Processing math: 46%
Research article Special Issues

RNN-based deep learning for physical activity recognition using smartwatch sensors: A case study of simple and complex activity recognition


  • Currently, identification of complex human activities is experiencing exponential growth through the use of deep learning algorithms. Conventional strategies for recognizing human activity generally rely on handcrafted characteristics from heuristic processes in time and frequency domains. The advancement of deep learning algorithms has addressed most of these issues by automatically extracting features from multimodal sensors to correctly classify human physical activity. This study proposed an attention-based bidirectional gated recurrent unit as Att-BiGRU to enhance recurrent neural networks. This deep learning model allowed flexible forwarding and reverse sequences to extract temporal-dependent characteristics for efficient complex activity recognition. The retrieved temporal characteristics were then used to exemplify essential information through an attention mechanism. A human activity recognition (HAR) methodology combined with our proposed model was evaluated using the publicly available datasets containing physical activity data collected by accelerometers and gyroscopes incorporated in a wristwatch. Simulation experiments showed that attention mechanisms significantly enhanced performance in recognizing complex human activity.

    Citation: Sakorn Mekruksavanich, Anuchit Jitpattanakul. RNN-based deep learning for physical activity recognition using smartwatch sensors: A case study of simple and complex activity recognition[J]. Mathematical Biosciences and Engineering, 2022, 19(6): 5671-5698. doi: 10.3934/mbe.2022265

    Related Papers:

    [1] Rahat Zarin, Usa Wannasingha Humphries, Amir Khan, Aeshah A. Raezah . Computational modeling of fractional COVID-19 model by Haar wavelet collocation Methods with real data. Mathematical Biosciences and Engineering, 2023, 20(6): 11281-11312. doi: 10.3934/mbe.2023500
    [2] Biplab Dhar, Praveen Kumar Gupta, Mohammad Sajid . Solution of a dynamical memory effect COVID-19 infection system with leaky vaccination efficacy by non-singular kernel fractional derivatives. Mathematical Biosciences and Engineering, 2022, 19(5): 4341-4367. doi: 10.3934/mbe.2022201
    [3] Somayeh Fouladi, Mohammad Kohandel, Brydon Eastman . A comparison and calibration of integer and fractional-order models of COVID-19 with stratified public response. Mathematical Biosciences and Engineering, 2022, 19(12): 12792-12813. doi: 10.3934/mbe.2022597
    [4] Salma M. Al-Tuwairqi, Sara K. Al-Harbi . Modeling the effect of random diagnoses on the spread of COVID-19 in Saudi Arabia. Mathematical Biosciences and Engineering, 2022, 19(10): 9792-9824. doi: 10.3934/mbe.2022456
    [5] Saima Akter, Zhen Jin . A fractional order model of the COVID-19 outbreak in Bangladesh. Mathematical Biosciences and Engineering, 2023, 20(2): 2544-2565. doi: 10.3934/mbe.2023119
    [6] Hamdy M. Youssef, Najat A. Alghamdi, Magdy A. Ezzat, Alaa A. El-Bary, Ahmed M. Shawky . A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia. Mathematical Biosciences and Engineering, 2020, 17(6): 7018-7044. doi: 10.3934/mbe.2020362
    [7] Abdon ATANGANA, Seda İǦRET ARAZ . Piecewise derivatives versus short memory concept: analysis and application. Mathematical Biosciences and Engineering, 2022, 19(8): 8601-8620. doi: 10.3934/mbe.2022399
    [8] Hardik Joshi, Brajesh Kumar Jha, Mehmet Yavuz . Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data. Mathematical Biosciences and Engineering, 2023, 20(1): 213-240. doi: 10.3934/mbe.2023010
    [9] Tao Chen, Zhiming Li, Ge Zhang . Analysis of a COVID-19 model with media coverage and limited resources. Mathematical Biosciences and Engineering, 2024, 21(4): 5283-5307. doi: 10.3934/mbe.2024233
    [10] Jiajia Zhang, Yuanhua Qiao, Yan Zhang . Stability analysis and optimal control of COVID-19 with quarantine and media awareness. Mathematical Biosciences and Engineering, 2022, 19(5): 4911-4932. doi: 10.3934/mbe.2022230
  • Currently, identification of complex human activities is experiencing exponential growth through the use of deep learning algorithms. Conventional strategies for recognizing human activity generally rely on handcrafted characteristics from heuristic processes in time and frequency domains. The advancement of deep learning algorithms has addressed most of these issues by automatically extracting features from multimodal sensors to correctly classify human physical activity. This study proposed an attention-based bidirectional gated recurrent unit as Att-BiGRU to enhance recurrent neural networks. This deep learning model allowed flexible forwarding and reverse sequences to extract temporal-dependent characteristics for efficient complex activity recognition. The retrieved temporal characteristics were then used to exemplify essential information through an attention mechanism. A human activity recognition (HAR) methodology combined with our proposed model was evaluated using the publicly available datasets containing physical activity data collected by accelerometers and gyroscopes incorporated in a wristwatch. Simulation experiments showed that attention mechanisms significantly enhanced performance in recognizing complex human activity.



    Covid-19 is a pandemic infections which globally has caused damage to human lives and also effect other lining things. This coronavirus has been a terrible epidemic for mankind around the globe. The transmission of COVID-19 has significant negative effects on the lives of all people, and the many people have died from the virus. The first attack of these viruses occurred on last days of 2019. Symptoms of unfamiliar conditions of lungs, coughing, fever, tiredness and breathing problems were seen in the people of Wuhan, China. The healthy territory of China as well as its Central Infections Control (CDC) quickly reconsidered the cause of such signs, a viral virus from the population of Coronaviruses, and it was named as COVID-19 by the World Health Organization (WHO) [1,2,3].

    For the investigation of the new coronavirus in terms of predictions and infectivity, the authors in [4] established a deep analysis algorithm and found that bat and minks are the main sourced of the said virus. Mostly, mathematical models have had an important role in modeling the direct transmission between humans in the outbreak. As demonstrated in the literature, many people were infected in Wuhan and had no contact with other people, but the virus spread very rapidly in the whole province and China [5]. The infected people have a long incubation period, they are not aware of the symptoms and don not know the quarantine time. This infection can easily spread to other people, and many researchers have documented models of COVID-19 [6,7,8,9,10]. Several researchers have developed the COVID-19 time delay models and studied by different aspects. Most of them modified the said models by the application of fractional operators such as Power and Mittag-Leffler law [11,12,13,14,15,16,17,18].

    In this article, we have re-considered the COVID-19 mathematical model [19], which has not been investigated under novel piecewise derivative and integrals operators. The considered model has ten agents, namely: Susceptible S, Infectious I, Diagnosed D, Ailing A, Recognized R, Infectious Real Ir, Threatened T, Recovered Diagnosed Hd, Healed H, and Extinct population E. The COVID-19 model has the following form:

    ˙S=(αI+βD+γA+δR)S˙I=(ϵ+ζ+λ)I+(αI+βD+γA+δR)S˙D=(η+ρ)D+ϵI˙A=(θ+μ+κ)A+ζI˙R=(ν+ξ)R+ηDθA˙Ir=(αI+βD+γA+δR)S˙T=(σ+τ)T+μA+νR˙Hd=ρDξR+σT˙H=λI+ρD+κA+ξR+σA˙E=τT, (1.1)

    where the used parameters in the model with descriptions are given in Table 1.

    Table 1.  Parameters and their description in model 1.1.
    Parameter Description
    α,β,γ,δ transfer rates from Susceptible class to infectious,
    Diagnosed, Ailing and Recognized stages, respectively
    ϵ Rates of detecting related to Asymptomatic person and
    θ detecting rate of Symptomatic individuals
    ζ,η1 Rates of Awareness and Non-awareness classes from being infected
    μ Rate at which Un-detected class transfers to Threaten class
    v Rate at which Detected classes transfer to Threaten class
    τ Death rate of Threaten individuals, transfer to Extinct class
    λ,κ,ξ,σ,ρ Rates of Recovery from five Compartments

     | Show Table
    DownLoad: CSV

    Modern calculus (MC) has attracted more interest from researchers and scientists in the last 20 years [20,21]. MC, compared to traditional integer-order models, gives novel, accurate, and deeper information on the complicated activity of several infectious disease mathematical models [22,23,24,25]. Because of genetic properties and memory behaviors, integer order problems are not superior to MC problems. Many types of integer order equations are used in mathematical models of the real world. The real phenomena are analyzed for a higher degree of choices and precision by applying the fractional differential equations. Several researchers have done enough work in MC, and the authors in [26] used the Mittag-Leffler derivative and investigated the fractional infectious disease model. In [27], the authors used Atangana-Baleanu-Caputo fractional derivative and studied a mathematical model of Covid-19. The authors in [28] applied the Caputo-Fabrizio operator along with double Laplace transform and found the series solution for the fractional biological model. The scholars in [29] applied a novel fractional order Lagrangian scheme to show the motion of a beam on nanowire. Liaqat et al. [30], established a new scheme to obtain the approximate and exact solution in the sense of Caputo fractional partial differential equation along with variable. Odibat and Baleanu [31] studied a novel system of fractional differential equations involving generalized fractional Caputo operator. Different disease models have been investigated by researchers by using the fractional operators such as [32,33,34,35,36]. By using various operators to solve a variety of issues from the real world, significant work in the area of fractional calculus has been documented by numerous mathematicians and academics [37,38,39,40,41,42,43,44].

    A novel operator for piecewise derivative and integrals was presented by Atangana and Araz [45]. The piecewise derivative is divided into two sub intervals: The first interval solution is found out in the sense of Caputo while the second intervals solution is under the ABC derivative. As the time of crossover behavior is not mentioned by the power or Mittag-Leffler law and therefore it is well defined in the piecewise derivative. In order to overcome these challenges, one of the unique ways of piecewise derivative has been proposed in [45]. A new window of cross-over behaviors using these operators has been studied by researchers. Several applications of the aforesaid fractional operators are investigated in the literature by different researchers [46,47,48,49]. Inspired by the above novel operator, we investigate the model taken from [19] under the framework of piecewise Caputo and Atangana-Baleanu operator as follows:

    {PCABC0DυtS(t)=(αI+βD+γA+δR)S,PCABC0DυtI(t)=(ϵ+ζ+λ)I+(αI+βD+γA+δR)S,PCABC0DυtD(t)=(η+ρ)D+ϵI,PCABC0DυtA(t)=(θ+μ+κ)A+ζI,PCABC0DυtR(t)=(ν+ξ)R+ηDθA,PCABC0DυtIr=(αI+βD+γA+δR)SPCABC0DυtT=(σ+τ)T+μA+νRPCABC0DυtHd=ρDξR+σTPCABC0DυtH=λI+ρD+κA+ξR+σAPCABC0DυtE=τT. (1.2)

    In more detail we can write Eq (1.2) as

    CABC0Dυt(S(t))={C0Dυt(S(t))=C1(S,I,D,A,R,Ir,T,Hd,H,E,t),  0<tt1,ABC0Dυt(S(t))=ABC1(S,I,D,A,R,Ir,T,Hd,H,E,t),  t1<tT,CABC0Dυt(I(t))={C0Dυt(I(t))=C2(S,I,D,A,R,Ir,T,Hd,H,E,t),  0<tt1,ABC0Dυt(I(t))=ABC2(S,I,D,A,R,Ir,T,Hd,H,E,t),  t1<tT,CABC0Dυt(D(t))={C0Dυt(D(t))=C3(S,I,D,A,R,Ir,T,Hd,H,E,t),  0<tt1,ABC0Dυt(D(t))=ABC3(S,I,D,A,R,Ir,T,Hd,H,E,t),  t1<tT,CABC0Dυt(A(t))={C0Dυt(A(t))=C4(S,I,D,A,R,Ir,T,Hd,H,E,t),  0<tt1,ABC0Dυt(A(t))=ABC4(S,I,D,A,R,Ir,T,Hd,H,E,t),  t1<tT,CABC0Dυt(R(t))={C0Dυt(R(t))=C5(S,I,D,A,R,Ir,T,Hd,H,E,t),  0<tt1,ABC0Dυt(R(t))=ABC5(S,I,D,A,R,Ir,T,Hd,H,E,t),  t1<tT,CABC0Dυt(Ir(t))={C0Dυt(Ir(t))=C6(S,I,D,A,R,Ir,T,Hd,H,E,t),  0<tt1,ABC0Dυt(Ir(t))=ABC6(S,I,D,A,R,Ir,T,Hd,H,E,t),  t1<tT, (1.3)
    CABC0Dυt(T(t))={C0Dυt(T(t))=C7(S,I,D,A,R,Ir,T,Hd,H,E,t),  0<tt1,ABC0Dυt(T(t))=ABC7(S,I,D,A,R,Ir,T,Hd,H,E,t),  t1<tT,CABC0Dυt(Hd(t))={C0Dυt(Hd(t))=C8(S,I,D,A,R,Ir,T,Hd,H,E,t),  0<tt1,ABC0Dυt(Hd(t))=ABC8(S,I,D,A,R,Ir,T,Hd,H,E,t),  t1<tT,CABC0Dυt(H(t))={C0Dυt(H(t))=C9(S,I,D,A,R,Ir,T,Hd,H,E,t),  0<tt1,ABC0Dυt(H(t))=ABC9(S,I,D,A,R,Ir,T,Hd,H,E,t),  t1<tT,CABC0Dυt(E(t))={C0Dυt(E(t))=C10(S,I,D,A,R,Ir,T,Hd,H,E,t),  0<tt1,ABC0Dυt(E(t))=ABC10(S,I,D,A,R,Ir,T,Hd,H,E,t),  t1<tT.

    We considered the dynamics in terms of piecewise fractional operators. The piecewise operators discuss the crossover and abrupt dynamics very well. Therefore, we treated the said model under the two fractional operators in different intervals. For each operator the qualitative analysis is provided on each subinterval. The UH stability is applied for stability analysis of the system. The system is investigated for approximate solution with the piecewise term and also the fractional parameters in the last expression of the system. This gives the choice for any dynamics of integer order as well as rational values.

    Here we present some definitions regarding Caputo and ABC fractional as well as piecewise derivatives and also integrals.

    Definition 2.1. The definition of ABC operator of function K(t) with condition K(t)H1(0,T) is :

    ABC0Dυt(K(t))=ABC(υ)1υt0ddϑK(ϑ)Eυ[υ(tϑ)υ1υ]dϑ. (2.1)

    One can replace Eυ[υ1υ(tϑ)ϑ] by E1=exp[υ1υ(tϑ)] in (2.1) and obtain the Caputo-Fabrizio operator.

    Definition 2.2. Consider K(t)P[0,T], and then the ABC integral is:

    ABC0IυtK(t)=1υABC(υ)K(t)+υABC(υ)Γ(υ)t0K(ϑ)(tϑ)υ1dϑ. (2.2)

    Definition 2.3. The Caputo operator of function K(t) is

    C0DυtK(t)=1Γ(1υ)t0K(ϑ)(tϑ)nυ1dϑ.

    Definition 2.4. Suppose K(t) is piecewise differentiable. Then, the piecewise derivative with Caputo and ABC operators [26] is

    PCABC0DυtK(t)={C0DυtK(t),  0<tt1,ABC0DυtK(t)  t1<tT,

    where PCABC0Dυt represents piecewise differential operator, where Caputo operator is in interval 0<tt1 and ABC operator in interval t1<tT.

    Definition 2.5. Suppose K(t) is piecewise integrable, and then piecewise derivative with Caputo and ABC operators [26] is

    PCABC0ItK(t)={1Γυtt1K(ϑ)(tϑ)υ1d(ϑ),  0<tt1,1υABCυK(t)+υABCυΓυtt1K(ϑ)(tϑ)υ1d(ϑ)  t1<tT,

    where PCABC0Iυt represents piecewise integral operator, where Caputo operator is in interval 0<tt1 and ABC operator in interval t1<tT.

    The existence and the uniqueness results of the suggested model in the piecewise notion are found in this part. We shall now determine whether a solution exists for the hypothetical piecewise derivable function as well as its specific solution attribute. In order to do this, we may use the system (1.3) and can also write the following by way of more explanation:

    PCABC0DυtW(t)=N(t,W(t)),  0<υ1

    is

    W(t)={W0+1Γ(υ)t0N(ϑ,W(ϑ))(tϑ)υ1dϑ, 0<tt1W(t1)+1υABC(υ)N(t,W(t))+υABC(υ)Γ(υ)tt1(tϑ)υ1N(ϑ,W(ϑ))d(ϑ),  t1<tT, (3.1)

    where

    W(t)={S(t)I(t)D(t)A(t)R(t)Ir(t)T(t)Hd(t)H(t)E(t),   W0={S0I0D0A0R0Ir(0)T0Hd(0)H0E0,   Wt1={St1It1Dt1At1Rt1Ir(t1)Tt1Hd(t1)Ht1Et1,   N(t,W(t))={i={Ci(S,I,D,A,R,Ir,T,Hd,H,E,t)ABCi(S,I,D,A,R,Ir,T,Hd,H,E,t), (3.2)

    where i=1,2,3...,10. Take 0<tT< and the Banach space E1=C[0,T] with a norm

    W=maxt[0,T]|W(t)|.

    We assume the following growth condition:

    (C1) LW>0; N, ˉWE we have

    |N(t,W)N(t,ˉW)|LN|WˉW|,

    (C2) CN>0 & MN>0,;

    |N(t,W(t))|CN|W|+MN.

    If N is piece-wise continuous on (0,t1] and [t1,T] on [0,T], also satisfying (C2), then (1.3) has 1 solution.

    Proof. Let us use the Schauder theorem to define a closed sub-set as B and E in both subintervals of [0,L].

    B={WE: WR1,2, R1,2>0},

    Suppose L:BB and using (4.8) as

    L(W)={W0+1Γ(υ)t10N(ϑ,W(ϑ))(tϑ)υ1dϑ, 0<tt1W(t1)+1υABC(υ)N(t,W(t))+υABC(υ)Γ(υ)tt1(tϑ)υ1N(ϑ,W(ϑ))d(ϑ),  t1<tT. (3.3)

    Any WB, we have

    |L(W)(t)|{|W0|+1Γ(υ)t10(tϑ)υ1|N(ϑ,W(ϑ))|dϑ,|W(t1)|+1υABC(υ)|N(t,W(t))|+υABC(υ)Γ(υ)tt1(tϑ)υ1|N(ϑ,W(ϑ))|d(ϑ),{|W0|+1Γ(υ)t10(tϑ)υ1[CN|W|+MN]dυ,|W(t1)|+1υABC(υ)[CN|W|+MN]+υABC(υ)Γ(υ)tt1(tϑ)υ1[CN|W|+MN]d(υ),{|W0|+TυΓ(υ+1)[CH|W|+MN]=R1, 0<tt1,|W(t1)|+1υABC(υ)[CN|W|+MN]+υ(TT)υABC(υ)Γ(υ)+1[CN|W|+MN]d(υ)=R2, t1<tT,{R1, 0<tt1,R2, t1<tT.

    As determined by the previous equation, WB. Therefore, L(B)B. Thus, it demonstrates that L is closed and complete. In order to further demonstrate the complete continuity, we also write by using ti<tj[0,t1] as the initial interval in the sense of Caputo, consider

    |L(W)(tj)L(W)(ti)|=|1Γ(υ)tj0(tjϑ)υ1N(ϑ,W(ϑ))dϑ1Γ(υ)ti0(tiϑ)υ1N(ϑ,W(ϑ))dϑ|1Γ(υ)ti0[(tiϑ)υ1(tjϑ)υ1]|N(ϑ,W(ϑ))|dϑ+1Γ(υ)tjti(tjϑ)υ1|N(ϑ,W(ϑ))|dϑ1Γ(υ)[ti0[(tiϑ)υ1(tjϑ)υ1]dϑ+tjti(tjϑ)υ1dϑ](CH|W|+MN)(CNW+MN)Γ(υ+1)[tϑjtυi+2(tjti)υ]. (3.4)

    Next (3.4), we obtain titj, and then

    |L(W)(tj)L(W)(ti)|0, as titj.

    So, L is equi-continuous in [0,t1]. Consider ti,tj[t1,T] in ABC sense as

    |L(W)(tj)L(W)(ti)|=|1υABC(υ)N(t,W(t))+υABC(υ)Γ(υ)tjt1(tjϑ)υ1N(ϑ,W(ϑ))dϑ,1υABC(υ)N(t,W(t))+(υ)ABC(υ)Γ(υ)tit1(tiϑ)υ1N(ϑ,W(ϑ))dϑ|υABC(υ)Γ(υ)tit1[(tiϑ)υ1(tjϑ)υ1]|N(ϑ,W(ϑ))|dϑ+υABC(υ)Γ(υ)tjti(tjϑ)υ1|N(ϑ,W(ϑ))|dϑυABC(υ)Γ(υ)[tit1[(tiϑ)υ1(tjϑ)υ1]dϑ+tjti(tjϑ)υ1dυ](CN|W|+MN)υ(CNW+MN)ABC(υ)Γ(υ+1)[tυjtυi+2(tjti)υ]. (3.5)

    If titj, then

    |L(W)(tj)L(W)(ti)|0, as titj.

    So, the operator L shows its equi-continuity in [t1,T]. Thus, L is an equi-continuous map. Based on the Arzelà-Ascoli result, L is continuous (completely), uniformly continuous, and bounded. The Schauder result shows that problem (1.3) has at least one solution in the subintervals.

    Further, if L is a contraction mapping with (C1), then the suggested system has unique solution. As L:BB is piece-wise continuous, consider W and ˉWB on [0,t1] in the sense of Caputo as

    L(W)L(ˉW)=maxt[0,t1]|1Γ(υ)t0(tϑ)υ1N(ϑ,W(ϑ))dϑ1Γ(υ)t0(tϑ)υ1N(ϑ,ˉW(ϑ))dϑ|TυΓ(υ+1)LNWˉW. (3.6)

    From (3.6), we have

    L(W)L(ˉW)TυΓ(υ+1)LNWˉW. (3.7)

    As a result, L is a contraction. As a result, the issue under consideration has only one solution in the provided sub interval in light of the Banach result. Also t[t1,T] in the sense of the ABC derivative as

    L(W)L(ˉW)1υABC(υ)LNWˉW+υ(TTυ)ABC(υ)Γ(υ+1)LWˉW. (3.8)

    or

    L(W)L(ˉW)LN[1υABC(υ)+υ(TT)υABC(υ)Γ(υ+1)]WˉW. (3.9)

    This is why L is a contraction. As a result, the issue under consideration has a singleton solution in the provided sub interval in light of the Banach result. So, with (3.7) and (3.9), the suggested problem has unique solution on each sub-interval.

    Here, we prove the H-U stability and different forms for our considered model.

    Definition 4.1. Our proposed model (1.1) is U-H stable, if for each α>0, and the inequality

    |PCABCDυtΘ(t)(t,Θ(t))|<α,forall,tT, (4.1)

    unique solution ¯ΘZ exists with a constant H>0,

    ||Θ¯Θ||ZHα,forall,tT, (4.2)

    In addition, if we take the increasing function Φ:[0,)R+, then the above inequality can be written as

    ||Θ¯Θ||ZHΦ(α),atevery,tT,

    if Φ(0)=0, then the obtained solution is generalized U-H stable.

    Definition 4.2. Our considered model 1.2 is U-H Rassias stable if, Ψ:[0,)R+, for each α>0, and inequality

    |PCABCDυtΘ(t)(t,Θ(t))|<αΨ(t),forall,tT, (4.3)

    unique solution ¯ΘZ with constant HΨ>0, so that

    ||Θ¯Θ||ZHΨαΨ(t),tT. (4.4)

    If Ψ:[0,)R+ is exist, for the above inequality, then

    |PCABCDυtΘ(t)(t,Θ(t))|<Ψ(t),tT, (4.5)

    then there exist a unique solution ¯ΘZ with constant HΨ>0, such that

    ||Θ¯Θ||ZHΨΨ(t),tT. (4.6)

    then the obtained solution is generalized U-H Rassias stable.

    Remark 1. Suppose a function ϕC(T) does not depend upon ΘZ, and ϕ(0)=0. Then,

    |ϕ(t)|α,tTPCABCDυtΘ(t)=(t,Θ(t))+ϕ(t),tT.

    Lemma 4.2.1. Consider the function

    PCABC0DϱtΘ(t)=(t,Θ(t)),  0<ϱ1. (4.7)

    The solution of (4.7) is

    Θ(t)={Θ0+1Γ(υ)t0(ϑ,Θ(ϑ))(tϑ)υ1dϑ, 0<tt1Θ(t1)+1υABC(υ)(t,Θ(t))+υABC(υ)Γ(υ)tt1(tϑ)υ1(ϑ,Θ(ϑ))d(ϑ),  t1<tT, (4.8)
    ||F(Θ)F(¯Θ)||{Tυ1Γ(υ+1)α,tT1[(1υ)Γ(υ)+(Tυ2)ABC(υ)Γ(υ)]α=Λα,tT2. (4.9)

    Theorem 1. In light of lemma (4.2.1), if the condition LfTυΓ(υ)<1 holds, then the solution of our considered model (1.2) is H-U as well as generalized H-U stable.

    Proof. Suppose ΘZ is the solution of (1.2), and ¯ΘZ is a unique solution of (1.2). Then we have

    Case:1 for tT, we have

    ||Θ¯Θ||=suptT|Θ(Θ+1Γ(υ)t10(t1ϑ)υ1(ϑ,¯Θ(ϑ))dϑ)|suptT|Θ(Θ+1Γ(υ)t10(t1ϑ)υ1(ϑ,¯Θ(ϑ))dϑ)|+suptT|+1Γ(υ)t10(t1ϑ)υ1(ϑ,Θ(ϑ))dϑ1Γ(υ)t10(t1ϑ)υ1(ϑ,¯Θ(ϑ))dϑ|T1υΓ(υ+1)α+LfT1Γ(υ+1)||Θ¯Θ||. (4.10)

    On further simplification

    ||Θ¯Θ||(T1Γ(υ+1)1LfT1Γ(υ+1))α (4.11)

    Case:2

    ||Θ¯Θ||suptT|Θ[Θ(t1)+1υABC(υ)[(t,Θ(t)),]+υABC(υ)Γ(υ)[tt1(tϑ)υ1(ϑ,¯Θ(ϑ))d(ϑ)]]|+suptT1υABC(υ)|(t,Θ(t))(t,¯Θ(t),)|+suptTυABC(υ)Γ(υ)tt1(tϑ)υ1|(ϑ,Θ(ϑ))(ϑ,¯Θ(ϑ))|ds.

    By further simplification and using Λ=[(1υ)Γ(υ)+Tυ2ABC(υ)Γ(υ)], we have

    ||Θ¯Θ||ZΛα+ΛLf||Θ¯Θ||Z (4.12)

    We have

    ||Θ¯Θ||Z(Λ1ΛLf)α||Θ¯Θ||Z.

    we use

    H=max{(T1Γ(υ+1)1LfT1Γ(υ+1)),Λ1ΛLf1Mf}

    Now, from Eqs (4.11) and (4.12), we have

    ||Θ¯Θ||ZHα,ateachtT.

    Therefore, the solution of model (1.2) is H-U stable. Also, if we replace α by Φ(α), then from (4.13),

    ||Θ¯Θ||ZHΦ(α),ateachtT.

    Now, Φ(0)=0 shows that the solution of our proposed model (1.2) is generalized H-U stable.

    We give the following remark to conclude the Rassias stability results and also the generalized form.

    Remark 2. Suppose a function ϕC(T) does not depend upon ΘZ, and ϕ(0)=0. Then,

    |ϕ(t)|Ψ(t)α,tTPCABCDυtΘ(t)=(t,Θ(t))+ϕ(t),tTt0Ψ(ϑ)dsCΨΨ(t),tT.

    Lemma 4.2.2. Solution to the model

    PCABCDυtΘ(t)=(t,Θ(t))+ϕ(t),Θ(0)=Θ,

    hold the relation given below:

    ||F(Θ)F(¯Θ)||{Tυ1Γ(υ+1)CΨΨ(t)α,tT1[(1υ)Γ(υ)+(Tυ2)ABC(υ)Γ(υ)]CΨΨ(t)α=ΛCΨΨ(t)α,tT2. (4.13)

    where Hf,Ψ,Λ=ΛHf,Ψ.

    With the help of remark 2, one can get Eq (4.7).

    Theorem 2. The solution of model (4.13) is H-U-R stable if the following conditions hold:

    H1) For each Θ,vZ and a constant CΦ>0, we get

    |Φ(Θ)Φ(v)|CΦ|Θv|,

    H2) For each Θ,v,¯Θ,¯vZ and constant Lf>0,0<Mf<1, we get

    |(t,Θ,v)(t,¯Θ,¯v)|Lf|Θ¯Θ|+Mf|v¯v|
    Mf<1.

    Proof. We prove these results in two cases.

    Case:1 for tT, we have

    ||Θ¯Θ||=suptT|Θ(Θ+1Γ(υ)t10(t1ϑ)υ1(ϑ,¯Θ(ϑ))dϑ)|suptT|Θ(Θ+1Γ(υ)t10(t1ϑ)υ1(ϑ,¯Θ(ϑ))dϑ)|+suptT|+1Γ(υ)t10(t1ϑ)υ1(ϑ,Θ(ϑ))dϑ1Γ(υ)t10(t1ϑ)υ1(ϑ,¯Θ(ϑ))dϑ|Tυ1Γ(υ+1)CΦΦ(t)α+LfT1Γ(υ+1)||Θ¯Θ||.

    On further simplification

    ||Θ¯Θ||(CΦΦ(t)T1Γ(υ+1)1LfT1Γ(υ+1))α (4.14)

    Case:2

    ||Θ¯Θ||suptT|Θ[Θ(t1)+1υABC(υ)[(t,Θ(t)),]+υABC(υ)Γ(υ)[tt1(tϑ)υ1(ϑ,¯Θ(ϑ))d(ϑ)]]|+suptT1υABC(υ)|(t,Θ(t))(t,¯Θ(t),)|+suptTυABC(υ)Γ(υ)tt1(tϑ)υ1|(ϑ,Θ(ϑ))(ϑ,¯Θ(ϑ))|ds.

    By further simplification and using Λ=[(1υ)Γ(υ)+Tυ2ABC(υ)Γ(υ)], we have

    ||Θ¯Θ||ZΛCΦΦ(t)α+ΛLf||Θ¯Θ||Z (4.15)

    We have

    ||Θ¯Θ||Z(ΛCΦΦ(t)1ΛLf)α||Θ¯Θ||Z.

    We use

    HΛ,CΦ=max{(T1Γ(υ+1)1LfT1Γ(υ+1)),CΦΦ(t)Λ1ΛLf1Mf}

    Now, from Eqs (4.14) and (4.15), we have

    ||Θ¯Θ||ZHΛ,CΦα,ateachtT

    So, the solution of model (1.2) is H-U-R stable.

    Remark 3. Suppose a function ϕC(T) does not depend upon ΘZ, and ϕ(0)=0; then,

    |ϕ(t)|Ψ(t),tT;

    Theorem 3. In light of H1, H2, Remark 3 and 2, the solution of model 1.2 is generalized H-U-R stable, if Mf<1.

    Where

    H1) For each Θ,vZ and constant CΦ>0, we get

    |Φ(Θ)Φ(v)|CΦ|Θv|

    and

    H2) For each Θ,v,¯Θ,¯vZ and constant Lf>0,0<Mf<1, we get

    |(t,Θ,v)(t,¯Θ,¯v)|Lf|Θ¯Θ|+Mf|v¯v|

    Proof. We obtained our results in two cases:

    Case 1: for tT, we have

    ||Θ¯Θ||=suptT|Θ(Θ+1Γ(υ)t10(t1ϑ)υ1(ϑ,¯Θ(ϑ))dϑ)|suptT|Θ(Θ+1Γ(υ)t10(t1ϑ)υ1(ϑ,¯Θ(ϑ))dϑ)|+suptT|+1Γ(υ)t10(t1ϑ)υ1(ϑ,Θ(ϑ))dϑ1Γ(υ)t10(t1ϑ)υ1(ϑ,¯Θ(ϑ))dϑ|Tυ1Γ(υ+1)CΦΦ(t)α+LfT1Γ(υ+1)||Θ¯Θ||.

    On further simplification

    ||Θ¯Θ||(CΦΦ(t)T1Γ(υ+1)1LfT1Γ(υ+1))α (4.16)

    Case 2:

    ||Θ¯Θ||suptT|Θ[Θ(t1)+1υABC(υ)[(t,Θ(t))]+υABC(υ)Γ(υ)[tt1(tϑ)υ1(ϑ,¯Θ(ϑ))d(ϑ)]]|+suptT1υABC(υ)|(t,Θ(t))(t,¯Θ(t),)|+suptTυABC(υ)Γ(υ)tt1(tϑ)υ1|(ϑ,Θ(ϑ))(ϑ,¯Θ(ϑ))|ds.

    By further simplification and using Λ=[(1υ)Γ(υ)+Tυ2ABC(υ)Γ(υ)], we have

    ||Θ¯Θ||ZΛCΦΦ(t)α+ΛLf||Θ¯Θ||Z (4.17)

    We have

    ||Θ¯Θ||Z(ΛCΦΦ(t)1ΛLf)||Θ¯Θ||Z.

    We use

    \begin{eqnarray*} \mathcal{H}_{\Lambda, C_{\Phi}} = \max\left\{\left(\frac{\frac{\mathcal{T}_{1}}{\Gamma(\upsilon+1)}}{1-\frac{L_{f}\mathcal{T}_{1}}{\Gamma(\upsilon+1)}}\right), \frac{C_{\Phi}\Phi(t)\Lambda}{1-\Lambda L_{f}}\right\} \end{eqnarray*}

    Now, from Eqs (4.16) and (4.17), we have

    \begin{eqnarray*} \left|\left|\Theta-\overline\Theta\right|\right|_{Z}\leq\mathcal{H}_{\Lambda, C_{\Phi}}, at\; \; each\; t\in \mathcal{T} \end{eqnarray*}

    So the solution of the model (1.2) is generalized H-U-R stable.

    In this section we derive the numerical scheme for the following Covid-19 model (1.2).

    \begin{eqnarray} \begin{cases} {_0^{PCABC}}{{\bf D}_t^{\upsilon}}\mathbb{S}(t) = -(\alpha\mathbb{I}+\beta\mathbb{D}+\gamma\mathbb{A}+\delta\mathbb{R})\mathbb{S}, \\ {_0^{PCABC}}{{\bf D}_t^{\upsilon}}\mathbb{I}(t) = -(\epsilon+\zeta+\lambda)\mathbb{I}+(\alpha\mathbb{I}+\beta\mathbb{D}+\gamma\mathbb{A}+\delta\mathbb{R})\mathbb{S}, \\ {_0^{PCABC}}{{\bf D}_t^{\upsilon}}\mathbb{D}(t) = -(\eta+\rho)\mathbb{D}+\epsilon\mathbb{I}, \\ {_0^{PCABC}}{{\bf D}_t^{\upsilon}}\mathbb{A}(t) = -(\theta+\mu+\kappa)\mathbb{A}+\zeta\mathbb{I}, \\ {_0^{PCABC}}{{\bf D}_t^{\upsilon}}\mathbb{R}(t) = -(\nu+\xi)\mathbb{R}+\eta\mathbb{D}\theta\mathbb{A}, \\ {_0^{PCABC}}{{\bf D}_t^{\upsilon}}\mathbb{I}_r(t) = (\alpha\mathbb{I}+\beta\mathbb{D}+\gamma\mathbb{A}+\delta\mathbb{R})\mathbb{S}, \\ {_0^{PCABC}}{{\bf D}_t^{\upsilon}}\mathbb{T}(t) = -(\sigma+\tau)\mathbb{T}+\mu\mathbb{A}+\nu\mathbb{R}, \\ {_0^{PCABC}}{{\bf D}_t^{\upsilon}}\mathbb{H}_d(t) = \rho\mathbb{D}\xi\mathbb{R}+\sigma\mathbb{T}, \\ {_0^{PCABC}}{{\bf D}_t^{\upsilon}}\mathbb{H}(t) = \lambda\mathbb{I}+\rho\mathbb{D}+\kappa\mathbb{A}+\xi\mathbb{R}+\sigma\mathbb{A}, \\ {_0^{PCABC}}{{\bf D}_t^{\upsilon}}\mathbb{E}(t) = \tau\mathbb{T}, \end{cases} \end{eqnarray} (5.1)

    By applying the piece-wise integral to the Caputo and AB derivative, we obtain

    \begin{eqnarray} \mathbb{S}(t)& = &\begin{cases} \mathbb{S}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{1}(t, \mathbb{S})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{S}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{1}(t, \mathbb{S})d{\rho}+ \frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t}(t-\rho)^{\upsilon-1}{\mho}_{1}(t, \mathbb{S})d{\rho}\ \ t_1 < t\leq T \end{cases} \\ \mathbb{I}(t)& = &\begin{cases} \mathbb{I}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{2}(t, \mathbb{I})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{I}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{2}(t, \mathbb{I})d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t}(t-\rho)^{\upsilon-1}{\mho}_{2}(t, \mathbb{I})d{\rho}\ \ t_1 < t\leq T \end{cases}\\ \mathbb{D}(t)& = &\begin{cases} \mathbb{D}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{3}(t, \mathbb{D})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{D}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{3}(t, \mathbb{D})d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t}(t-\rho)^{\upsilon-1}{\mho}_{3}(t, \mathbb{D})d{\rho}\ \ t_1 < t\leq T \end{cases} \\ \mathbb{A}(t)& = &\begin{cases} \mathbb{A}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{4}(t, \mathbb{A})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{A}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{4}(t, \mathbb{A})d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t}(t-\rho)^{\upsilon-1}{\mho}_{4}(t, \mathbb{A})d{\rho}\ \ t_1 < t\leq T \end{cases} \\ \mathbb{R}(t)& = &\begin{cases} \mathbb{R}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{5}(t, \mathbb{R})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{R}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{5}(t, \mathbb{R})d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t}(t-\rho)^{\upsilon-1}{\mho}_{5}(t, \mathbb{R})d{\rho}\ \ t_1 < t\leq T \end{cases} \\ \mathbb{I}_r(t)& = &\begin{cases} \mathbb{I}_r(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{6}(t, \mathbb{I}_r)d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{I}_r(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{6}(t, \mathbb{I}_r)d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t}(t-\rho)^{\upsilon-1}{\mho}_{6}(t, \mathbb{I}_r)d{\rho}\ \ t_1 < t\leq T \end{cases} \\ \mathbb{T}(t)& = &\begin{cases} \mathbb{T}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{7}(t, \mathbb{T})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{T}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{7}(t, \mathbb{T})d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t}(t-\rho)^{\upsilon-1}{\mho}_{7}(t, \mathbb{T})d{\rho}\ \ t_1 < t\leq T \end{cases} \\ \mathbb{H}_d(t)& = &\begin{cases} \mathbb{H}_d(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{8}(t, \mathbb{H}_d)d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{H}_d(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{8}(t, \mathbb{H}_d)d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t}(t-\rho)^{\upsilon-1}{\mho}_{8}(t, \mathbb{H}_d)d{\rho}\ \ t_1 < t\leq T \end{cases} \\ \mathbb{H}(t)& = &\begin{cases} \mathbb{H}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{9}(t, \mathbb{H})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{H}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{9}(t, \mathbb{H})d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t}(t-\rho)^{\upsilon-1}{\mho}_{9}(t, \mathbb{H})d{\rho}\ \ t_1 < t\leq T \end{cases} \\ \mathbb{E}(t)& = &\begin{cases} \mathbb{E}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{10}(t, \mathbb{R})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{E}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{10}(t, \mathbb{E})d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t}(t-\rho)^{\upsilon-1}{\mho}_{10}(t, \mathbb{E})d{\rho}\ \ t_1 < t\leq T \end{cases} \end{eqnarray} (5.2)

    At t = t_{n+1}

    \begin{eqnarray*} \mathbb{S}(t)& = &\begin{cases} \mathbb{S}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{1}(t, \mathbb{S})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{S}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{1}(t, \mathbb{S})d{\rho}+ \frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t_{n+1}}(t-\rho)^{\upsilon-1}{\mho}_{1}(t, \mathbb{S})d{\rho}\ \ t_1 < t\leq T \end{cases} \nonumber\\ \mathbb{I}(t)& = &\begin{cases} \mathbb{I}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{2}(t, \mathbb{E})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{I}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{2}(t, \mathbb{I})d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t_{n+1}}(t-\rho)^{\upsilon-1}{\mho}_{2}(t, \mathbb{I})d{\rho}\ \ t_1 < t\leq T \end{cases}\\ \mathbb{D}(t)& = &\begin{cases} \mathbb{D}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{3}(t, \mathbb{I})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{D}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{3}(t, \mathbb{D})d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t_{n+1}}(t-\rho)^{\upsilon-1}{\mho}_{3}(t, \mathbb{D})d{\rho}\ \ t_1 < t\leq T \end{cases} \nonumber\\ \mathbb{A}(t)& = &\begin{cases} \mathbb{A}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{4}(t, \mathbb{A})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{A}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{4}(t, \mathbb{A})d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t_{n+1}}(t-\rho)^{\upsilon-1}{\mho}_{4}(t, \mathbb{A})d{\rho}\ \ t_1 < t\leq T \end{cases} \nonumber\\ \mathbb{R}(t)& = &\begin{cases} \mathbb{R}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{5}(t, \mathbb{R})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{R}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{5}(t, \mathbb{R})d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t_{n+1}}(t-\rho)^{\upsilon-1}{\mho}_{5}(t, \mathbb{R})d{\rho}\ \ t_1 < t\leq T \end{cases} \nonumber\\ \mathbb{I}_r(t)& = &\begin{cases} \mathbb{I}_r(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{6}(t, \mathbb{I}_r)d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{I}_r(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{6}(t, \mathbb{I}_r)d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t_{n+1}}(t-\rho)^{\upsilon-1}{\mho}_{6}(t, \mathbb{I}_r)d{\rho}\ \ t_1 < t\leq T \end{cases} \nonumber\\ \mathbb{T}(t)& = &\begin{cases} \mathbb{T}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{7}(t, \mathbb{T})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{T}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{7}(t, \mathbb{T})d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t_{n+1}}(t-\rho)^{\upsilon-1}{\mho}_{7}(t, \mathbb{T})d{\rho}\ \ t_1 < t\leq T \end{cases} \nonumber\\ \mathbb{H}_d(t)& = &\begin{cases} \mathbb{H}_d(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{8}(t, \mathbb{H}_d)d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{H}_d(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{8}(t, \mathbb{H}_d)d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t_{n+1}}(t-\rho)^{\upsilon-1}{\mho}_{8}(t, \mathbb{H}_d)d{\rho}\ \ t_1 < t\leq T \end{cases} \nonumber\\ \mathbb{H}(t)& = &\begin{cases} \mathbb{H}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{9}(t, \mathbb{H})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{H}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{9}(t, \mathbb{H})d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t_{n+1}}(t-\rho)^{\upsilon-1}{\mho}_{9}(t, \mathbb{H})d{\rho}\ \ t_1 < t\leq T \end{cases} \nonumber\\ \mathbb{E}(t)& = &\begin{cases} \mathbb{E}(0)+\frac{1}{\Gamma{(\upsilon)}}\int_{0}^{t_{1}}(t-\rho)^{{\upsilon-1}{c}}{\mho}_{10}(t, \mathbb{E})d{\rho}\ \ 0 < t\leq t_1, \\ \mathbb{E}(t_{1})+\frac{1-\upsilon}{AB(\upsilon)}{\mho}_{10}(t, \mathbb{E})d{\rho} +\frac{\upsilon}{AB(\upsilon)\Gamma{(\upsilon)}}\int_{t_{1}}^{t_{n+1}}(t-\rho)^{\upsilon-1}{\mho}_{10}(t, \mathbb{E})d{\rho}\ \ t_1 < t\leq T \end{cases} \nonumber \end{eqnarray*}

    We put the Newton polynomials, so we obtain

    \begin{eqnarray} \mathbb{\mathbb{S}}(t_{n+1}) = \left\{ \begin{aligned}& \mathbb{\mathbb{S}}_0+\left\{\begin{aligned}& \frac{(\Delta{t})^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_1(\mathbb{S}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi+\frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_1(\mathbb{S}^{{\bf k}-1}, t_{{\bf k}-1})-^C{\mho}_1(\mathbb{S}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon(\Delta t)^{\upsilon-1}}{2\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_1( \mathbb{S}^{\bf k}, t_{\bf k})-2^C{\mho}_1(\mathbb{S}^{{\bf k}-1}, t_{{\bf k}-1})+^C{\mho}_1(\mathbb{S}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \\ & {\mathbb{S}}(t_1)+\left\{\begin{aligned}& \frac{1-\upsilon}{ABC{(\upsilon)}}{^{ABC}{\mho}_1(\mathbb{S}^n, t_n)}+\frac{\upsilon}{ABC(\upsilon)}\frac{(\delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = i+3}^n \bigg[^{ABC}{\mho}_1( \mathbb{S}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_1(\mathbb{S}^{{\bf k}-1}, t_{{\bf k}-1}) +{ABC}{\mho}_1(\mathbb{S}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{\upsilon(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_1(\mathbb{S}^{{\bf k}}, t_{{\bf k}}) -2^{ABC}{\mho}_1(\mathbb{S}^{{\bf k}-1}, t_{{\bf k}-1}) + ^{ABC}{\mho}_1( \mathbb{S}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \end{aligned}\right. \end{eqnarray} (5.3)
    \begin{eqnarray} \mathbb{I}(t_{n+1}) = \left\{\begin{aligned}& \mathbb{I}_0+\left\{\begin{aligned}& \frac{(\Delta{t})^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_2(\mathbb{I}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi+\frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_2(\mathbb{I}^{{\bf k}-1}, t_{{\bf k}-1})-^C{\mho}_2(\mathbb{I}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon(\Delta t)^{\upsilon-1}}{2\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_2( \mathbb{I}^{\bf k}, t_{\bf k})-2^C{\mho}_2(\mathbb{I}^{{\bf k}-1}, t_{{\bf k}-1}) +^C{\mho}_2(\mathbb{I}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \\ & \mathbb{I}(t_1)+\left\{\begin{aligned}& \frac{1-\upsilon}{ABC{(\upsilon)}}{^{ABC}{\mho}_2(\mathbb{I}^n, t_n)}+\frac{\upsilon}{ABC(\upsilon)}\frac{(\delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = i+3}^n \bigg[^{ABC}{\mho}_2( \mathbb{I}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_2(\mathbb{I}^{{\bf k}-1}, t_{{\bf k}-1}) +{ABC}{\mho}_2(\mathbb{I}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{\upsilon(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_2(\mathbb{I}^{{\bf k}}, t_{{\bf k}}) -2^{ABC}{\mho}_2(\mathbb{I}^{{\bf k}-1}, t_{{\bf k}-1}) + ^{ABC}{\mho}_2( \mathbb{I}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \end{aligned}\right. \end{eqnarray} (5.4)
    \begin{eqnarray} \mathbb{D}(t_{n+1}) = \left\{\begin{aligned}& \mathbb{D}_0+\left\{\begin{aligned}& \frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_3(\mathbb{D}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi +\frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_3(\mathbb{D}^{{\bf k}-1}, t_{{\bf k}-1})-^C{\mho}_3(\mathbb{D}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon(\Delta t)^{\upsilon-1}}{2\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_3( \mathbb{D}^{\bf k}, t_{\bf k})-2^C{\mho}_3(\mathbb{D}^{{\bf k}-1}, t_{{\bf k}-1}) +^C{\mho}_3(\mathbb{D}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \\ & \mathbb{D}(t_1)+\left\{\begin{aligned}& \frac{1-\upsilon}{ABC{(\upsilon)}}{^{ABC}{\mho}_3(\mathbb{D}^n, t_n)}+\frac{\upsilon}{ABC(\upsilon)}\frac{(\delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = i+3}^n \bigg[^{ABC}{\mho}_3( \mathbb{D}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_3(\mathbb{D}^{{\bf k}-1}, t_{{\bf k}-1}) +{ABC}{\mho}_3(\mathbb{D}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{\upsilon(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_3(\mathbb{D}^{{\bf k}}, t_{{\bf k}}) -2^{ABC}{\mho}_3(\mathbb{D}^{{\bf k}-1}, t_{{\bf k}-1}) + ^{ABC}{\mho}_3( \mathbb{D}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \end{aligned}\right. \end{eqnarray} (5.5)
    \begin{eqnarray} \mathbb{A}(t_{n+1}) = \left\{\begin{aligned}& \mathbb{A}_0+\left\{\begin{aligned}& \frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_4(\mathbb{A}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi +\frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_4(\mathbb{A}^{{\bf k}-1}, t_{{\bf k}-1})-^C{\mho}_4(\mathbb{A}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon(\Delta t)^{\upsilon-1}}{2\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_4( \mathbb{A}^{\bf k}, t_{\bf k})-2^C{\mho}_4(\mathbb{A}^{{\bf k}-1}, t_{{\bf k}-1}) +^C{\mho}_4(\mathbb{A}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right.\\ & \mathbb{\mathbb{A}}(t_1)+\left\{\begin{aligned}& \frac{1-\upsilon}{ABC{(\upsilon)}}{^{ABC}{\mho}_4(\mathbb{A}^n, t_n)}+\frac{\upsilon}{ABC(\upsilon)}\frac{(\delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = i+3}^n \bigg[^{ABC}{\mho}_4( \mathbb{A}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_4(\mathbb{A}^{{\bf k}-1}, t_{{\bf k}-1}) +{ABC}{\mho}_4(\mathbb{A}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{\upsilon(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_4(\mathbb{A}^{{\bf k}}, t_{{\bf k}}) -2^{ABC}{\mho}_4(\mathbb{A}^{{\bf k}-1}, t_{{\bf k}-1}) + ^{ABC}{\mho}_4( \mathbb{A}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta. \end{aligned}\right. \end{aligned}\right. \end{eqnarray} (5.6)
    \begin{eqnarray} \mathbb{R}(t_{n+1}) = \left\{\begin{aligned}& \mathbb{R}_0+\left\{\begin{aligned}& \frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_5(\mathbb{R}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi +\frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_5(\mathbb{R}^{{\bf k}-1}, t_{{\bf k}-1})-^C{\mho}_5(\mathbb{R}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon(\Delta t)^{\upsilon-1}}{2\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_5( \mathbb{R}^{\bf k}, t_{\bf k})-2^C{\mho}_5(\mathbb{R}^{{\bf k}-1}, t_{{\bf k}-1}) +^C{\mho}_5(\mathbb{R}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \\ & \mathbb{R}(t_1)+\left\{\begin{aligned}& \frac{1-\upsilon}{ABC{(\upsilon)}}{^{ABC}{\mho}_5(\mathbb{R}^n, t_n)}+\frac{\upsilon}{ABC(\upsilon)}\frac{(\delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = i+3}^n \bigg[^{ABC}{\mho}_5( \mathbb{R}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_5(\mathbb{R}^{{\bf k}-1}, t_{{\bf k}-1}) +{ABC}{\mho}_5(\mathbb{R}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{\upsilon(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_5(\mathbb{R}^{{\bf k}}, t_{{\bf k}}) -2^{ABC}{\mho}_5(\mathbb{R}^{{\bf k}-1}, t_{{\bf k}-1}) + ^{ABC}{\mho}_5( \mathbb{R}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \end{aligned}\right. \end{eqnarray} (5.7)
    \begin{eqnarray} \mathbb{I}_r(t_{n+1}) = \left\{\begin{aligned}& \mathbb{I}_r(0)+\left\{\begin{aligned}& \frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_6(\mathbb{I}_r^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi +\frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_6(\mathbb{I}_r^{{\bf k}-1}, t_{{\bf k}-1})-^C{\mho}_6(\mathbb{I}_r^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon(\Delta t)^{\upsilon-1}}{2\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_6( \mathbb{I}_r^{\bf k}, t_{\bf k})-2^C{\mho}_6(\mathbb{I}_r^{{\bf k}-1}, t_{{\bf k}-1}) +^C{\mho}_6(\mathbb{I}_r^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \\ & \mathbb{I}_r(t_1)+\left\{\begin{aligned}& \frac{1-\upsilon}{ABC{(\upsilon)}}{^{ABC}{\mho}_6(\mathbb{I}_r^n, t_n)}+\frac{\upsilon}{ABC(\upsilon)}\frac{(\delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = i+3}^n \bigg[^{ABC}{\mho}_6( \mathbb{I}_r^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_6(\mathbb{I}_r^{{\bf k}-1}, t_{{\bf k}-1}) +{ABC}{\mho}_6(\mathbb{I}_r^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{\upsilon(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_6(\mathbb{I}_r^{{\bf k}}, t_{{\bf k}}) -2^{ABC}{\mho}_6(\mathbb{I}_r^{{\bf k}-1}, t_{{\bf k}-1}) + ^{ABC}{\mho}_6( \mathbb{I}_r^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \end{aligned}\right. \end{eqnarray} (5.8)
    \begin{eqnarray} \mathbb{T}(t_{n+1}) = \left\{\begin{aligned}& \mathbb{T}(0)+\left\{\begin{aligned}& \frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_7(\mathbb{T}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi +\frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_7(\mathbb{T}^{{\bf k}-1}, t_{{\bf k}-1})-^C{\mho}_7(\mathbb{T}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon(\Delta t)^{\upsilon-1}}{2\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_7( \mathbb{T}^{\bf k}, t_{\bf k})-2^C{\mho}_7(\mathbb{T}^{{\bf k}-1}, t_{{\bf k}-1}) +^C{\mho}_7(\mathbb{T}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right.\\ & \mathbb{T}(t_1)+\left\{\begin{aligned}& \frac{1-\upsilon}{ABC{(\upsilon)}}{^{ABC}{\mho}_7(\mathbb{T}^n, t_n)}+\frac{\upsilon}{ABC(\upsilon)}\frac{(\delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = i+3}^n \bigg[^{ABC}{\mho}_7( \mathbb{T}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_7(\mathbb{T}^{{\bf k}-1}, t_{{\bf k}-1}) +{ABC}{\mho}_7(\mathbb{T}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{\upsilon(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_7(\mathbb{T}^{{\bf k}}, t_{{\bf k}}) -2^{ABC}{\mho}_7(\mathbb{T}^{{\bf k}-1}, t_{{\bf k}-1}) + ^{ABC}{\mho}_7( \mathbb{T}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \end{aligned}\right. \end{eqnarray} (5.9)
    \begin{eqnarray} \mathbb{H}_d(t_{n+1}) = \left\{\begin{aligned}& \mathbb{H}_d(0)+\left\{\begin{aligned}& \frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_8(\mathbb{H}_d^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi +\frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_8(\mathbb{H}_d^{{\bf k}-1}, t_{{\bf k}-1})-^C{\mho}_8(\mathbb{H}_d^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon(\Delta t)^{\upsilon-1}}{2\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_8( \mathbb{H}_d^{\bf k}, t_{\bf k})-2^C{\mho}_8(\mathbb{H}_d^{{\bf k}-1}, t_{{\bf k}-1}) +^C{\mho}_8(\mathbb{H}_d^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \\ & \mathbb{H}_d(t_1)+\left\{\begin{aligned}& \frac{1-\upsilon}{ABC{(\upsilon)}}{^{ABC}{\mho}_8(\mathbb{H}_d^n, t_n)}+\frac{\upsilon}{ABC(\upsilon)}\frac{(\delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = i+3}^n \bigg[^{ABC}{\mho}_8( \mathbb{H}_d^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_8(\mathbb{H}_d^{{\bf k}-1}, t_{{\bf k}-1}) +{ABC}{\mho}_8(\mathbb{H}_d^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{\upsilon(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_8(\mathbb{H}_d^{{\bf k}}, t_{{\bf k}}) -2^{ABC}{\mho}_8(\mathbb{H}_d^{{\bf k}-1}, t_{{\bf k}-1}) + ^{ABC}{\mho}_8( \mathbb{H}_d^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \end{aligned}\right. \end{eqnarray} (5.10)
    \begin{eqnarray} \mathbb{H}(t_{n+1}) = \left\{\begin{aligned}& \mathbb{H}(0)+\left\{\begin{aligned}& \frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_9(\mathbb{H}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi +\frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_9(\mathbb{H}^{{\bf k}-1}, t_{{\bf k}-1})-^C{\mho}_9(\mathbb{H}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon(\Delta t)^{\upsilon-1}}{2\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_9( \mathbb{H}^{\bf k}, t_{\bf k})-2^C{\mho}_9(\mathbb{H}^{{\bf k}-1}, t_{{\bf k}-1}) +^C{\mho}_9(\mathbb{H}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \\ & \mathbb{H}(t_1)+\left\{\begin{aligned}& \frac{1-\upsilon}{ABC{(\upsilon)}}{^{ABC}{\mho}_9(\mathbb{H}^n, t_n)}+\frac{\upsilon}{ABC(\upsilon)}\frac{(\delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = i+3}^n \bigg[^{ABC}{\mho}_9( \mathbb{H}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_9(\mathbb{H}^{{\bf k}-1}, t_{{\bf k}-1}) +{ABC}{\mho}_9(\mathbb{H}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{\upsilon(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_9(\mathbb{H}^{{\bf k}}, t_{{\bf k}}) -2^{ABC}{\mho}_9(\mathbb{H}^{{\bf k}-1}, t_{{\bf k}-1}) + ^{ABC}{\mho}_9( \mathbb{H}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \end{aligned}\right. \end{eqnarray} (5.11)
    \begin{eqnarray} \mathbb{E}(t_{n+1}) = \left\{\begin{aligned}& \mathbb{E}(0)+\left\{\begin{aligned}& \frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_{10}(\mathbb{E}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi +\frac{(\Delta t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_{10}(\mathbb{E}^{{\bf k}-1}, t_{{\bf k}-1})-^C{\mho}_{10}(\mathbb{E}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon(\Delta t)^{\upsilon-1}}{2\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = 2}^i\bigg[^C{\mho}_{10}( \mathbb{E}^{\bf k}, t_{\bf k})-2^C{\mho}_{10}(\mathbb{E}^{{\bf k}-1}, t_{{\bf k}-1}) +^C{\mho}_{10}(\mathbb{E}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \\ & \mathbb{E}(t_1)+\left\{\begin{aligned}& \frac{1-\upsilon}{ABC{(\upsilon)}}{^{ABC}{\mho}_{10}(\mathbb{E}^n, t_n)}+\frac{\upsilon}{ABC(\upsilon)}\frac{(\delta t)^{\upsilon-1}}{\Gamma{(\upsilon+1)}}\sum\limits_{{\bf k} = i+3}^n \bigg[^{ABC}{\mho}_{10}( \mathbb{E}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Pi\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+2)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_{10}(\mathbb{E}^{{\bf k}-1}, t_{{\bf k}-1}) +{ABC}{\mho}_{10}(\mathbb{E}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\bigwedge\\& +\frac{\upsilon}{ABC{(\upsilon)}}\frac{\upsilon(\upsilon t)^{\upsilon-1}}{\Gamma{(\upsilon+3)}}\sum\limits_{{\bf k} = i+3}^n\bigg[^{ABC}{\mho}_{10}(\mathbb{E}^{{\bf k}}, t_{{\bf k}}) -2^{ABC}{\mho}_{10}(\mathbb{E}^{{\bf k}-1}, t_{{\bf k}-1}) + ^{ABC}{\mho}_{10}( \mathbb{E}^{{\bf k}-2}, t_{{\bf k}-2})\bigg]\Delta \end{aligned}\right. \end{aligned}\right. \end{eqnarray} (5.12)

    Here

    \begin{eqnarray*} \Pi = \left[\begin{split}& (1-{\bf k}+n)^\upsilon\bigg(2(-{\bf k}+n)^2+(3\upsilon+10)(-{\bf k}+n)+2\upsilon^2+9\upsilon+12\bigg)\\& -(-{\bf k}+n)\bigg(2(-{\bf k}+n)^2+(5\upsilon+10)(n-{\bf k})+6\upsilon^2+18\upsilon+12\bigg) \end{split}\right], \end{eqnarray*}
    \begin{eqnarray*} \bigwedge = \left[\begin{split}& (1-{\bf k}+n)^\upsilon\bigg(3+n+2\upsilon-{\bf k}\bigg)\\& -(-{\bf k}+n)\bigg(n+3\upsilon-{\bf k}+3\bigg) \end{split}\right], \end{eqnarray*}
    \begin{eqnarray*} \Delta = \left[\begin{split}& (1-{\bf k}+n)^\upsilon-(-{\bf k}+n)^\upsilon \end{split}\right], \end{eqnarray*}

    and

    \begin{eqnarray*} \label{2} \begin{array}{l} ^C{\mho}_1(\mathbb{S}, t) = {^{ABC}{\mho}_1(\mathbb{S}, t)} = -(\alpha\mathbb{I}+\beta\mathbb{D}+\gamma\mathbb{A}+\delta\mathbb{R})\mathbb{S}, \\ ^C{\mho}_3(\mathbb{I}, t) = {^{ABC}{\mho}_3(\mathbb{I}, t)} = -(\epsilon+\zeta+\lambda)\mathbb{I}+(\alpha\mathbb{I}+\beta\mathbb{D}+\gamma\mathbb{A}+\delta\mathbb{R})\mathbb{S}, \\ ^C{\mho}_2(\mathbb{A}, t) = {^{ABC}{\mho}_2(\mathbb{A}, t)} = -(\eta+\rho)\mathbb{D}+\epsilon\mathbb{I}, \\ ^C{\mho}_4(\mathbb{D}, t) = {^{ABC}{\mho}_4(\mathbb{D}, t)} = -(\theta+\mu+\kappa)\mathbb{A}+\zeta\mathbb{I}, \\ ^C{\mho}_5(\mathbb{R}, t) = {^{ABC}{\mho}_5(\mathbb{R}, t)} = -(\nu+\xi)\mathbb{R}+\eta\mathbb{D}\theta\mathbb{A}, \\ ^C{\mho}_6(\mathbb{I}_r, t) = {^{ABC}{\mho}_5(\mathbb{I}_r, t)} = (\alpha\mathbb{I}+\beta\mathbb{D}+\gamma\mathbb{A}+\delta\mathbb{R})\mathbb{S}, \\ ^C{\mho}_7(\mathbb{T}, t) = {^{ABC}{\mho}_5(\mathbb{T}, t)} = -(\sigma+\tau)\mathbb{T}+\mu\mathbb{A}+\nu\mathbb{R}, \\ ^C{\mho}_8(\mathbb{H}_d, t) = {^{ABC}{\mho}_5(\mathbb{H}_d, t)} = \rho\mathbb{D}\xi\mathbb{R}+\sigma\mathbb{T}, \\ ^C{\mho}_9(\mathbb{H}, t) = {^{ABC}{\mho}_5(\mathbb{H}, t)} = \lambda\mathbb{I}+\rho\mathbb{D}+\kappa\mathbb{A}+\xi\mathbb{R}+\sigma\mathbb{A}, \\ ^C{\mho}_{10}(\mathbb{E}, t) = {^{ABC}{\mho}_5(\mathbb{E}, t)} = \tau\mathbb{T}. \end{array} \end{eqnarray*}

    The above Eqs (5.3)–(5.12) are the solution for the considered model.

    In this section we provide the numerical simulation for all the five compartments of the proposed model using the initial data and parameters values taken from [19]. The initial populations are \mathbb{S}(0) = 1, \ \mathbb{I}(0) = 0.001, \ \mathbb{D}(0) = 0.002, \ \mathbb{A}(0) = 0.0001, \ \mathbb{R}(0) = 0.0003, \mathbb{I}_r(0) = 0.0009, \ \mathbb{T}(0) = 0.002, \mathbb{H}_d(0) = 0.003, \ \mathbb{H}(0) = 0.00012, \ \mathbb{E}(0) = 0.00014 .

    Table 2.  Parameters values in model 1.1.
    Parameter Value Parameter Values
    \alpha 0.57 \beta 0.0114
    \gamma 0.456 \delta 0.0114
    \epsilon 0.171 \theta 0.3705
    \zeta 0.1254 \eta_1 0.1254
    \mu 0.0171 v 0.0274
    \tau 0.01 \lambda 0.0342
    \kappa 0.0342 \xi 0.0171
    \sigma 0.0171 \rho 0.0171

     | Show Table
    DownLoad: CSV

    The graphical representation of all the ten compartments of the analyzed model has been shown on three different data of fractional orders and time durations in the sense of piecewise Caputo and ABC derivatives. The first compartment of susceptible population is shown in Figure 1ac, respectively, on two sub intervals. The said class population decreases slowly in the first interval, while in the second interval it decreases very abruptly. On small fractional orders it is stable quickly, and piece wise behaviors are negligible in this case, as shown in Figure 1a, c.

    Figure 1.  Dynamical behaviors of susceptible individuals \mathbb{S}(t) on different arbitrary fractional orders \upsilon and time durations on sub interval [0, t_1] and [t_1, T] of [0, T] .

    The second compartment of infected population is shown in Figure 2ac respectively on two sub intervals on three different data of fractional orders and time durations. The said class population grows quickly in the first interval, while in the second interval it decreases very abruptly, as shown in Figure 2a. On small fractional orders it is stable quickly and piece wise behaviors are negligible in this case, as shown in Figure 2c.

    Figure 2.  Dynamical behaviors of infected individuals \mathbb{I}(t) on different arbitrary fractional orders \upsilon and time durations on sub interval [0, t_1] and [t_1, T] of [0, T] .

    The next agent of Diagnosed population is shown in Figure 3ac respectively on two sub intervals on three different data of fractional orders and time durations. The said class population depends on the behavior of infected population showing the same dynamics but smaller than infectious population. On small fractional orders it is stable very quickly, and piece wise behaviors are negligible in this case, as shown in the Figure 3c.

    Figure 3.  Dynamical behaviors of Diagnosed individuals \mathbb{D}(t) on different arbitrary fractional orders \upsilon and time durations on sub interval [0, t_1] and [t_1, T] of [0, T] .

    The next quantity is of Ailing population, shown in Figure 4a-c respectively on two sub intervals on three different data of fractional orders and time durations. The said class population grows quickly in the first interval, while in second interval it decreases very abruptly, as shown in Figure 4a. It also gives the same dynamics as given by the diagnosed population. On small fractional orders it is stable quickly, and piece wise behaviors are negligible in this case as shown in Figure 4c.

    Figure 4.  Dynamical behaviors of Ailing individuals \mathbb{A}(t) on different arbitrary fractional orders \upsilon and time durations on sub interval [0, t_1] and [t_1, T] of [0, T] .

    Next is the Recognized population, shown in Figure 5ac respectively on two sub intervals on three different data of fractional orders and time durations. The said class population grows quickly in the first interval, while in second interval it decreases slowly, as shown in Figure 5a. On small fractional orders it converges quickly, and piece wise behaviors are negligible in this case as shown in Figure 5c.

    Figure 5.  Dynamical behaviors of Recognized individuals \mathbb{R}(t) on different arbitrary fractional orders \upsilon and time durations on sub interval [0, t_1] and [t_1, T] of [0, T] .

    The sixth compartment is of real infected population, shown in Figure 6ac respectively on two sub intervals on three different data of fractional orders and time durations. The said class population increases in the first interval, while in the second interval it is moving towards stability, as shown in Figure 6a. On small fractional orders it is stable quickly, and piece wise behaviors are negligible in this case, as shown in Figure 6c.

    Figure 6.  Dynamical behaviors of Infected real individuals \mathbb{I}_r(t) on different arbitrary fractional orders \upsilon and time durations on sub interval [0, t_1] and [t_1, T] of [0, T] .

    The next compartment is of threatened population, shown in Figure 7ac respectively on two sub intervals using three different data of fractional orders and time durations. The said class population grows quickly in the first interval, while in the second interval it increases very abruptly, as shown in Figure 7b. On small fractional orders it is stable quickly, and piece wise behaviors are negligible in this case, as shown in Figure 7c.

    Figure 7.  Dynamical behaviors of Threatened individuals \mathbb{T}(t) on different arbitrary fractional orders \upsilon and time durations on sub interval [0, t_1] and [t_1, T] of [0, T] .

    The next quantity is of infected population, shown in Figure 8ac respectively on two sub intervals on three different data of fractional orders and time durations. The said class population grows in the first interval, while in the second interval it increases very slowly, as shown in Figure 8b. On small fractional orders it is stable quickly, and piece wise behaviors are negligible in this case, as shown in Figure 8c.

    Figure 8.  Dynamical behaviors of Diagnosed recovered individuals \mathbb{H}_d(t) on different arbitrary fractional orders \upsilon and time durations on sub interval [0, t_1] and [t_1, T] of [0, T] .

    The ninth compartment is of healed population, given in Figure 9ac respectively on two sub intervals on three different data of fractional orders and time durations. The said class population grows quickly in the first interval, while in the second interval it increases very abruptly, as shown in Figure 9b. On small fractional orders it is stable quickly, and piece wise behaviors are negligible in this case as shown in Figure 9c.

    Figure 9.  Dynamical behaviors of Healed individuals \mathbb{H}(t) on different arbitrary fractional orders \upsilon and time durations on sub interval [0, t_1] and [t_1, T] of [0, T] .

    The tenth compartment is of Extinct population, shown in Figure 10ac respectively on two sub intervals on three different data of time and fractional orders. The said class population grows quickly in the first interval, while in the second interval it increases slowly, as shown in Figure 10b. On small fractional orders it is stable quickly, and piece wise behaviors are negligible in this case, as shown in Figure 10c.

    Figure 10.  Dynamical behaviors of Extinct individuals \mathbb{E}(t) on different arbitrary fractional orders \upsilon and time durations on sub interval [0, t_1] and [t_1, T] of [0, T] .

    In this section, we check the sensitivity of two parameters \alpha and \theta along with the fractional parameters. Decreasing the value of \alpha and increasing the value of \theta , greatly affect the dynamics of the said COVID-19 model. The infection may be controlled by reducing the infection rate \alpha and by increasing the value of \theta in the sense of piecewise Caputo and ABC operators on different fractional orders.

    Figure 11.  Sensitivity \alpha = 0.27, 0.17, 0.07 and \theta = 0.4705, 0.5705, 0.9705 for \mathbb{I}(t) and \mathbb{S}(t) on different arbitrary fractional orders \upsilon and time durations on sub interval [0, t_1] and [t_1, T] of [0, T] .
    Figure 12.  Sensitivity \alpha = 0.27, 0.17, 0.07 and \theta = 0.4705, 0.5705, 0.9705 for \mathbb{A}(t) and \mathbb{D}(t) on different arbitrary fractional orders \upsilon and time durations on sub interval [0, t_1] and [t_1, T] of [0, T] .
    Figure 13.  Sensitivity \alpha = 0.27, 0.17, 0.07 and \theta = 0.4705, 0.5705, 0.9705 for \mathbb{I}_r(t) and \mathbb{R}(t) on different arbitrary fractional orders \upsilon and time durations on sub interval [0, t_1] and [t_1, T] of [0, T] .
    Figure 14.  Sensitivity \alpha = 0.27, 0.17, 0.07 and \theta = 0.4705, 0.5705, 0.9705 for \mathbb{H}_d(t) and \mathbb{T}(t) on different arbitrary fractional orders \upsilon and time durations on sub interval [0, t_1] and [t_1, T] of [0, T] .
    Figure 15.  Sensitivity \alpha = 0.27, 0.17, 0.07 and \theta = 0.4705, 0.5705, 0.9705 for \mathbb{E}(t) and \mathbb{H}(t) on different arbitrary fractional orders \upsilon and time durations on sub interval [0, t_1] and [t_1, T] of [0, T] .

    In this study, we have developed the scheme of a ten compartmental piecewise fractional model of COVID-19 under the fractional derivatives of Caputo and Atangana Baleanu in the sub-partition format. We have demonstrated that on small fractional orders, all quantities converge and are quickly stable. The important theoretical and numerical properties have been presented for the proposed model. Applying the concept of fixed point results, we have derived results which deal with existence and uniqueness of solution for both sub intervals in the sense of Caputo and Atangana Baleanu operators. The Ulam-Hyers stability concept on both intervals has also been derived. We have used the Newton Polynomial technique to compute numerical solutions of the piecewise fractional model of COVID-19 virus. We have used MATLAB-18 to depict the numerical results for few fractional orders and time durations. We have observed that the piecewise data gives more information describing crossover dynamics for different fractional orders. Further, the graphical results are very interesting for both piecewise and fractional order analysis. In the future, the work can be extended to optimal control and stochastic models to examine the behavior and control of the disease.

    The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF2/PSAU/2022/01/21432).

    The authors declare there is no conflict of interest.



    [1] G. Lilis, G. Conus, N. Asadi, M. Kayal, Towards the next generation of intelligent building: An assessment study of current automation and future iot based systems with a proposal for transitional design, Sustainable Cities Soc., 28 (2017), 473–481. https://doi.org/10.1016/j.scs.2016.08.019 doi: 10.1016/j.scs.2016.08.019
    [2] B. N. Silva, M. Khan, K. Han, Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities, Sustainable Cities Soc., 38 (2018), 697–713. https://doi.org/10.1016/j.scs.2018.01.053 doi: 10.1016/j.scs.2018.01.053
    [3] U. Emir, K. Ejub, M. Zakaria, A. Muhammad, B. Vanilson, Immersing citizens and things into smart cities: A social machine-based and data artifact-driven approach, Computing, 102 (2020), 1567–1586. https://doi.org/10.1007/s00607-019-00774-9 doi: 10.1007/s00607-019-00774-9
    [4] H. Zahmatkesh, F. Al-Turjman, Fog computing for sustainable smart cities in the iot era: Caching techniques and enabling technologies - an overview, Sustainable Cities Soc., 59 (2020), 102139. https://doi.org/10.1016/j.scs.2020.102139 doi: 10.1016/j.scs.2020.102139
    [5] M. M. Aborokbah, S. Al-Mutairi, A. K. Sangaiah, O. W. Samuel, Adaptive context aware decision computing paradigm for intensive health care delivery in smart cities—a case analysis, Sustainable Cities Soc., 41 (2018), 919–924. https://doi.org/10.1016/j.scs.2017.09.004 doi: 10.1016/j.scs.2017.09.004
    [6] M. Al-khafajiy, L. Webster, T. Baker, A. Waraich, Towards fog driven iot healthcare: Challenges and framework of fog computing in healthcare, in Proceedings of the 2nd International Conference on Future Networks and Distributed Systems, (2018), 1–7. https://doi.org/10.1145/3231053.3231062
    [7] V. Bianchi, M. Bassoli, G. Lombardo, P. Fornacciari, M. Mordonini, I. De Munari, IoT wearable sensor and deep learning: An integrated approach for personalized human activity recognition in a smart home environment, IEEE Internet Things J., 6 (2019), 8553–8562. https://doi.org/10.1109/JIOT.2019.2920283 doi: 10.1109/JIOT.2019.2920283
    [8] P. Loprinzi, C. Franz, K. Hager, Accelerometer-assessed physical activity and depression among u.s. adults with diabetes, Ment. Health Phys. Act., 6 (2013), 79–82. https://doi.org/10.1016/j.mhpa.2013.04.003 doi: 10.1016/j.mhpa.2013.04.003
    [9] L. Coorevits, T. Coenen, The rise and fall of wearable fitness trackers, Acad. Manage., 2016 (2016), 17305. https://doi.org/10.5465/ambpp.2016.17305abstract doi: 10.5465/ambpp.2016.17305abstract
    [10] F. Prinz, T. Schlange, K. Asadullah, Believe it or not: How much can we rely on published data on potential drug targets? Nat. Rev. Drug Discovery, 10 (2011), 712. https://doi.org/10.1038/nrd3439-c1
    [11] C. Jobanputra, J. Bavishi, N. Doshi, Human activity recognition: A survey, Procedia Comput. Sci., 155 (2019), 698–703. https://doi.org/10.1016/j.procs.2019.08.100 doi: 10.1016/j.procs.2019.08.100
    [12] E. Kringle, E. Knutson, L. Terhorst, Semi-supervised machine learning for rehabilitation science research, Arch. Phys. Med. Rehabil., 98 (2017), e139. https://doi.org/10.1016/j.apmr.2017.08.452 doi: 10.1016/j.apmr.2017.08.452
    [13] X. Wang, D. Rosenblum, Y. Wang, Context-aware mobile music recommendation for daily activities, in Proceedings of the 20th ACM International Conference on Multimedia, (2012), 99–108. https://doi.org/10.1145/2393347.2393368
    [14] N. Y. Hammerla, J. M. Fisher, P. Andras, L. Rochester, R. Walker, T. Plotz, Pd disease state assessment in naturalistic environments using deep learning, in Twenty-Ninth AAAI Conference on Artificial Intelligence, (2015), 1742–1748. Available from: https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9930.
    [15] P. Ponvel, D. K. A. Singh, G. K. Beng, S. C. Chai, Factors affecting upper extremity kinematics in healthy adults: A systematic review, Crit. Rev. Phys. Rehabil. Med., 31 (2019), 101–123. https://doi.org/10.1615/CritRevPhysRehabilMed.2019030529 doi: 10.1615/CritRevPhysRehabilMed.2019030529
    [16] C. Auepanwiriyakul, S. Waibel, J. Songa, P. Bentley, A. A. Faisal, Accuracy and acceptability of wearable motion tracking for inpatient monitoring using smartwatches, Sensors, 20 (2020), 7313. https://doi.org/10.3390/s20247313 doi: 10.3390/s20247313
    [17] A. R. Javed, U. Sarwar, M. Beg, M. Asim, T. Baker, H. Tawfik, A collaborative healthcare framework for shared healthcare plan with ambient intelligence, Hum.-centric Comput. Inf. Sci., 10 (2020). https://doi.org/10.1186/s13673-020-00245-7
    [18] H. Ghasemzadeh, R. Jafari, Physical movement monitoring using body sensor networks: A phonological approach to construct spatial decision trees, IEEE Trans. Ind. Inf., 7 (2011), 66–77. https://doi.org/10.1109/TII.2010.2089990 doi: 10.1109/TII.2010.2089990
    [19] A. R. Javed, L. G. Fahad, A. A. Farhan, S. Abbas, G. Srivastava, R. M. Parizin, et al., Automated cognitive health assessment in smart homes using machine learning, Sustainable Cities Soc., 65 (2021), 102572. https://doi.org/10.1016/j.scs.2020.102572 doi: 10.1016/j.scs.2020.102572
    [20] S. U. Rehman, A. R. Javed, M. U. Khan, M. N. Awan, A. Farukh, A. Hussien, Personalised Comfort: A personalised thermal comfort model to predict thermal sensation votes for smart building residents, Enterp. Inf. Syst., (2020), 1–23. https://doi.org/10.1080/17517575.2020.1852316
    [21] M. Usman Sarwar, A. Rehman Javed, F. Kulsoom, S. Khan, U. Tariq, A. Kashif Bashir, Parciv: Recognizing physical activities having complex interclass variations using semantic data of smartphone, Software: Pract. Exper., 51 (2021), 532–549. https://doi.org/10.1002/spe.2846 doi: 10.1002/spe.2846
    [22] N. Alshurafa, W. Xu, J. J. Liu, M. C. Huang, B. Mortazavi, C. K. Roberts, et al., Designing a robust activity recognition framework for health and exergaming using wearable sensors, IEEE J. Biomed. Health Inf., 18 (2014), 1636–1646. https://doi.org/10.1109/JBHI.2013.2287504 doi: 10.1109/JBHI.2013.2287504
    [23] H. Arshad, M. Khan, M. Sharif, Y. Mussarat, M. Javed, Multi-level features fusion and selection for human gait recognition: An optimized framework of bayesian model and binomial distribution, Int. J. Mach. Learn. Cybern., 10 (2019), 3601–3618. https://doi.org/10.1007/s13042-019-00947-0 doi: 10.1007/s13042-019-00947-0
    [24] P. N. Dawadi, D. J. Cook, M. Schmitter-Edgecombe, Automated cognitive health assessment using smart home monitoring of complex tasks, IEEE Trans. Syst. Man Cybern. Syst., 43 (2013), 1302–1313. https://doi.org/10.1109/TSMC.2013.2252338 doi: 10.1109/TSMC.2013.2252338
    [25] S. Mekruksavanich, A. Jitpattanakul, Deep convolutional neural network with rnns for complex activity recognition using wrist-worn wearable sensor data, Electronics, 10 (2021), 1685. https://doi.org/10.3390/electronics10141685 doi: 10.3390/electronics10141685
    [26] Y. Liu, H. Yang, S. Gong, Y. Liu, X. Xiong, A daily activity feature extraction approach based on time series of sensor events, Math. Biosci. Eng., 17 (2020), 5173–5189. https://doi.org/10.3934/mbe.2020280 doi: 10.3934/mbe.2020280
    [27] D. Anguita, A. Ghio, L. Oneto, X. Parra, J. L. Reyes-Ortiz, Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine, in Ambient Assisted Living and Home Care, (2012), 216–223. https://doi.org/10.1007/978-3-642-35395-6_30
    [28] O. Lara, M. Labrador, A survey on human activity recognition using wearable sensors, IEEE Commun. Surv. Tutorials, 15 (2013), 1192–1209. https://doi.org/10.1109/SURV.2012.110112.00192 doi: 10.1109/SURV.2012.110112.00192
    [29] S. Liu, J. Wang, W. Zhang, Federated personalized random forest for human activity recognition, Math. Biosci. Eng., 19 (2022), 953–971. https://doi.org/10.3934/mbe.2022044 doi: 10.3934/mbe.2022044
    [30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, et al., Imagenet large scale visual recognition challenge, Int. J. Comput. Vision, 115 (2015), 211–252. https://doi.org/10.1007/s11263-015-0816-y doi: 10.1007/s11263-015-0816-y
    [31] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding, preprint, arXiv: 1810.04805.
    [32] Y. Lecun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (2015), 436–444. https://doi.org/10.1038/nature14539
    [33] A. Murad, J. Y. Pyun, Deep recurrent neural networks for human activity recognition, Sensors, 17 (2017), 2556. https://doi.org/10.3390/s17112556 doi: 10.3390/s17112556
    [34] O. Nafea, W. Abdul, G. Muhammad, M. Alsulaiman, Sensor-based human activity recognition with spatio-temporal deep learning, Sensors, 21 (2021), 2141. https://doi.org/10.3390/s21062141 doi: 10.3390/s21062141
    [35] V. Y. Senyurek, M. H. Imtiaz, P. Belsare, S. Tiffany, E. Sazonov, A cnn-lstm neural network for recognition of puffing in smoking episodes using wearable sensors, Biomed. Eng. Lett., 10 (2020), 195–203. https://doi.org/10.1007/s13534-020-00147-8 doi: 10.1007/s13534-020-00147-8
    [36] X. Liu, M. Chen, T. Liang, C. Lou, H. Wang, X. Liu, A lightweight double-channel depthwise separable convolutional neural network for multimodal fusion gait recognition, Math. Biosci. Eng., 19 (2022), 1195–1212. https://doi.org/10.3934/mbe.2022055 doi: 10.3934/mbe.2022055
    [37] S. Dernbach, B. Das, N. C. Krishnan, B. L. Thomas, D. J. Cook, Simple and complex activity recognition through smart phones, in 2012 8th International Conference on Intelligent Environments, (2012), 214–221. https://doi.org/10.1109/IE.2012.39
    [38] T. Huynh, M. Fritz, B. Schiele, Discovery of activity patterns using topic models, in 10th International Conference on Ubiquitous Computing, (2008), 10–19. https://doi.org/10.1145/1409635.1409638
    [39] L. Liu, Y. Peng, S. Wang, M. Liu, Z. Huang, Complex activity recognition using time series pattern dictionary learned from ubiquitous sensors, Inf. Sci., 340-341 (2016), 41–57. https://doi.org/10.1016/j.ins.2016.01.020 doi: 10.1016/j.ins.2016.01.020
    [40] L. Peng, L. Chen, M. Wu, G. Chen, Complex activity recognition using acceleration, vital sign, and location data, IEEE Trans. Mobile Comput., 18 (2019), 1488–1498. https://doi.org/10.1109/TMC.2018.2863292 doi: 10.1109/TMC.2018.2863292
    [41] T. Y. Kim, S. B. Cho, Predicting residential energy consumption using cnn-lstm neural networks, Energy, 182 (2019), 72–81. https://doi.org/10.1016/j.energy.2019.05.230 doi: 10.1016/j.energy.2019.05.230
    [42] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
    [43] Y. Chen, K. Zhong, J. Zhang, Q. Sun, X. Zhao, Lstm networks for mobile human activity recognition, in Proceedings of the 2016 International Conference on Artificial Intelligence: Technologies and Applications, (2016), 50–53. https://doi.org/10.2991/icaita-16.2016.13
    [44] F. Moya Rueda, R. Grzeszick, G. A. Fink, S. Feldhorst, M. Ten Hompel, Convolutional neural networks for human activity recognition using body-worn sensors, Informatics, 5 (2018), 26. https://doi.org/10.3390/informatics5020026 doi: 10.3390/informatics5020026
    [45] J. Bi, X. Zhang, H. Yuan, J. Zhang, M. Zhou, A hybrid prediction method for realistic network traffic with temporal convolutional network and lstm, IEEE Trans. Autom. Sci. Eng., (2021), 1–11. https://doi.org/10.1109/TASE.2021.3077537
    [46] F. J. Ordóñez, D. Roggen, Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition, Sensors, 16 (2016), 115. https://doi.org/10.3390/s16010115 doi: 10.3390/s16010115
    [47] K. Xia, J. Huang, H. Wang, Lstm-cnn architecture for human activity recognition, IEEE Access, 8 (2020), 56855–56866. https://doi.org/10.1109/ACCESS.2020.2982225 doi: 10.1109/ACCESS.2020.2982225
    [48] M. Ronald, A. Poulose, D. S. Han, iSPLInception: An inception-resnet deep learning architecture for human activity recognition, IEEE Access, 9 (2021), 68985–69001. https://doi.org/10.1109/ACCESS.2021.3078184 doi: 10.1109/ACCESS.2021.3078184
    [49] R. Huan, Z. Zhan, L. Ge, K. Chi, P. Chen, R. Liang, A hybrid cnn and blstm network for human complex activity recognition with multi-feature fusion, Multimedia Tools Appl., 80 (2021), 36159–36182. https://doi.org/10.1007/s11042-021-11363-4 doi: 10.1007/s11042-021-11363-4
    [50] X. Zhang, M. Lapata, Chinese poetry generation with recurrent neural networks, in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), (2014), 670–680. https://doi.org/10.3115/v1/D14-1074
    [51] Q. Wang, T. Luo, D. Wang, C. Xing, Chinese song iambics generation with neural attention-based model, preprint, arXiv: 1604.06274.
    [52] Q. Chen, X. Zhu, Z. H. Ling, S. Wei, H. Jiang, D. Inkpen, Enhanced lstm for natural language inference, in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 1 (2017), 1657–1668. https://doi.org/10.18653/v1/P17-1152
    [53] V. K. Tran, L. M. Nguyen, Semantic refinement gru-based neural language generation for spoken dialogue systems, in Computational Linguistics, (2018), 63–75. https://doi.org/10.1007/978-981-10-8438-6_6
    [54] T. Bansal, D. Belanger, A. McCallum, Ask the gru: Multi-task learning for deep text recommendations, in Proceedings of the 10th ACM Conference on Recommender Systems, (2016), 107–114. https://doi.org/10.1145/2959100.2959180
    [55] A. Graves, N. Jaitly, A. R. Mohamed, Hybrid speech recognition with deep bidirectional lstm, in 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, (2013), 273–278. https://doi.org/10.1109/ASRU.2013.6707742
    [56] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using rnn encoder-decoder for statistical machine translation, preprient, arXiv: 1406.1078.
    [57] D. Singh, E. Merdivan, I. Psychoula, J. Kropf, S. Hanke, M. Geist, et al., Human activity recognition using recurrent neural networks, in Machine Learning and Knowledge Extraction, (2017), 267–274. https://doi.org/10.1007/978-3-319-66808-6_18
    [58] M. Schuster, K. Paliwal, Bidirectional recurrent neural networks, IEEE Trans. Signal Process., 45 (1997), 2673–2681. https://doi.org/10.1109/78.650093 doi: 10.1109/78.650093
    [59] L. Alawneh, B. Mohsen, M. Al-Zinati, A. Shatnawi, M. Al-Ayyoub, A comparison of unidirectional and bidirectional lstm networks for human activity recognition, in 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), (2020), 1–6. https://doi.org/10.1109/PerComWorkshops48775.2020.9156264
    [60] S. Mekruksavanich, A. Jitpattanakul, Lstm networks using smartphone data for sensor-based human activity recognition in smart homes, Sensors, 21 (2021), 1636. https://doi.org/10.3390/s21051636 doi: 10.3390/s21051636
    [61] J. Wu, J. Wang, A. Zhan, C. Wu, Fall detection with cnn-casual lstm network, Information, 12 (2021), 403. https://doi.org/10.3390/info12100403 doi: 10.3390/info12100403
    [62] K. Cho, B. van Merriënboer, D. Bahdanau, Y. Bengio, On the properties of neural machine translation: Encoder-decoder approaches, preprient, arXiv: 1409.1259.
    [63] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling, preprient, arXiv: 1412.3555.
    [64] M. Quadrana, P. Cremonesi, D. Jannach, Sequence-aware recommender systems, ACM Comput. Surv., 51 (2019), 1–36. https://doi.org/10.1145/3190616 doi: 10.1145/3190616
    [65] S. Rendle, C. Freudenthaler, L. Schmidt-Thieme, Factorizing personalized markov chains for next-basket recommendation, in Proceedings of the 19th International Conference on World Wide Web, (2010), 811–820. https://doi.org/10.1145/1772690.1772773
    [66] J. Okai, S. Paraschiakos, M. Beekman, A. Knobbe, C. R. de Sá, Building robust models for human activity recognition from raw accelerometers data using gated recurrent units and long short term memory neural networks, in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (2019), 2486–2491. https://doi.org/10.1109/EMBC.2019.8857288
    [67] H. M. Lynn, S. B. Pan, P. Kim, A deep bidirectional gru network model for biometric electrocardiogram classification based on recurrent neural networks, IEEE Access, 7 (2019), 145395–145405. https://doi.org/10.1109/ACCESS.2019.2939947 doi: 10.1109/ACCESS.2019.2939947
    [68] T. Alsarhan, L. Alawneh, M. Al-Zinati, M. Al-Ayyoub, Bidirectional gated recurrent units for human activity recognition using accelerometer data, in 2019 IEEE SENSORS, (2019), 1–4. https://doi.org/10.1109/SENSORS43011.2019.8956560
    [69] L. Alawneh, T. Alsarhan, M. Al-Zinati, M. Al-Ayyoub, Y. Jararweh, H. Lu, Enhancing human activity recognition using deep learning and time series augmented data, J. Ambient Intell. Humanized Comput., 12 (2021), 10565–10580. https://doi.org/10.1007/s12652-020-02865-4 doi: 10.1007/s12652-020-02865-4
    [70] C. Xu, D. Chai, J. He, X. Zhang, S. Duan, Innohar: A deep neural network for complex human activity recognition, IEEE Access, 7 (2019), 9893–9902. https://doi.org/10.1109/ACCESS.2018.2890675 doi: 10.1109/ACCESS.2018.2890675
    [71] V. S. Murahari, T. Plötz, On attention models for human activity recognition, in Proceedings of the 2018 ACM International Symposium on Wearable Computers, 2018,100–103. https://doi.org/10.1145/3267242.3267287
    [72] P. Li, Y. Song, I. V. McLoughlin, W. Guo, L. R. Dai, An attention pooling based representation learning method for speech emotion recognition, in Proc. Interspeech 2018, (2018), 3087–3091. https://doi.org/10.21437/Interspeech.2018-1242
    [73] C. Raffel, D. P. W. Ellis, Feed-forward networks with attention can solve some long-term memory problems, preprient, arXiv: 1512.08756.
    [74] M. N. Haque, M. T. H. Tonmoy, S. Mahmud, A. A. Ali, M. Asif Hossain Khan, M. Shoyaib, Gru-based attention mechanism for human activity recognition, in 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), (2019), 1–6. https://doi.org/10.1109/ICASERT.2019.8934659
    [75] L. Peng, L. Chen, Z. Ye, Y. Zhang, Aroma: A deep multi-task learning based simple and complex human activity recognition method using wearable sensors, Proc. ACM Interact., Mobile, Wearable Ubiquitous Technol., 2 (2018), 1–16. https://doi.org/10.1145/3214277 doi: 10.1145/3214277
    [76] E. Kim, S. Helal, D. Cook, Human activity recognition and pattern discovery, IEEE Pervasive Comput., 9 (2010), 48–53. https://doi.org/10.1109/MPRV.2010.7 doi: 10.1109/MPRV.2010.7
    [77] L. Liu, Y. Peng, M. Liu, Z. Huang, Sensor-based human activity recognition system with a multilayered model using time series shapelets, Knowledge-Based Syst., 90 (2015), 138–152. https://doi.org/10.1016/j.knosys.2015.09.024 doi: 10.1016/j.knosys.2015.09.024
    [78] D. Anguita, A. Ghio, L. Oneto, X. Parra, J. L. Reyes-Ortiz, A public domain dataset for human activity recognition using smartphones, in Proceedings of the 21th International European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, (2013), 437–442. Available from: http://hdl.handle.net/2117/20897.
    [79] Y. F. Zhang, P. J. Thorburn, W. Xiang, P. Fitch, SSIM—A deep learning approach for recovering missing time series sensor data, IEEE Internet Things J., 6 (2019), 6618–6628. https://doi.org/10.1109/JIOT.2019.2909038 doi: 10.1109/JIOT.2019.2909038
    [80] G. C. Cawley, N. L. Talbot, On over-fitting in model selection and subsequent selection bias in performance evaluation, J. Mach. Learn. Res., 11 (2010), 2079–2107. Available from: https://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
    [81] S. Parvandeh, H. W. Yeh, M. P. Paulus, B. A. McKinney, Consensus features nested cross-validation, Bioinformatics, 36 (2020), 3093–3098. https://doi.org/10.1093/bioinformatics/btaa046 doi: 10.1093/bioinformatics/btaa046
    [82] S. Varma, R. Simon, Bias in error estimation when using cross-validation for model selection, BMC Bioinf., 7 (2006), 91. https://doi.org/10.1186/1471-2105-7-91 doi: 10.1186/1471-2105-7-91
    [83] D. Anguita, A. Ghio, L. Oneto, X. Parra, J. L. Reyes-Ortiz, Energy efficient smartphone-based activity recognition using fixed-point arithmetic, J. Univers. Comput. Sci., 19 (2013), 1295–1314. Available from: http://hdl.handle.net/2117/20437.
    [84] A. Reiss, D. Stricker, Introducing a new benchmarked dataset for activity monitoring, in 2012 16th International Symposium on Wearable Computers, (2012), 108–109. https://doi.org/10.1109/ISWC.2012.13
    [85] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster, G. Tröster, et al., Collecting complex activity datasets in highly rich networked sensor environments, in 2010 Seventh International Conference on Networked Sensing Systems (INSS), (2010), 233–240. https://doi.org/10.1109/INSS.2010.5573462
    [86] T. Luong, H. Pham, C. D. Manning, Effective approaches to attention-based neural machine translation, in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, (2015), 1412–1421. https://doi.org/10.18653/v1/D15-1166
    [87] I. C. Gyllensten, A. G. Bonomi, Identifying types of physical activity with a single accelerometer: Evaluating laboratory-trained algorithms in daily life, IEEE Trans. Biomed. Eng., 58 (2011), 2656–2663. https://doi.org/10.1109/TBME.2011.2160723 doi: 10.1109/TBME.2011.2160723
  • This article has been cited by:

    1. Sara Salem Alzaid, Badr Saad T. Alkahtani, Real-world validation of fractional-order model for COVID-19 vaccination impact, 2024, 9, 2473-6988, 3685, 10.3934/math.2024181
    2. Badr Saad T. Alkahtani, Sara Salem Alzaid, Studying the Dynamics of the Rumor Spread Model with Fractional Piecewise Derivative, 2023, 15, 2073-8994, 1537, 10.3390/sym15081537
    3. Hardik Joshi, Mechanistic insights of COVID-19 dynamics by considering the influence of neurodegeneration and memory trace, 2024, 99, 0031-8949, 035254, 10.1088/1402-4896/ad2ad0
    4. Kottakkaran Sooppy Nisar, Muhammad Farman, Khadija Jamil, Ali Akgul, Saba Jamil, Onder Tutsoy, Computational and stability analysis of Ebola virus epidemic model with piecewise hybrid fractional operator, 2024, 19, 1932-6203, e0298620, 10.1371/journal.pone.0298620
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4766) PDF downloads(445) Cited by(44)

Figures and Tables

Figures(9)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog