, Minimum sampling size of floating cars for urban link travel time distribution estimation, Transp. Res. Rec. J. Transp. Res. Board, 2673 (2019), 24–43. https://doi.org/10.1177/0361198119834297 doi: 10.1177/0361198119834297
    [35] Z. Huang, X. Ling, P. Wang, F. Zhang, Y. Mao, T. Lin, et al., Modeling real-time human mobility based on mobile phone and transportation data fusion, Transp. Res. Part C Emerging Technol., 96 (2018), 251–269. https://doi.org/10.1016/j.trc.2018.09.016 doi: 10.1016/j.trc.2018.09.016
    [36] C. Wu, I. Kim, H. Chung, The effects of built environment spatial variation on bike-sharing usage: a case study of Suzhou, China, Cities, 110 (2021), 103063. https://doi.org/10.1016/j.cities.2020.103063 doi: 10.1016/j.cities.2020.103063
    [37] C. Wu, H. Chung, Z. Liu, I. Kim, Examining the effects of the built environment on topological properties of the bike-sharing network in Suzhou, China, Int. J. Sustainable Transp., 15 (2021), 338–350. https://doi.org/10.1080/15568318.2020.1780652 doi: 10.1080/15568318.2020.1780652
    [38] S. J. Pan, I. W. Tsang, J. T. Kwok, Q. Yang, Domain adaptation via transfer component analysis, IEEE Trans. Neural Networks, 22 (2011), 199–210. https://doi.org/10.1109/TNN.2010.2091281 doi: 10.1109/TNN.2010.2091281
    [39] S. J. Pan, J. T. Kwok, Q. Yang, Transfer learning via dimensionality reduction, in Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, 2 (2008), 677–682. https://dl.acm.org/doi/abs/10.5555/1620163.1620177
    [40] J. Wang, Y. Chen, W. Feng, H. Yu, Q. Yang, Transfer learning with dynamic distribution adaptation, ACM Trans. Intell. Syst. Technol., 11 (2020), 1–25. https://doi.org/10.1145/3360309 doi: 10.1145/3360309
    [41] Z. Cheng, L. Zhang, Y. Zhang, S. Wang, W. Huang, A systematic approach for evaluating spatiotemporal characteristics of traffic violations and crashes at road intersections: an empirical study, Transportmetrica A Transp. Sci., 2022 (2022), 1–23. https://doi.org/10.1080/23249935.2022.2060368 doi: 10.1080/23249935.2022.2060368
    [42] Y. Gu, A. Chen, S. Kitthamkesorn, Accessibility-based vulnerability analysis of multi-modal transportation networks with weibit choice models, Multimodal Transp., 1 (2022), 100029. https://doi.org/10.1016/j.multra.2022.100029 doi: 10.1016/j.multra.2022.100029
    [43] Y. Zheng, W. Li, F. Qiu, A slack arrival strategy to promote flex-route transit services, Transp. Res. Part C Emerging Technol., 92 (2018), 442–455. https://doi.org/10.1016/j.trc.2018.05.015 doi: 10.1016/j.trc.2018.05.015
    [44] S. Wang, D. Yu, M. P. Kwan, L. Zheng, H. Miao, Y. Li, The impacts of road network density on motor vehicle travel: an empirical study of Chinese cities based on network theory, Transp. Res. Part A Policy Pract., 132 (2020), 144–156. https://doi.org/10.1016/j.tra.2019.11.012 doi: 10.1016/j.tra.2019.11.012
    [45] Z. Zhang, M. Li, X. Lin, Y. Wang, Network-wide traffic flow estimation with insufficient volume detection and crowdsourcing data, Transp. Res. Part C Emerging Technol., 121 (2020), 102870. https://doi.org/10.1016/j.trc.2020.102870 doi: 10.1016/j.trc.2020.102870
    [46] D. Huang, S. Wang, A two-stage stochastic programming model of coordinated electric bus charging scheduling for a hybrid charging scheme, Multimodal Transp., 1 (2022), 100006. https://doi.org/10.1016/j.multra.2022.100006 doi: 10.1016/j.multra.2022.100006
    [47] D. Xiao, I. Kim, N. Zheng, Recent advances in understanding the impact of built environment on traffic performance, Multimodal Transp., 1 (2022), 100034. https://doi.org/10.1016/j.multra.2022.100034 doi: 10.1016/j.multra.2022.100034
    [48] J. Xing, Z. Liu, C. Wu, S. Chen, Traffic volume estimation in multimodal urban networks using cellphone location data, IEEE Intell. Transp. Syst. Mag., 11 (2019), 93–104. https://doi.org/10.1109/mits.2019.2919593 doi: 10.1109/mits.2019.2919593
    [49] A. H. F. Chow, Z. C. Su, E. M. Liang, R. X. Zhong, Adaptive signal control for bus service reliability with connected vehicle technology via reinforcement learning, Transp. Res. Part C Emerging Technol., 129 (2021), 103264. https://doi.org/10.1016/j.trc.2021.103264 doi: 10.1016/j.trc.2021.103264
    [50] S. Wang, D. Yu, X. Ma, X. Xing, Analyzing urban traffic demand distribution and the correlation between traffic flow and the built environment based on detector data and POIs, Eur. Transport Res. Rev., 10 (2018). https://doi.org/10.1186/s12544-018-0325-5 doi: 10.1186/s12544-018-0325-5
    [51] R. Zhong, J. Luo, H. Cai, A. Sumalee, F. Yuan, A. Chow, Forecasting journey time distribution with consideration to abnormal traffic conditions, Transp. Res. Part C Emerging Technol., 85 (2017), 292–311. https://doi.org/https://doi.org/10.1016/j.trc.2017.08.021 doi: 10.1016/j.trc.2017.08.021
    [52] W. Qin, X. Ji, F. Liang, Estimation of urban arterial travel time distribution considering link correlations, Transportmetrica A Transport Sci., 16 (2020), 1429–1458. https://doi.org/10.1080/23249935.2020.1751341 doi: 10.1080/23249935.2020.1751341
    [53] S. Kullback, R. A. Leibler, On information and sufficiency, Ann. Math. Statist., 22 (1951), 79–86. https://doi.org/10.1214/aoms/1177729694 doi: 10.1214/aoms/1177729694
    [54] Y. Jiang, O. A. Nielsen, Urban multimodal traffic assignment, Multimodal Transp., 1 (2022), 100027. https://doi.org/10.1016/j.multra.2022.100027 doi: 10.1016/j.multra.2022.100027
    [55] R. Yan, S. Wang, Integrating prediction with optimization: models and applications in transportation management, Multimodal Transp., 1 (2022), 100018. https://doi.org/10.1016/j.multra.2022.100018 doi: 10.1016/j.multra.2022.100018
    [56] Y. Zheng, W. Li, F. Qiu, H. Wei, The benefits of introducing meeting points into flex-route transit services, Transp Res. Part C Emerging Technol., 106 (2019), 98–112. https://doi.org/10.1016/j.trc.2019.07.012 doi: 10.1016/j.trc.2019.07.012
  • This article has been cited by:

    1. Liqin Liu, Xiaoxiao Liu, Chunrui Zhang, REALIZATION OF NEURAL NETWORK FOR GAIT CHARACTERIZATION OF QUADRUPED LOCOMOTION, 2022, 12, 2156-907X, 455, 10.11948/20210005
    2. Mingfang Chen, Kangkang Hu, Yongxia Zhang, Fengping Qi, Motion coordination control of planar 5R parallel quadruped robot based on SCPL-CPG, 2022, 14, 1687-8140, 168781402110709, 10.1177/16878140211070910
    3. Zigen Song, Jiayi Zhu, Jian Xu, Gaits generation of quadruped locomotion for the CPG controller by the delay-coupled VDP oscillators, 2023, 111, 0924-090X, 18461, 10.1007/s11071-023-08783-2
    4. Yangyang Han, Guoping Liu, Zhenyu Lu, Huaizhi Zong, Junhui Zhang, Feifei Zhong, Liyu Gao, A stability locomotion-control strategy for quadruped robots with center-of-mass dynamic planning, 2023, 24, 1673-565X, 516, 10.1631/jzus.A2200310
    5. Zigen Song, Fengchao Ji, Jian Xu, Is there a user-friendly building unit to replicate rhythmic patterns of CPG systems? Synchrony transition and application of the delayed bursting-HCO model, 2024, 182, 09600779, 114820, 10.1016/j.chaos.2024.114820
    6. Liqin Liu, Chunrui Zhang, A neural network model for goat gait, 2024, 21, 1551-0018, 6898, 10.3934/mbe.2024302
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2097) PDF downloads(123) Cited by(3)

Figures and Tables

Figures(7)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog