Research article

Characterization of microstructural and optical CoFe2O4/SiO2 ferrite nanocomposite for photodegradation of methylene blue

  • Received: 23 October 2018 Accepted: 07 January 2019 Published: 14 January 2019
  • In this research, the CoFe2O4 and CoFe2O4/SiO2 nanocomposites have been synthesized using the co-precipitation method, and the microstructural properties of the samples were characterized using X-ray diffraction methods (XRD). The photodegradation activity of methylene blue for both nanocomposites were also investigated. The XRD pattern of CoFe2O4/SiO2 nanocomposites revealed that the sample was polycrystalline and had a spinel crystal structure with group space of Fd3m. The size of crystallite nanoparticle is 29.4 ± 0.2 nm for CoFe2O4/SiO2 and 26.8 ± 0.2 nm for CoFe2O4. The CoFe2O4/SiO2 nanocomposites have smaller optical band gap compared to bare CoFe2O4 due to smaller surface defect and larger particles size. The CoFe2O4/SiO2 nanocomposites showed a more energetic photodegradation activity of methylene blue than CoFe2O4. The encapsulation of the SiO2 matrix on the surface CoFe2O4 nanoparticles enhances the photodegradation activity. Based on the result, nanocomposites CoFe2O4/SiO2 and CoFe2O4 are prospective as nano-photocatalyst and nano-adsorbent for organic pollutants.

    Citation: Muhammad Yakob, Hamdani Umar, Puji Wahyuningsih, Rachmad Almi Putra. Characterization of microstructural and optical CoFe2O4/SiO2 ferrite nanocomposite for photodegradation of methylene blue[J]. AIMS Materials Science, 2019, 6(1): 45-51. doi: 10.3934/matersci.2019.1.45

    Related Papers:

    [1] Norbert Hungerbühler . Optimal control in pharmacokinetic drug administration. Mathematical Biosciences and Engineering, 2022, 19(5): 5312-5328. doi: 10.3934/mbe.2022249
    [2] H. Thomas Banks, W. Clayton Thompson, Cristina Peligero, Sandra Giest, Jordi Argilaguet, Andreas Meyerhans . A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assays. Mathematical Biosciences and Engineering, 2012, 9(4): 699-736. doi: 10.3934/mbe.2012.9.699
    [3] Christine K. Yang, Fred Brauer . Calculation of R0 for age-of-infection models. Mathematical Biosciences and Engineering, 2008, 5(3): 585-599. doi: 10.3934/mbe.2008.5.585
    [4] Glenn Ledder . Incorporating mass vaccination into compartment models for infectious diseases. Mathematical Biosciences and Engineering, 2022, 19(9): 9457-9480. doi: 10.3934/mbe.2022440
    [5] Rebeccah E. Marsh, Jack A. Tuszyński, Michael Sawyer, Kenneth J. E. Vos . A model of competing saturable kinetic processes with application to the pharmacokinetics of the anticancer drug paclitaxel. Mathematical Biosciences and Engineering, 2011, 8(2): 325-354. doi: 10.3934/mbe.2011.8.325
    [6] Avner Friedman, Wenrui Hao . Mathematical modeling of liver fibrosis. Mathematical Biosciences and Engineering, 2017, 14(1): 143-164. doi: 10.3934/mbe.2017010
    [7] Sudhi Sharma, Victorita Dolean, Pierre Jolivet, Brandon Robinson, Jodi D. Edwards, Tetyana Kendzerska, Abhijit Sarkar . Scalable computational algorithms for geospatial COVID-19 spread using high performance computing. Mathematical Biosciences and Engineering, 2023, 20(8): 14634-14674. doi: 10.3934/mbe.2023655
    [8] Maryam Al-Yahyai, Fatma Al-Musalhi, Ibrahim Elmojtaba, Nasser Al-Salti . Mathematical analysis of a COVID-19 model with different types of quarantine and isolation. Mathematical Biosciences and Engineering, 2023, 20(1): 1344-1375. doi: 10.3934/mbe.2023061
    [9] Süleyman Cengizci, Aslıhan Dursun Cengizci, Ömür Uğur . A mathematical model for human-to-human transmission of COVID-19: a case study for Turkey's data. Mathematical Biosciences and Engineering, 2021, 18(6): 9787-9805. doi: 10.3934/mbe.2021480
    [10] Yi Jiang, Kristin M. Kurianski, Jane HyoJin Lee, Yanping Ma, Daniel Cicala, Glenn Ledder . Incorporating changeable attitudes toward vaccination into compartment models for infectious diseases. Mathematical Biosciences and Engineering, 2025, 22(2): 260-289. doi: 10.3934/mbe.2025011
  • In this research, the CoFe2O4 and CoFe2O4/SiO2 nanocomposites have been synthesized using the co-precipitation method, and the microstructural properties of the samples were characterized using X-ray diffraction methods (XRD). The photodegradation activity of methylene blue for both nanocomposites were also investigated. The XRD pattern of CoFe2O4/SiO2 nanocomposites revealed that the sample was polycrystalline and had a spinel crystal structure with group space of Fd3m. The size of crystallite nanoparticle is 29.4 ± 0.2 nm for CoFe2O4/SiO2 and 26.8 ± 0.2 nm for CoFe2O4. The CoFe2O4/SiO2 nanocomposites have smaller optical band gap compared to bare CoFe2O4 due to smaller surface defect and larger particles size. The CoFe2O4/SiO2 nanocomposites showed a more energetic photodegradation activity of methylene blue than CoFe2O4. The encapsulation of the SiO2 matrix on the surface CoFe2O4 nanoparticles enhances the photodegradation activity. Based on the result, nanocomposites CoFe2O4/SiO2 and CoFe2O4 are prospective as nano-photocatalyst and nano-adsorbent for organic pollutants.


    The process of selecting appropriate and applicable variable values for a specific task is known as optimization [1,2,3]. Optimization exists in almost every domain, including job shop scheduling [4], feature selection [5,6,7], image processing [8,9], face detection and recognition [10], predicting chemical activities [11], classification [12,13], network allocation [14], internet of vehicles [15], routing [16], and neural network [17]. Due to the nature of real-world problems, Optimization becomes very challenging and has many difficulties such as multiobjectivity [18], memetic optimization [19], large-scale optimization [20], fuzzy optimization [21], uncertainties [22] and parameter estimation [23]. Metaheuristics algorithms have been used to solve such problems due to their advantages such as flexibility, efficiency and getting a near-optimal solution in a reasonable time.

    Table 1.  Summary of literature review on Aquila optimizer (AO) variants and applications.
    SN. Modification Name Authors Remarks
    1 Original AO Abualigah et al. [49] Authors simulate Aquila behavior
    2 IHAOHHO Wang et al. [50] Hybrid Aquila optimizer and Harris hawks algorithm
    3 Simplified AO (IAO) Zhao et al. [54] Only two techniques are used and others were dropped
    4 AGWO Ma et al. [55] GWO is hybridized with AO
    5 Aqu Abdelaziz et al. [58] COVID-19 images

     | Show Table
    DownLoad: CSV

    Examples of metaheuristics algorithms include particle swarm optimization (PSO) [24], artificial bee colony [25], coot bird [26], genetic algorithms (GAs) [27], the krill herd algorithm [28], the harmony search (HS) algorithm [29], the snake optimizer [30], monarch butterfly optimization [31], the slime mold algorithm [32], the moth search algorithm [33], the hunger games search [34], the Runge-Kutta method [35], the weighted mean of vectors [36], the virus colony search [37], the lightning search algorithm [38], ant lion optimization [39], the crow search algorithm [40], moth-flame optimization [41], the wild horse optimizer [42], the remora optimization algorithm [43], the artificial rabbit Optimizer [44], the artificial hummingbird algorithm [45], grasshopper optimization algorithm (GOA) [46], grey wolf optimizer (GWO) [47] and the whale optimization algorithm (WOA) [48].

    The Aquila optimizer (AO) is the latest developed algorithm proposed by Abualigah et al. [49] which simulates the four different phases of Aquila hunting behavior. Wang et al. [50] developed an improved version of the AO by replacing AO's original exploitation phase with the Harris hawks optimizer's exploitation phase. Moreover, they embedded a random opposition-learning strategy and nonlinear escaping operator in their proposed algorithm. They argued that the proposed algorithm is able to achieve the best results compared with the other five metaheuristic optimizers. Also, Mahajan et al. [51] hybridized the AO with the arithmetic optimization algorithm (AOA) [52]. They tested their algorithm which is called AO-AOA with original AO, original AOA, WOA, GOA and GWO. Another hybrid work between AO and AOA has been done by Zhang et al. [53]. Likewise, Zhao et al. [54] developed another version of the AO called the simplified AO algorithm by removing the control equation of the exploitation and exploration procedures (latter strategies) and keeping the former two techniques. They said their developed algorithm IAO achieved better results than many newly developed swarm algorithms. Another enhancement has been done by Ma et al. [55] in which grey wolf optimizer is hybridized using Aquila algorithm that allows some wolves to be able to fly, improving their search techniques, and avoiding getting stuck in local optima. They tested their developed algorithm with many optimizers using 23 functions. Also, Gao et al. [56] employed three different strategies to enhance the AO algorithm. These strategies are Gaussian mutation (GM), random-opposition learning, and developing a search control operator. They argued that their algorithm, an improved AO, has superior results compared to other optimizers.

    The AO has been successfully used in many applications. For example, AlRassas et al. [57] tried to forecast oil production by using the AO to optimize the adaptive neuro-fuzzy inference system model. Also, Abdelaziz et al. [58] tried to classify COVID-19 images using the AO algorithm and MobilNet3. Likewise, Fatani et al. [59] developed an extraction and selecting approach for features using the AO and deep learning for iot detection intrusion systems.

    Despite the powerfulness and superiority of the algorithm, and as stated by the no free lunch theorem, the AO cannot solve all optimization issues. So, the AO still needs more enhancements and developments.

    This paper introduces a novel version of the AO in which three different strategies have been used to overcome the original optimizer drawbacks such as getting stuck in local optima and slow convergence. These strategies are the chaotic local search (CLS), opposition-based learning (OBL) and the restart strategy (RS). Using OBL and the RS enhances the AO exploratory search capabilities whereas the CLS improves AO exploitative search abilities.

    The main contributions of this paper are as follows:

    ● A novel Aquila algorithm has been developed using three strategies: OBL, the RS and the CLS.

    ● The developed optimizer has been compared with the original AO and nine other algorithms, namely, the CSA [40], EHO [60], GOA [46], LSHADE [61], Lshade-EpSin [62], MFO [63], MVO [64], and PSO [24].

    ● A scalability test and removing one strategy from the developed algorithm experiments have been carried out.

    ● mAO was tested using 29 functions and five constrained ones.

    This paper is organized as follows: Section 2 discusses the background and preliminaries of the original algorithm, OBL, the CLS and the RS, whereas Section 3 introduces the structure of the modified optimizer and its complexity. Sections 4 and 5 discuss the results of the proposed mAO and other competitors in CEC2017 and five different constrained engineering problems whereas Section 6 concludes the paper.

    Aquila algorithm is one of the latest population-based swarm intelligence optimizers developed by Abualigah et al. [49]. Aquila can be considered among the most well-known prey birds existed in north hemisphere. Aquila is brown with a golden back body. Aquila uses its agility and strength with its wide nails and strong feet to catch various types ofprey usually squirrels, rabbits, marmots, and hares [65].

    Aquila optimizer (AO) simulates the four different Aquila strategies in hunting. The next subsection shows Aquila's mathematical model.

    AO begins with a random set of individuals that can be represented mathematically as follows:

    X=[X1,1X1,2...X1,j...X1,D1X1,DX2,1X2,2...X2,j...X2,D1X2,D...............Xn1,1Xn1,2...Xn1,j...Xn1,D1Xn1,DXn,1Xn,2...Xn,j...Xn,D1Xn,D] (2.1)

    where X is an agent position (solution) that can be computed using the following equation:

    Xi,j=rand×(UBjLBj)+LBj,i=1,...,n,j=1,...,D (2.2)

    where D refers to the number of decision variables, N indicates the number of agents, UBj and LBj are the jth upper and lower boundaries, and xi refers to the ith value of the decision variable.

    AO simulates Aquila hunting in four different phases where the optimizer can easily move from exploration and exploitation using the following condition:

    IF, {t(23)×TPerform explorationOtherwisePerform exploration

    In this phase, Aquila will determine the area to hunt the prey and select it by a vertical stoop and high soar. The mathematical formula for such a behavior is given by the following two equations:

    X1(t+1)=Xbest(t)×(1tT)+(XM(t)Xbest(t)rand) (2.3)
    XM(t)=1NNi=1Xi(t),j=1,2,...,Dim (2.4)

    where XM(t) indicates the mean position in the ith generation, Xbest is the best Aquila position founded in this iteration, r is a randomly generated number in the interval [0,1], t is the current generation where T is the maximum generation number, and N is the Aquilas number.

    This technique is the most technique used by Aquila for hunting. To attack the prey, a short gliding is used with contour flight. Aquila position's will be updated as follows:

    X2(t+1)=Xbest(t)×Levy(D)+XR(t)+(yx)rand (2.5)

    where XR indicates a position of Aquila generated randomly, rand is a random real number between 0 and 1, D is the number of variables, and Levy refers to a lévy function which is presented as follows:

    Levy(D)=s×u×σ|ν|1β (2.6)
    σ=Γ(1+β)×sin(πβ2)Γ(1+β2)×β×2β12 (2.7)

    where s is a fixed value and equals 0.01, u and μ are random numbers between 0 and 1 and β is a constant and equals 1.5. Both y and x are used to model the spiral shape and can be computed using the following two equations:

    y=r×cos(θ) (2.8)
    x=r×sin(θ) (2.9)

    where r and θ can be calculated as follows:

    r=r1+U×D1 (2.10)
    θ=ω×D1+θ1 (2.11)
    θ1=3×π2 (2.12)

    where U equals 0.00565, ω equals 0.005, and r1 has a value between 1 and 20.

    In the 3rd technique, the prey area is determined and agents can vertically perform a preliminary attack with low flight. Agents can attack the prey as follow:

    X3(t+1)=(Xbest(t)XM(t))×αrand+((UBLB)×rand+LB)×δ (2.13)

    where XM(t) indicates the mean position in the i-th generation, Xbest is the best Aquila position founded in this iteration, rand is a randomly generated number in the interval [0,1], α and β are exploitation parameters that are equal 0.1, and UB and LB refer to the upper and lower boundaries.

    In this phase, Aquila can easily chase the prey and attack attacks it using escape trajectory light which can be modeled as follows:

    X4(t+1)=QF×Xbest(t)(G1×X(t)×rand)G2×Levy(D)+rand×G1 (2.14)
    QF(t)=t2×rand1(1r)2 (2.15)
    G1=2×rand1 (2.16)
    G2=2×(1tT) (2.17)

    where QF(t) is the quality value, G1 refers to various AO motions, and G2 refers to chasing prey flight slope.

    Opposition-based learning strategy is a technique introduced by Tizhoosh [66] which has been employed by many researchers to improve many swarm optimizers. For example, Hussien [67] embedded OBL in SSA to overcome getting trapped in local optima. Moreover, Hussien and Amin used OBL with chaotic local search to improve the exploration abilities of HHO [7]. Zhao et al. employed OBL with arithmetic optimization algorithm [1]. OBL works by comparing the original solution with its opposite one. Let x is a real number that falls in the interval [lb,ub], then its opposite can be calculated from the following equation:

    ˉx=ub+lbx (2.18)

    where lb and ub are lower boundary and upper one respectively, and ˉx indicates the opposite solution. If x is a vector that has multi values, then ˉx can be computed from the following equation:

    ¯xj=ubj+lbjxj (2.19)

    where xj indicates the jth value of x and ubj and lbj refer to upper and lower boundaries respectively.

    The chaotic local search (CLS) technique has been integrated with many swarm optimizers such as WOA [68], HHO [7], brain storm optimization [69], and Jaya Algorithm (JAYA) [70]. CLS technique is almost used with the logistic map which is given in the following equation:

    os+1=Cos(1os) (2.20)

    where s is the number of the current iteration, C is a control parameter that equals 4, o1 0.25, 0.50 and 0.75. Local search is used to search in the neighborhood area of the already founded optimal solution. CLS can be represented by the following equation:

    Cs=(1μ)×T+μ`Ci,i=1,2,...,n (2.21)

    where Cs refers to the value generated by CLS in iteration i and `Ci can be easily calculated as follows:

    `Ci=LB+Ci×(UBLB) (2.22)

    μ is a shrinking factor and can be computed from the following below equation:

    μ=Tt+1T (2.23)

    where t and T refer to the current and maximum number of iterations.

    During the search operation, some agents may not be able to find a better location as they may get trapped in local optimum regions. Such agents may affect the overall search as they take many generation resources and don't enhance the search process. Restart strategy (RS) at this point which is proposed by Zhang et al. [71] can help worse agents to jump out from local regions. RS counts the number of times for each individual that has been enhanced and updated. So, if the i-th agent has updated, then the trial value will be zero, otherwise, the trial value will be increased by 1. If the trial is equal to a certain threshold, then the individual position will be changed using the following 2 equations:

    X(t+1)=lb+rand.(ublb) (2.24)
    X(t+1)=rand.(ub+lb)X(t) (2.25)

    where ub and lb refer to upper and lower boundaries and rand indicates a random number in the number [0,1].

    AO similar to other swarm optimizers may get stagnation in sub-optimal areas and have a slow convergence, especially when addressing and handling complicated & complex problems that have high dimensional features.

    Our proposed algorithm which is termed mAO tries to solve the original optimizer limitations. In the proposed mAO, three different strategies are used to improve the classical AO namely: opposition-based Learning, restart strategy, and chaotic local search. OBL strategy is used in both the initialization phase and updating agent position process. OBL is used in initialization by selecting the best N solutions from the pool of Xˉx to ensure the algorithm starts with a good set of agents whereas it is embedded in the updating process to improve algorithm exploration abilities. Moreover, a chaotic local search mechanism is used to improve the best solution and existed until now which will lead to the enhancement of the whole individuals. On the other hand, a restart strategy is employed in AO to change the position of the worst individuals if they have already get fallen in local regions. The pseudo-code of the developed optimizer can be seen in algorithm 1.

    The complexity of the proposed algorithm can be computed by calculating the complexity of each phase separately, i.e., initialization, evaluation, and updating process. So O(mAO)=O(Initialization)+O(Evaluation)+O(Updating Position)+O(CLS+OBL+RS). If D is the number of dimensions, N is the number of individuals, and T is the max iteration number, the following can be obtained.

    O(Initialization)=O(N)

    O(Evaluation)=O(N×T)

    O(Updating Position)=O(N×T×D)

    O(CLS)=O(N×T)

    O(OBL)=O(N×T×D)

    O(RS)=O(N×D)

    O(CLS+OBL+RS)=O(N×T×D)

    O(mAO)=O(N)+O(N×T)+O(N×T×D)+O(N×T×D)=O(N×T×D)

    To validate our proposed approach, 29 functions from CEC2017 have been used to test mAO performance. These CEC2017 functions are very challenging and contain different types of functions (Unimodal, multimodal, composite, and hybrid). The description of CEC2017 functions is shown in Table 4 where opt. refers to the global optimal value. All experiments have been performed on Matlab 2021b using Intel Corei7 and 8.00 G of RAM. The parameter setting of all experiments is shown in Table 2. mAO is compared with the original Aquila Optimizer and other nine well-known and powerful swarm algorithms namely: crow search algorithm [40], elephant herd optimizer [60], grasshopper optimization algorithm [46], LSHADE [61], Lshade-EpSin [62], moth-flame optimization [63], multi-verse optimization [64], and particle swarm algorithm [24]. The parameter of each mentioned algorithm is given in Table 3.

    Algorithm 1 Improved Aquila optimizer
    1: Initialize the population X of the AO
    2: Calculate X and select the best N from (X U X)
    3: Initialize AO parameters
    4: while (t < T) do
    5:  Compute the objective function values
    6:   Select the best agent Xbest
    7:   for (i = 1, 2, ..., N) do
    8:    Update the current solution mean
    9:    Compute y, x,G1,G2 and Levy(D)
    10:      if (t (23)T) then
    11:        if rand 0.5 then
    12:        Update current position using Eq (2.3)
    13:          Compute opposite position using Eq (2.19)
    14:        else
    15:          Update current position using Eq (2.5)
    16:          Compute opposite position using Eq (2.19)
    17:          if Fitness (rand0.5) then
    18:            Update the current solution using Eq (2.13)
    19:            Compute opposite position using Eq (2.19)
    20:          else
    21:            Update the current solution using Eq (2.14)
    22:            Compute opposite position using Eq (2.19)
    23:          end if
    24:         end if
    25:      end if
    26:    end for
    27:    Apply RS strategy using Eqs (2.24) and (2.25)
    28:    Apply CLS strategy using Eq (2.21)
    29: end while
    30: Return best solution

    Table 2.  Experiments parameters settings.
    No. Parameter Name Value
    1 Population Size 30
    2 Dim 30
    3 Max number of iteration 500

     | Show Table
    DownLoad: CSV
    Table 3.  Setting of all meta-heuristic algorithms parameters.
    Alg. Parameter Value
    CSA AP 0.1
    fl 2
    EHO Numclanx 5
    α 0.5
    β 0.1
    number of elite 2
    GOA cmax 1
    cmin 0.00004
    L-SHADE Pbest 0.1
    Arc rate 2
    HHO α 1.5
    LSHADE-EpSin H 5
    NPmin 4
    Pbest rate 0.11
    Arc rate 1.4
    ps 0.4
    pc 0.4
    MFO a [2,1]
    Spiral factor b 1
    MVO p 6
    PSO wMax 0.9
    wMin 0.2
    c1 2.0
    c2 2.0
    AO U 0.00565
    r1 10
    ω 0.005
    α 0.1
    δ 0.1
    G1 [1,1]
    G2 [2,0]
    mAO U 0.00565
    r1 10
    ω 0.005
    α 0.1
    δ 0.1
    G1 [1,1]
    G2 [2,0]
    C 4

     | Show Table
    DownLoad: CSV
    Table 4.  Benchmark functions.
    No. Types Name Opt.
    F1 Unimodal Shifted and Rotated Bent Cigar Function 100
    F2 Shifted and Rotated Sum of Different Power Function 200
    F3 Shifted and Rotated Zakharov Function 300
    F4 Multimodal Shifted and Rotated Rosenbrock's Function 400
    F5 Shifted and Rotated Rastrigin's Function 500
    F6 Shifted and Rotated Expanded Scaffer's F6 Function 600
    F7 Shifted and Rotated Lunacek Bi-Rastrigin Function 700
    F8 Shifted and Rotated Non-Continuous Rastrigin's Function 800
    F9 Shifted and Rotated Lévy Function 900
    F10 Shifted and Rotated Schwefel's Function 1000
    F11 Hybrid H-Fun 1 (N = 3) 1100
    F12 H-Fun 2 (N = 3) 1200
    F13 H-Fun 3 (N = 3) 1300
    F14 H-Fun 4 (N = 4) 1400
    F15 H-Fun 5 (N = 4) 1500
    F16 H-Fun 6 (N = 4) 1600
    F17 H-Fun 6 (N = 5) 1700
    F18 H-Fun 6 (N = 5) 1800
    F19 H-Fun 6 (N = 5) 1900
    F20 H-Fun 6 (N = 6) 2000
    F21 Composition C-Fun 1 (N = 3) 2100
    F22 C-Fun 2 (N = 3) 2200
    F23 C-Fun 3 (N = 4) 2300
    F24 C-Fun 4 (N = 4) 2400
    F25 C-Fun 5 (N = 5) 2500
    F26 C-Fun 6 (N = 5) 2600
    F27 C-Fun 7 (N = 6) 2700
    F28 C-Fun 8 (N = 6) 2800
    F29 C-Fun 9 (N = 3) 2900
    F30 C-Fun 10 (N = 3) 3000

     | Show Table
    DownLoad: CSV

    The developed optimizer and its competitors' results are shown in Table 5 in terms of best (min), worst (mac), mean (average), and standard deviation. From the above-mentioned table, it can be seen that the suggested technique has good results and performs well in solving all functions type. For example, in term of average, it ranked first in all unimodal functions (F1 and F3), and all multimodal functions (F4 and F10). On the other hand, it can be noticed that mAO achieved better results compared to the original optimizer and others. It ranked first in almost functions whereas it ranked first in solving composite problems in 5 functions out of 10. Besides the statistical measures, convergence curve can be seen as a powerful tool to compare any new algorithm with its competitors to see if it has a good convergence or slow one. mAO has been recognized to achieve a fast convergence curve in all mentioned function types as shown in Figures 13.

    Table 5.  The comparison results of all algorithms over 30 functions.
    F CSA EHO GOA HHO LSHADE Lshade-EpSin MFO MVO PSO AO mAO
    F1 Best 4.31E+09 5.06E+09 3.06E+09 2.09E+09 3.51E+10 1.31E+11 2.08E+10 2.25E+10 2.88E+08 4.18E+08 1.50E+07
    Worest 1.08E+10 1.12E+10 9.40E+09 9.57E+09 6.22E+10 1.49E+11 9.10E+10 4.27E+10 2.76E+09 9.96E+08 2.62E+07
    Mean 7.39E+09 8.31E+09 5.64E+09 5.64E+09 4.05E+10 1.36E+11 3.80E+10 2.79E+10 5.49E+08 5.45E+08 1.78E+07
    Std 1.71E+09 1.68E+09 1.98E+09 1.96E+09 8.34E+09 9.47E+09 2.23E+10 7.22E+09 5.47E+08 2.02E+08 4.23E+06
    F3 Best 1.27E+05 5.90E+09 1.20E+05 1.40E+05 2.62E+05 2.54E+05 3.04E+05 1.41E+05 2.41E+05 1.43E+05 9.90E+04
    Worest 1.79E+05 1.88E+10 4.65E+05 2.11E+05 4.78E+05 3.29E+05 5.58E+05 2.50E+05 3.63E+05 2.30E+05 1.77E+05
    Mean 1.32E+05 8.74E+09 2.18E+05 1.80E+05 3.38E+05 2.75E+05 3.92E+05 1.75E+05 2.71E+05 1.58E+05 1.31E+05
    Std 1.57E+04 2.92E+09 8.25E+04 1.86E+04 7.52E+04 3.57E+04 8.69E+04 4.36E+04 4.13E+04 2.55E+04 1.55E+04
    F4 Best 1.35E+03 5.25E+09 8.43E+02 1.23E+03 6.79E+03 3.72E+04 2.72E+03 4.02E+03 7.90E+02 7.75E+02 5.35E+02
    Worest 2.93E+03 1.22E+10 1.68E+03 3.48E+03 1.27E+04 4.67E+04 6.81E+03 9.14E+03 1.19E+03 1.05E+03 7.24E+02
    Mean 2.02E+03 9.03E+09 1.18E+03 1.91E+03 8.15E+03 3.92E+04 4.21E+03 5.24E+03 8.93E+02 8.36E+02 5.91E+02
    Std 4.89E+02 2.17E+09 2.63E+02 4.81E+02 2.40E+03 5.65E+03 1.49E+03 1.58E+03 1.21E+02 9.06E+01 6.13E+01
    F5 Best 7.53E+02 5.93E+09 7.83E+02 8.92E+02 1.10E+03 1.32E+03 9.46E+02 1.06E+03 7.58E+02 8.18E+02 7.26E+02
    Worest 9.42E+02 1.64E+10 1.07E+03 1.06E+03 1.26E+03 1.41E+03 1.12E+03 1.14E+03 9.69E+02 9.36E+02 9.57E+02
    Mean 8.64E+02 9.26E+09 9.51E+02 9.45E+02 1.13E+03 1.36E+03 1.00E+03 1.08E+03 8.43E+02 8.64E+02 7.77E+02
    Std 4.91E+01 2.37E+09 6.86E+01 3.90E+01 6.41E+01 4.90E+01 7.50E+01 6.10E+01 7.57E+01 4.44E+01 2.55E+01
    F6 Best 6.57E+02 4.24E+09 6.48E+02 6.66E+02 6.66E+02 7.07E+02 6.51E+02 6.45E+02 6.89E+02 6.53E+02 6.10E+02
    Worest 6.77E+02 1.51E+10 7.03E+02 6.87E+02 7.00E+02 7.18E+02 6.78E+02 6.92E+02 6.98E+02 6.85E+02 6.25E+02
    Mean 6.70E+02 9.19E+09 6.76E+02 6.79E+02 6.74E+02 7.11E+02 6.61E+02 6.53E+02 6.91E+02 6.60E+02 6.15E+02
    Std 4.73E+00 2.21E+09 1.36E+01 5.18E+00 9.81E+00 4.63E+00 1.07E+01 1.23E+01 4.54E+00 9.84E+00 3.37E+00
    F7 Best 1.40E+03 2.87E+09 1.41E+03 1.78E+03 1.83E+03 3.39E+03 1.71E+03 1.78E+03 1.24E+03 1.26E+03 1.15E+03
    Worest 1.82E+03 1.43E+10 1.88E+03 1.97E+03 2.38E+03 3.93E+03 2.86E+03 1.95E+03 1.42E+03 1.48E+03 1.34E+03
    Mean 1.58E+03 9.15E+09 1.61E+03 1.88E+03 1.95E+03 3.58E+03 2.02E+03 1.86E+03 1.27E+03 1.32E+03 1.18E+03
    Std 1.22E+02 2.93E+09 1.38E+02 6.27E+01 1.77E+02 2.55E+02 3.84E+02 7.46E+01 7.74E+01 7.97E+017.24E+01
    F8 Best 1.10E+03 4.48E+09 1.09E+03 1.17E+03 1.39E+03 1.63E+03 1.25E+03 1.38E+03 1.09E+03 1.12E+03 1.06E+03
    Worest 1.28E+03 1.09E+10 1.33E+03 1.31E+03 1.51E+03 1.71E+03 1.48E+03 1.44E+03 1.22E+03 1.30E+03 1.17E+03
    Mean 1.20E+03 8.09E+09 1.23E+03 1.24E+03 1.44E+03 1.65E+03 1.29E+03 1.40E+03 1.13E+03 1.17E+03 1.09E+03
    Std 4.83E+01 2.11E+09 7.29E+01 3.56E+01 4.99E+01 3.18E+01 9.21E+01 2.62E+01 6.03E+01 6.46E+01 5.22E+01
    F9 Best 9.40E+03 4.06E+09 1.60E+04 2.58E+04 2.70E+04 4.64E+04 1.78E+04 2.74E+04 4.18E+03 1.89E+04 1.49E+04
    Worest 2.12E+04 1.63E+10 3.73E+04 3.87E+04 4.56E+04 6.01E+04 3.99E+04 4.05E+04 4.32E+04 3.53E+04 3.15E+04
    Mean 1.54E+04 8.42E+09 2.66E+04 3.18E+04 3.27E+04 5.25E+04 3.11E+04 2.16E+04 8.35E+03 2.20E+04 2.10E+04
    Std 4.77E+03 2.73E+09 5.60E+03 3.69E+03 7.64E+03 5.09E+03 5.32E+03 8.22E+03 9.05E+03 6.91E+03 3.32E+03
    F10 Best 7.57E+03 4.85E+09 8.21E+03 8.92E+03 1.56E+04 1.50E+04 8.49E+03 1.25E+04 1.40E+04 1.16E+04 7.05E+03
    Worest 1.46E+04 1.10E+10 1.21E+04 1.24E+04 1.72E+04 1.57E+04 1.10E+04 1.08E+04 1.58E+04 1.41E+04 1.05E+04
    Mean 9.31E+03 7.96E+09 1.02E+04 1.03E+04 1.62E+04 1.53E+04 9.24E+03 1.29E+04 1.45E+04 1.21E+04 7.82E+03
    Std 8.42E+02 1.92E+09 1.11E+03 8.32E+02 6.62E+02 7.99E+02 1.10E+03 1.06E+03 1.19E+03 1.42E+03 2.81E+02
    F11 Best 2.63E+03 3.77E+09 2.68E+03 2.09E+03 1.82E+04 2.58E+04 6.14E+03 5.54E+03 1.84E+03 2.24E+03 1.58E+03
    Worest 6.26E+03 1.14E+10 9.92E+03 5.10E+03 4.98E+04 4.09E+04 3.48E+04 1.43E+04 2.78E+03 4.10E+03 1.97E+03
    Mean 4.52E+03 7.36E+09 4.76E+03 3.20E+03 2.53E+04 3.05E+04 1.63E+04 8.45E+03 2.10E+03 2.65E+03 1.66E+03
    Std 1.00E+03 S1.86E+09 1.96E+03 8.03E+02 1.01E+04 5.04E+03 9.70E+03 2.96E+03 3.18E+02 5.58E+02 1.19E+02
    F12 Best 6.49E+08 4.25E+09 4.74E+07 2.19E+08 5.41E+09 5.12E+10 1.94E+09 6.06E+07 5.68E+09 3.34E+07 1.76E+07
    Worest 2.19E+09 1.32E+10 1.02E+09 2.83E+09 1.25E+10 6.42E+10 1.05E+10 3.05E+08 1.98E+10 1.43E+08 1.46E+08
    Mean 1.26E+09 8.35E+09 3.63E+08 9.33E+08 6.99E+09 5.52E+10 3.89E+09 1.17E+08 9.44E+09 5.29E+07 4.74E+07
    Std 5.02E+08 2.11E+09 2.44E+08 6.13E+08 1.93E+09 7.75E+09 2.74E+09 6.99E+07 4.44E+09 3.05E+07 3.85E+07
    F13 Best 1.49E+06 1.92E+09 6.11E+04 7.36E+06 9.12E+08 1.75E+10 7.50E+05 2.92E+05 1.14E+09 2.63E+04 1.24E+04
    Worest 6.05E+07 1.33E+10 1.37E+06 2.18E+08 2.41E+09 3.16E+10 6.52E+09 7.87E+05 6.61E+09 1.26E+05 2.98E+04
    Mean 1.40E+07 8.47E+09 4.43E+05 3.12E+07 1.55E+09 2.05E+10 1.33E+09 3.97E+05 2.08E+09 4.84E+04 1.76E+04
    Std 1.45E+07 2.77E+09 3.48E+05 4.58E+07 5.87E+08 4.92E+09 1.89E+09 1.52E+05 1.78E+09 2.80E+04 6.46E+03
    F14 Best 1.06E+05 2.87E+09 7.01E+04 6.61E+05 2.39E+06 1.25E+07 8.65E+05 1.51E+05 1.14E+06 1.92E+05 4.49E+05
    Worest 2.65E+06 1.90E+10 2.48E+06 2.72E+07 2.52E+07 4.42E+07 1.83E+07 5.17E+05 1.28E+07 1.28E+06 1.78E+06
    Mean 9.35E+05 9.20E+09 6.14E+05 6.98E+06 6.92E+06 2.09E+07 3.35E+06 2.16E+05 7.00E+05 3.01E+06 4.70E+05
    Std 9.00E+05 3.45E+09 6.77E+05 8.03E+06 6.70E+06 9.15E+06 4.12E+06 1.07E+05 4.74E+05 2.91E+06 3.40E+05
    F15 Best 1.72E+04 2.81E+09 1.57E+04 5.70E+05 2.06E+08 4.62E+09 5.41E+04 9.19E+04 1.25E+08 4.67E+03 3.34E+03
    Worest 1.77E+05 1.35E+10 4.60E+05 4.58E+07 1.07E+09 7.78E+09 4.18E+08 2.79E+05 2.68E+04 1.14E+09 2.39E+04
    Mean 5.53E+04 8.47E+09 1.09E+05 5.40E+06 3.74E+08 5.82E+09 6.28E+07 1.30E+05 9.53E+03 3.74E+08 9.51E+03
    Std 3.58E+04 2.44E+09 1.01E+05 1.06E+07 2.76E+08 1.54E+09 1.53E+08 5.82E+04 7.36E+03 3.64E+08 5.65E+03
    F16 Best 3.49E+03 4.88E+09 3.24E+03 3.62E+03 6.09E+03 7.79E+03 3.53E+03 3.10E+03 3.62E+03 4.85E+03 3.35E+03
    Worest 6.54E+03 1.19E+10 5.05E+03 6.22E+03 7.18E+03 8.70E+03 5.51E+03 5.36E+03 5.31E+03 7.41E+03 4.21E+03
    Mean 4.79E+03 7.67E+09 4.14E+03 4.97E+03 6.42E+03 8.09E+03 4.20E+03 3.61E+03 4.19E+03 5.31E+03 3.56E+03
    Std 6.41E+02 1.91E+09 5.59E+02 7.09E+02 4.97E+02 4.27E+02 7.40E+02 6.06E+02 7.01E+02 7.31E+02 3.73E+02
    F17 Best 2.92E+03 4.07E+09 2.88E+03 2.70E+03 4.79E+03 7.38E+03 3.70E+03 3.09E+03 3.32E+03 3.85E+03 2.89E+03
    Worest 3.85E+03 1.26E+10 4.41E+03 4.72E+03 5.52E+03 1.41E+04 5.32E+03 4.00E+03 4.75E+03 5.00E+03 3.94E+03
    Mean 3.40E+03 7.99E+09 3.73E+03 3.70E+03 5.03E+03 8.94E+03 3.92E+03 3.31E+03 3.73E+03 4.24E+03 3.23E+03
    Std 2.67E+02 2.21E+09 3.70E+02 5.26E+02 2.96E+02 2.13E+03 5.22E+02 3.76E+02 6.02E+02 4.28E+02 4.27E+02
    F18 Best 1.02E+06 4.40E+09 6.81E+06 3.22E+06 3.22E+07 9.35E+07 3.95E+06 7.89E+05 2.81E+06 1.73E+06 1.17E+06
    Worest 1.73E+07 1.10E+10 6.56E+07 3.75E+07 2.01E+08 1.90E+08 3.42E+07 9.04E+06 1.53E+07 7.00E+06 1.67E+06
    Mean 4.69E+06 8.10E+09 2.07E+07 1.00E+07 6.33E+07 1.12E+08 1.11E+07 2.32E+06 6.56E+06 3.13E+06 6.42E+06
    Std 4.24E+06 1.78E+09 1.80E+07 8.83E+06 4.68E+07 3.28E+07 8.56E+06 2.05E+06 4.19E+06 1.77E+06 4.56E+06
    F19 Best 1.53E+05 5.36E+09 3.07E+05 2.23E+05 7.44E+07 1.67E+09 3.87E+05 2.23E+06 2.25E+03 5.96E+07 1.14E+04
    Worest 7.15E+06 1.27E+10 3.91E+07 1.42E+07 2.05E+08 3.63E+09 8.29E+08 1.62E+07 3.22E+04 3.87E+08 2.91E+04
    Mean 1.77E+06 9.34E+09 1.27E+07 3.84E+06 1.09E+08 2.33E+09 4.50E+07 5.65E+06 8.79E+03 1.21E+08 1.63E+04
    Std 1.64E+06 1.77E+09 9.06E+06 3.91E+06 4.59E+07 7.14E+08 1.85E+08 4.10E+06 1.02E+04 8.23E+07 7.65E+03
    F20 Best 3.01E+03 4.10E+09 2.98E+03 3.15E+03 4.62E+03 4.29E+03 3.37E+03 3.12E+03 3.26E+03 3.12E+03 3.26E+03
    Worest 3.83E+03 1.67E+10 4.34E+03 3.89E+03 5.17E+03 4.63E+03 4.22E+03 4.11E+03 4.52E+03 3.93E+03 4.09E+03
    Mean 3.34E+03 8.95E+09 3.55E+03 3.52E+03 4.85E+03 4.35E+03 3.61E+03 3.30E+03 3.58E+03 3.38E+03 3.57E+03
    Std 2.28E+02 2.85E+09 2.95E+02 2.41E+02 2.25E+02 1.41E+02 2.53E+02 3.47E+02 5.21E+02 2.92E+02 3.06E+02
    F21 Best 2.66E+03 3.63E+09 2.67E+03 2.79E+03 2.86E+03 3.14E+03 2.70E+03 2.51E+03 2.88E+03 2.56E+03 2.54E+03
    Worest 2.91E+03 1.45E+10 3.06E+03 3.36E+03 2.98E+03 3.22E+03 2.95E+03 2.63E+03 3.07E+03 2.80E+03 2.78E+03
    Mean 2.78E+03 9.28E+09 2.78E+03 2.96E+03 2.90E+03 3.17E+03 2.77E+03 2.56E+03 2.95E+03 2.66E+03 2.62E+03
    Std 6.26E+01 2.75E+09 9.73E+01 1.16E+02 4.33E+01 4.05E+01 8.87E+01 6.43E+01 9.74E+01 7.62E+01 5.30E+01
    F22 Best 3.70E+03 3.89E+09 9.28E+03 1.02E+04 1.73E+04 1.66E+04 9.83E+03 1.49E+04 1.52E+04 1.29E+04 9.01E+03
    Worest 1.33E+04 1.74E+10 1.38E+04 1.48E+04 1.88E+04 1.76E+04 1.19E+04 1.75E+04 1.72E+04 1.57E+04 1.13E+04
    Mean 1.07E+04 9.31E+09 1.16E+04 1.21E+04 1.77E+04 1.69E+04 1.04E+04 1.56E+04 1.53E+04 1.30E+04 9.65E+03
    Std 2.52E+03 3.40E+09 1.31E+03 1.12E+03 9.98E+02 4.37E+02 8.50E+02 1.43E+03 1.39E+03 3.81E+03 9.70E+02
    F23 Best 3.46E+03 2.86E+09 3.09E+03 3.69E+03 3.43E+03 4.11E+03 3.11E+03 3.58E+03 3.03E+03 3.11E+03 2.96E+03
    Worest 4.09E+03 2.07E+10 3.64E+03 4.54E+03 3.61E+03 4.37E+03 3.38E+03 3.94E+03 3.27E+03 3.29E+03 3.21E+03
    Mean 3.83E+03 9.44E+09 3.34E+03 4.17E+03 3.49E+03 4.19E+03 3.16E+03 3.70E+03 3.11E+03 3.15E+03 3.03E+03
    Std 1.70E+02 3.78E+09 1.55E+02 2.43E+02 6.72E+01 9.66E+01 8.30E+01 1.42E+02 7.92E+01 6.70E+01 8.38E+01
    F24 Best 3.61E+03 5.32E+09 3.22E+03 3.75E+03 3.59E+03 4.40E+03 3.67E+03 3.14E+03 3.30E+03 3.21E+03 3.19E+03
    Worest 4.59E+03 1.63E+10 3.73E+03 4.76E+03 3.88E+03 4.73E+03 3.88E+03 3.35E+03 3.44E+03 3.38E+03 3.36E+03
    Mean 4.05E+03 8.62E+09 3.45E+03 4.39E+03 3.65E+03 4.50E+03 3.73E+03 3.18E+03 3.33E+03 3.26E+03 3.25E+03
    Std 2.58E+02 2.54E+09 1.33E+02 2.47E+02 9.84E+01 1.46E+02 1.10E+02 7.17E+01 5.13E+01 6.32E+01 5.48E+01
    F25 Best 3.69E+03 4.11E+09 3.26E+03 3.49E+03 7.53E+03 2.08E+04 3.76E+03 5.28E+03 3.23E+03 3.24E+03 3.05E+03
    Worest 4.49E+03 1.34E+10 4.29E+03 4.69E+03 1.11E+04 2.83E+04 1.32E+04 7.19E+03 3.43E+03 3.51E+03 3.13E+03
    Mean 4.04E+03 9.09E+09 3.65E+03 3.81E+03 8.59E+03 2.32E+04 5.33E+03 5.70E+03 3.30E+03 3.30E+03 3.07E+03
    Std 2.23E+02 2.52E+09 2.74E+02 2.92E+02 1.47E+03 2.85E+03 2.41E+03 7.05E+02 8.91E+01 7.88E+01 2.87E+01
    F26 Best 3.69E+03 4.11E+09 3.26E+03 3.49E+03 7.53E+03 2.08E+04 3.76E+03 5.28E+03 3.23E+03 3.24E+03 3.05E+03
    Worest 4.49E+03 1.34E+10 4.29E+03 4.69E+03 1.11E+04 2.83E+04 1.32E+04 7.19E+03 3.43E+03 3.51E+03 3.13E+03
    Mean 4.04E+03 9.09E+09 3.65E+03 3.81E+03 8.59E+03 2.32E+04 5.33E+03 5.70E+03 3.30E+03 3.30E+03 3.07E+03
    Std 2.23E+02 2.52E+09 2.74E+02 2.92E+02 1.47E+03 2.85E+03 2.41E+03 7.05E+02 8.91E+01 7.88E+01 2.87E+01
    F27 Best 4.20E+03 5.55E+09 3.51E+03 4.11E+03 4.14E+03 5.77E+03 3.54E+03 3.37E+03 3.59E+03 4.01E+03 3.55E+03
    Worest 6.55E+03 1.33E+10 4.39E+03 6.97E+03 4.81E+03 6.58E+03 3.79E+03 3.74E+03 3.88E+03 4.87E+03 4.07E+03
    Mean 5.42E+03 8.69E+09 3.78E+03 5.03E+03 4.30E+03 5.97E+03 3.62E+03 3.47E+03 3.66E+03 4.30E+03 3.68E+03
    Std 6.27E+02 1.98E+09 2.42E+02 7.26E+02 .08E+02 3.70E+02 9.18E+01 1.26E+02 1.12E+02 2.89E+02 1.77E+02
    F28 Best 4.29E+03 3.74E+09 3.55E+03 4.08E+03 7.96E+03 1.32E+04 7.92E+03 6.01E+03 3.48E+03 3.60E+03 3.31E+03
    Worest 6.13E+03 1.25E+10 4.74E+03 5.92E+03 9.92E+03 1.58E+04 1.04E+04 8.14E+03 4.38E+03 4.04E+03 3.38E+03
    Mean 4.88E+03 7.83E+09 3.95E+03 4.72E+03 8.11E+03 1.40E+04 8.57E+03 6.50E+03 3.59E+03 3.70E+03 3.32E+03
    Std 4.24E+02 2.00E+09 3.19E+02 4.47E+02 8.93E+02 1.25E+03 9.61E+02 7.38E+02 2.11E+02 1.33E+02 2.84E+01
    F29 Best 5.53E+03 6.15E+09 5.01E+03 5.03E+03 6.91E+03 1.56E+04 4.97E+03 4.94E+03 4.29E+03 6.97E+03 4.62E+03
    Worest 8.87E+03 1.70E+10 6.87E+03 8.39E+03 1.02E+04 2.37E+04 6.81E+03 6.18E+03 5.63E+03 9.31E+03 5.87E+03
    Mean 7.19E+03 9.08E+09 5.85E+03 7.03E+03 7.81E+03 1.75E+04 5.49E+03 5.30E+03 4.59E+03 7.63E+03 5.05E+03
    Std 8.94E+02 2.80E+09 5.45E+02 8.24E+02 1.17E+03 3.26E+03 5.49E+02 4.35E+02 4.00E+02 8.04E+02 4.52E+02
    F30 Best 8.44E+07 3.95E+09 7.63E+07 5.04E+07 4.05E+08 3.32E+09 9.10E+06 6.76E+07 5.88E+06 4.56E+08 3.43E+06
    Worest 3.37E+08 1.25E+10 2.69E+08 4.30E+08 8.01E+08 5.25E+09 1.37E+08 2.11E+08 7.29E+07 1.07E+09 9.93E+06
    Mean 2.25E+08 8.68E+09 1.63E+08 1.43E+08 4.71E+08 3.95E+09 3.56E+07 9.27E+07 1.24E+07 6.21E+08 5.61E+06
    Std 6.98E+07 2.24E+09 4.63E+07 8.02E+07 1.35E+08 7.58E+08 4.31E+07 3.74E+07 1.51E+07 2.22E+08 2.46E+06

     | Show Table
    DownLoad: CSV
    Figure 1.  The convergence behavior of the comparative methods on CEC2017 F1–F10 functions, Dim = 30.
    Figure 2.  The convergence behavior of the comparative methods on CEC2017 F11--F20 functions, Dim = 30.
    Figure 3.  The convergence behavior of the comparative methods on CEC2017 F21–F30 functions, Dim = 30.

    Furthemore, a statistical comparsion using Wilcoxon test [72,73] has been carried out between the developed algorithm and all other competitors. Table 6 shows the p-values which show a big diffeence in the outputs between different optimizers. From Table 6, results prove the mAO algorithm superiority in finding near-optimal solutions when compared with others. To show the powerful and efficient of the proposed algorithm, a scalability test has been performed on 10 and 50 dimensions using the same functions and the same comparing algorithms. The results of this scalability test are shown in Table 7. It can be seen that mAO is better than other competitors in almost functions.

    Table 6.  Wilcoxon rank sum test results for mAO against other algorithms CEC2017.
    F CSA EHO GOA HHO LSHADE Lshade-EpSin MFO MVO PSO AO
    F1 5.82E-08 3.77E-08 7.44E-08 9.09E-08 7.02E-02 8.06E-08 4.57E-08 6.75E-08 9.02E-08 7.32E-08
    F3 2.83E-08 5.44E-08 7.90E-08 1.66E-07 1.12E-03 6.80E-08 7.80E-08 6.44E-08 3.55E-08 9.65E-08
    F4 7.03E-08 5.87E-06 1.05E-06 6.80E-08 8.82E-01 6.85E-08 6.54E-08 4.82E-01 6.78E-08 6.83E-08
    F5 9.74E-08 2.73E-03 1.26E-07 6.80E-07 5.33E-02 7.24E-04 8.87E-07 3.52E-03 5.50E-08 7.76E-07
    F6 8.91E-07 2.81E-01 6.80E-07 6.77E-07 7.03E-06 5.80E-05 8.12E-04 4.37E-05 8.45E-07 7.75E-07
    F7 3.22E-08 5.03E-04 7.72E-06 7.43E-08 3.56E-01 7.77E-08 6.44E-08 3.25E-04 6.66E-08 1.32E-08
    F8 4.83E-08 7.23E-03 4.32E-06 7.22E-07 5.24E-03 6.82E-08 4.47E-08 4.52E-06 6.33E-07 4.81E-03
    F9 7.88E-06 4.54E-06 3.31E-07 5.23E-08 6.42E-05 7.22E-08 1.09E-08 6.52E-05 7.42E-08 1.29E-08
    F10 7.23E-08 7.67E-06 1.32E-07 6.53E-08 3.21E-07 6.94E-08 6.46E-08 3.31E-07 6.74E-08 6.65E-08
    F11 5.77E-08 4.54E-05 9.86E-01 6.45E-08 4.75E-01 6.33E-08 6.23E-08 5.75E-01 4.33E-08 3.23E-08
    F12 6.45E-08 3.18E-05 1.34E-07 6.84E-08 1.46E-04 6.83E-08 6.82E-08 1.46E-04 6.83E-08 6.82E-08
    F13 6.70E-08 1.61E-04 6.23E-08 6.34E-08 4.45E-06 6.23E-08 6.87E-08 4.45E-06 6.23E-08 6.87E-08
    F14 2.43E-03 3.53E-03 1.75E-03 7.06E-08 9.84E-03 6.14E-05 3.67E-06 9.64E-03 6.84E-05 3.47E-06
    F15 6.54E-08 7.47E-06 7.75E-08 6.77E-08 1.34E-07 6.54E-08 6.23E-08 1.36E-07 6.58E-08 6.27E-08
    F16 6.43E-08 2.22E-04 1.02E-06 6.86E-08 4.06E-03 6.43E-23 6.23E-08 4.11E-03 6.24E-08 6.31E-08
    F17 3.46E-06 1.73E-03 3.97E-03 6.56E-08 5.53E-01 5.94E-04 6.76E-08 5.57E-01 5.96E-04 6.78E-08
    F18 4.34E-06 9.75E-04 1.36E-03 3.84E-07 2.74E-02 3.88E-07 6.54E-08 2.64E-02 3.78E-07 6.34E-08
    F19 6.83E-08 1.40E-04 6.60E-08 6.65E-08 6.63E-08 6.35E-08 6.76E-08 6.33E-08 6.97E-08 6.45E-08
    F20 6.45E-08 4.93E-02 5.21E-03 1.43E-07 4.54E-01 2.42E-06 9.56E-08 4.22E-01 2.61E-06 9.65E-08
    F21 6.46E-08 9.76E-05 7.65E-08 6.76E-08 8.48E-05 7.55E-08 6.43E-08 8.59E-05 7.65E-08 6.54E-08
    F22 1.23E-03 2.74E-04 2.47E-07 6.45E-08 1.03E-06 8.85E-06 6.44E-08 1.06E-06 8.86E-06 6.48E-08
    F23 1.54E-02 2.61E-06 9.73E-08 6.33E-08 4.65E-03 1.32E-07 6.03E-08 4.65E-03 1.32E-07 6.03E-08
    F24 2.96E-04 3.44E-06 6.43E-08 6.19E-08 4.63E-04 2.73E-07 6.27E-08 4.36E-04 2.37E-07 6.72E-08
    F25 6.33E-08 6.11E-04 2.62E-04 6.73E-08 6.42E-02 6.23E-08 6.97E-08 6.38E-02 6.72E-08 6.56E-08
    F26 2.41E-03 8.27E-03 3.35E-05 6.26E-08 8.97E-04 3.95E-06 6.25E-08 8.32E-04 3.44E-06 6.52E-08
    F27 6.76E-06 1.75E-03 2.73E-07 6.31E-08 1.83E-04 2.92E-07 6.53E-08 1.24E-04 2.47E-07 6.61E-08
    F28 6.71E-08 1.32E-07 6.46E-07 6.28E-08 3.35E-05 1.46E-07 6.71E-08 3.47E-05 1.62E-07 6.65E-08
    F29 1.24E-07 1.64E-01 3.28E-06 6.37E-08 5.54E-01 1.73E-06 6.22E-08 5.53E-01 1.37E-06 6.22E-08
    F30 6.54E-08 1.32E-01 1.28E-07 6.32E-08 6.18E-08 6.91E-08 6.83E-08 6.78E-08 6.41E-08 6.33E-08

     | Show Table
    DownLoad: CSV
    Table 7.  Scalability Test Average results of all algorithms over 30 functions.
    F CSA EHO GOA HHO LSHADE Lshade-EpSin MFO MVO PSO AO mAO
    F1 10 4.34E+07 6.24E+07 4.46E+07 4.65E+07 3.15E+08 2.23E+09 4.74E+08 3.64E+08 4.37E+06 5.235E+06 2.87E+05
    30 7.39E+09 8.31E+09 5.64E+09 5.64E+09 4.05E+10 1.36E+11 3.80E+10 2.79E+10 5.49E+08 5.45E+08 1.78E+07
    50 9.79E+11 9.42E+11 7.77E+11 6.86E+11 5.23E+11 2.19E+13 2.83E+12 4.85E+12 7.65E+10 6.62E+10 2.63E+09
    F3 10 1.19E+04 6.73E+07 2.07E+04 2.32E+04 2.21E+04 3.87E+04 2.66E+04 2.45E+04 3.60E+04 3.23E+04 3.19E+04
    30 1.32E+05 8.74E+09 2.18E+05 1.80E+05 3.38E+05 2.75E+05 3.92E+05 1.75E+05 2.71E+05 1.58E+05 1.31E+05
    50 1.65E+07 6.99E+10 3.46E+07 2.32E+07 3.44E+06 3.23E+06 5.77E+07 2.43E+07 4.55E+07 3.21E+07 3.11E+07
    F4 10 2.88E+02 7.88E+08 2.32E+02 3.75E+02 7.22E+02 2.42E+03 7.03E+02 4.66E+02 6.67E+02 3.11E+02 1.21E+02
    30 2.02E+03 9.03E+09 1.18E+03 1.91E+03 8.15E+03 3.92E+04 4.21E+03 5.24E+03 8.93E+02 8.36E+02 5.91E+02
    50 2.62E+05 5.29E+11 3.25E+04 3.77E+05 6.22E+05 7.13E+06 7.55E+05 7.31E+05 6.21E+05 2.44E+04 2.31E+04
    F5 10 7.53E+02 5.93E+09 7.83E+02 8.92E+02 1.10E+03 1.32E+03 9.46E+02 1.06E+03 7.58E+02 8.18E+02 7.26E+02
    30 8.64E+02 9.26E+09 9.51E+02 9.45E+02 1.13E+03 1.36E+03 1.00E+03 1.08E+03 8.43E+02 8.64E+02 7.77E+02
    50 4.91E+01 2.37E+09 6.86E+01 3.90E+01 6.41E+01 4.90E+01 7.50E+01 6.10E+01 7.57E+01 4.44E+01 2.55E+01
    F6 10 4.70E3+02 7.39E+07 4.36E+02 5.79E+02 4.64E+02 5.41E+02 4.51E+02 5.27E+02 4.31E+02 4.13E+02 3.15E+02
    30 6.70E+02 9.19E+09 6.76E+02 6.79E+02 6.74E+02 7.11E+02 6.61E+02 6.53E+02 6.91E+02 6.60E+02 6.15E+02
    50 8.70E+05 4.19E+11 4.88E+02 6.99E+04 8.88E+03 8.44E+05 8.65E+04 8.23E+05 8.23E+04 4.60E+05 5.23E+04
    F11 10 1.59E+03 6.31E+05 7.13E+02 8.20E+02 4.35E+03 3.11E+03 1.35E+03 2.40E+02 8.17E+02 5.22E+02 2.60E+02
    30 4.52E+03 7.36E+09 4.76E+03 3.20E+03 2.53E+04 3.05E+04 1.63E+04 8.45E+03 2.10E+03 2.65E+03 1.66E+03
    50 8.57E+05 6.36E+09 5.11E+05 4.29E+05 2.94E+05 8.75E+06 7.84E+06 7.87E+05 8.92E+05 7.83E+05 6.33E+05
    F12 10 6.41E+06 4.65E+06 4.34E+05 2.66E+05 5.76E+06 5.76E+7 1.84E+06 6.56E+06 5.22E+06 3.74E+06 1.21E+04
    30 1.26E+09 8.35E+09 3.63E+08 9.33E+08 6.99E+09 5.52E+10 3.89E+09 1.17E+08 9.44E+09 5.29E+07 4.74E+07
    50 1.45E+10 8.88E+10 3.77E+10 9.83E+10 6.55E+10 5.23E+11 3.21E+10 1.45E+10 9.21E+10 5.33E+09 4.23E+10
    F13 10 1.11E+05 6.23E+06 3.11E+04 3.07E+06 6.50E+06 2.66E+07 8.03E+06 2.44E+05 2.65E+06 4.99E+03 2.33E+03
    30 1.40E+07 8.47E+09 4.43E+05 3.12E+07 1.55E+09 2.05E+10 1.33E+09 3.97E+05 2.08E+09 4.84E+04 1.76E+04
    50 1.66E+09 8.74E+10 4.34E+07 3.76E+09 7.55E+10 2.77E+11 1.66E+10 8.23E+07 2.73E+10 4.22E+07 1.45E+07
    F14 10 6.35E+03 9.28E+05 6.65E+03 4.22E+05 8.13E+04 2.34E+05 3.22E+04 2.67E+04 6.17E+04 8.61E+04 6.76E+04
    30 9.35E+05 9.20E+09 6.14E+05 6.98E+06 6.92E+06 2.09E+07 3.35E+06 2.16E+05 7.00E+05 3.01E+06 4.70E+05
    50 6.53E+08 9.77E+11 6.87E+08 8.98E+08 8.72E+08 2.73E+08 3.83E+08 7.75E+08 7.76E+08 3.93E+08 4.93E+07
    F21 10 2.32E+03 7.13E+07 6.17E+06 2.45E+062 2.45E+02 3.82E+02 2.28E+02 8.50E+02 2.42E+03 2.23E+03 2.12E+02
    30 2.78E+03 9.28E+09 2.78E+03 2.96E+03 2.90E+03 3.17E+03 2.77E+03 2.56E+03 2.95E+03 2.66E+03 2.62E+03
    50 2.45E+07 1.23E+10 2.11E+06 6.96E+06 2.45E+06 3.55E+07 2.27E+06 7.88E+06 2.11E+07 2.76E+05 2.23E+05
    F22 10 8.37E+03 6.11E+06 6.76E+03 6.88E+06 1.33E+06 1.43E+03 1.87E+03 1.56E+04 1.56E+03 1.43E+03 2.90E+02
    30 1.07E+04 7.31E+09 1.16E+04 1.21E+04 1.77E+04 1.69E+04 1.04E+04 1.56E+04 1.53E+04 1.30E+04 9.65E+03
    50 7.27E+06 9.12E+09 5.56E+06 1.45E+06 8.57E+06 8.59E+06 6.74E+07 8.23E+06 1.21E+06 5.38E+04 9.23E+07
    F23 10 3.73E+02 5.11E+08 2.34E+02 3.67E+02 3.32E+02 3.55E+02 3.65E+02 3.21E+02 3.07E+02 2.76E+03 4.03E+02
    30 3.83E+03 9.44E+09 3.34E+03 4.17E+03 3.49E+03 4.19E+03 3.16E+03 3.70E+03 3.11E+03 3.15E+03 3.03E+03
    50 3.93E+04 5.44E+10 3.13E+04 4.09E+02 4.12E+04 9.12E+04 7.19E+04 3.79E+04 3.44E+04 3.62E+04 8.83E+03
    F24 10 5.04E+02 7.13E+06 1.41E+02 5.24E+02 2.43E+02 3.23E+02 4.73E+02 2.22E+02 3.55E+02 9.21E+02 2.25E+02
    30 4.05E+03 8.62E+09 3.45E+03 4.39E+03 3.65E+03 4.50E+03 3.73E+03 3.18E+03 3.33E+03 3.26E+03 3.25E+03
    50 7.23E+05 5.62E+11 5.66E+05 8.33E+05 7.23E+05 6.56E+05 2.73E+05 3.23E+06 3.26E+05 3.17E+05 5.25E+05

     | Show Table
    DownLoad: CSV

    To show the powerfulness of our suggested optimizer by intergrating three strategies with AO, we test the standard AO with each operator seperately. Table 8 shows the average and standard deviation of four algorithms: AO with OBL (AOOBL), AO with CLS (AOCLS), AO with RS (AORS), and the developed algorithm mAO that contains AO with CLS, RS, and OBL.

    Table 8.  Mean and Standard Deviation values obtained by various Enhanced AO.
    N Average Standard Deviation
    AOOBL AOCLS AORS mAO AOOBL AOCLS AORS mAO
    F1 1.23E+09 4.45E+08 1.98E+08 1.78E+07 7.63E+07 7.65E+07 7.12E+07 4.23E+06
    F3 1.46E+06 2.22E+06 1.22E+06 1.31E+05 1.23E+05 4.91E+05 3.02E+06 1.55E+04
    F4 1.02E+04 4.23E+03 1.31E+03 5.91E+02 6.71E+03 6.92E+03 8.71E+03 6.13E+01
    F5 4.67E+03 9.78E+02 4.23E+04 7.77E+02 2.91E+02 7.12E+02 2.81E+02 2.55E+01
    F6 4.71E+03 6.82E+03 6.74E+03 6.15E+02 1.19E+01 3.99E+01 7.87E+00 3.37E+00
    F11 4.67E+03 2.12E+04 2.23E+04 1.66E+03 2.23E+02 1.49E+03 1.49E+03 1.19E+02
    F12 5.48E+07 2.27E+08 3.27E+08 4.47E+07 6.82E+07 7.66E+07 6.23E+07 3.85E+07
    F13 2.52E+04 9.22E+05 3.23E+04 1.76E+04 5.73E+04 2.40E+04 2.36E+04 6.46E+03
    F14 4.78E+05 4.91E+05 6.28E+06 4.70E+05 4.62E+06 8.13E+05 8.17E+05 3.40E+05
    F21 2.73E+03 3.81E+03 3.22E+04 2.62E+03 3.07E+02 1.54E+02 9.37E+01 5.30E+01
    F22 6.85E+04 4.23E+04 7.23E+04 9.65E+03 6.41E+03 4.78E+03 4.04E+03 9.70E+02
    F23 3.19E+03 4.27E+04 7.82E+04 3.03E+03 2.45E+02 2.39E+02 8.33E+012 8.48E+01
    F24 2.52E+04 7.45E+03 6.15E+03 3.25E+03 7.68E+02 6.92E+02 3.77E+02 5.48E+01

     | Show Table
    DownLoad: CSV

    In this section, the performance of the developed optimizer is tested using many real-world constrained problems which contain many inequalities. These problems are Welded beam design problem, Pressure vessel design problem, Tension/compression spring design problem, Speed reducer design problem, and Three-bar truss design problem. The mathematical formulas for the above problems are existed in [68,74,75].

    The first constrained problem used in this study is welded beam design (WBD) which is proposed by Coello [76]. The aim of this problem is to find the minimum welded beam cost and its design structure is shown in Figure 4. WBD has 7 constraints and 4 design variables namely: bar thickness (b), bar height (t), weld thickness (h), and attached bar part length (l). The mathematical representation of WBD can be formulated as follows:

    Figure 4.  Welded beam design.

    Considerx=[x1x2x3x4]=[hltb]

    Minimize f(x)=1.10471x21x2+0.04811x3x4(14.0+x2)

    Subject to:

    g1(x)=τ(x)136000

    g2(x)=σ(x)300000

    g3(x)=x1x40

    g4(x)=0.10471(x21)+0.04811x3x4(14+x2)5.00

    g6(x)=δ(x)0.250

    g7(x)=6000pc(x)0

    where

    τ(x)=(τ)+(2ττ)x22R+(τ)2

    τ=60002x1x2

    τ=MRJ

    M=6000(14+x22)

    R=x224+(x1+x32)2

    j=2{x1x22[x2212+(x1+x32)2]}

    σ(x)=504000x4x23

    δ(x)=65856000(30×106)x4x33

    pc(x)=4.013(30×106)x23x6436196(1x330×1064(12×106)28)

    with 0.1x1,x42.0and0.1x2,x310.0

    Results of WBD are shown in Table 9 where mAO is compared with classical AO, GSA [46], GA [77], SSA [78], MPA [79], HHO [80,81], WOA [82], and CSA [40]. From the pre-mentioned table, it's notable that mAO has outperformed other swarm optimizers with an objective value of 1.6565 and decision values (x1,x2,x3,x4) = (0.1625, 3.4705, 9.0234, 0.2057, 1.6565).

    Table 9.  Comparison of optimum results for Welded beam design problem.
    Algorithm h l t b Cost
    AO 0.1631 3.3652 9.0202 0.2067 1.6566
    GSA 0.1821 3.856979 10.000 0.202376 1.87995
    GA 0.2489 6.1730 8.1789 0.2533 2.4300
    SSA 0.2057 3.4714 9.0366 0.2057 1.72491
    MPA 0.2057 3.470509 9.036624 0.205730 1.724853
    SMA 0.2054 3.2589 9.0384 0.2058 1.69604
    HHO 0.2134 3.5601 8.4629 0.2346 1.85614
    WOA 0.3290 2.5471 6.8078 0.3789 2.358350
    SO 0.2057 3.4705 9.0366 0.2057 1.72485
    mAO 0.1625 3.4705 9.0234 0.2057 1.6565

     | Show Table
    DownLoad: CSV

    The 2nd constrained problem introduced in this study is one of the mixed integer optimization problems which is termed as Pressure Vessel Design (PVD) problem proposed by Kannan and Kramer [83]. PVD aims to select the lowest cost of raw materials for the cylindrical vessel as shown in Figure 5. PVD has 4 parameters namely: head thickness (Th), shell thickness (Ts), cylindrical strength (L), and inner radius (R). To mathematically model PVD, the following formula is designed:

    Figure 5.  Pressure vessel design.

    Minimize f(x)=0.6224x1x3x4+1.7781x2x23+3.1661x21x4+19.84x21x3

    Subject to:

    g1(x)=x1+0.0193x

    g2(x)=x2+0.00954x30

    g3(x)=πx23x4(4/3)πx33+1,296,0000

    g4(x)=x42400

    0xi100,i=1,2

    10xi200,i=3,4

    $ Results of PVD exists in table 10 where the suggested optimizer is compared with original AO, WOA [82], PSO-SCA [84], HS [85], SMA [86], CPSO [87], GWO [47], HHO [80], GOA [46], TEO [88], and SO [30]. From the pre-mentioned table, it can be seen that the developed optimizer ranked first with a value of 5946.3358 and decision values (x1,x2,x3,x4) = (1.0530, 0.181884, 58.619, 38.8080, 5946.3358).

    Table 10.  Comparison of optimum results for pressure vessel design.
    Algorithm x1 x2 x3 x4 Cost
    AO 1.0540 0.182806 59.6219 38.8050 5949.2258
    WOA 0.812500 0.437500 42.0982699 176.638998 6059.7410
    PSO-SCA 0.8125 0.4375 42.098446 176.6366 6059.71433
    HS 1.125000 0.625000 58.29015 43.69268 7197.730
    SMA 0.7931 0.3932 40.6711 196.2178 5994.1857
    CPSO 0.8125 0.4375 42.091266 176.7465 6061.0777
    GWO 0.8125 0.4345 42.0892 176.7587 6051.5639
    HHO 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259
    GOA 0.9571 0.4749 49.9302 99.0053 6333.0873
    SO 0.7819 0.3857 40.5752 196.5499 5887.5297
    mAO 1.0530 0.181884 58.619 38.8080 5946.3358

     | Show Table
    DownLoad: CSV

    The 3rd constrained engineering problem discussed here is Tension/Compression Spring Design (TCSD) which was introduced by Arora [89] and its main objective is to decrease the tension spring weight by determining the optimal design variables' values that satisfy its constrained requirements. TCSD has different 3 variables namely: diameter of mean coil (D), the diameter of the wire (d), and active coils number (N). TCSD design is given in Figure 6 and its mathematical formulation is given as follows:

    Figure 6.  Tension/compression spring design.

    Consider:

    x=[x1x2x3]=[dDN]

    Minimize f(x)=(x3+2)x2x21

    subjectto:

    g1(x)=1x32x371785x410

    g2(x)=4x22x1x212566(x2x31x41)+15108x2110

    g3(x)=1140.45x1x22x30

    g4(x)=x1+x21.510

    with 0.05x12.0,0.25x21.3,and2.0x315.0

    Table 11 shows the results of TCSD where mAO is compared with RO [90], WOA [82], PSO [87], MVO [64], ES [91], OBSCA [92], GSA [93], and CPSO [87].

    Table 11.  Comparison of optimum results for Tension/compression spring.
    Algorithm d D P Cost
    RO 0.051370 0.349096 11.76279 0.0126788
    WOA 0.051207 0.345215 12.004032 0.0126763
    PSO 0.051728 0.357644 11.244543 0.0126747
    MVO 0.05251 0.37602 10.33513 0.012790
    ES 0.051643 0.355360 11.397926 0.012698
    OBSCA 0.05230 0.31728 12.54854 0.012625
    GSA 0.050276 0.323680 13.525410 0.0127022
    CPSO 0.051728 0.357644 11.244543 0.0126747
    AO 0.0502439 0.35262 10.5425 0.011165
    mAO 0.0502339 0.32282 10.5244 0.011056

     | Show Table
    DownLoad: CSV

    From the previously mentioned table, we can conclude that mAO has achieved better results compared to original and other competitors. It achieves a fitness value with 0.011056 and decision values (x1,x2,x3) = (0.0502339, 0.32282, 10.5244).

    The 4th engineering problem discussed in this section is the speed reducer design [94] (SRD) whose main aim is to minimize speed reducer weight with respect to curvature stress of gear teeth, shafts stress, and shafts transverse deflections. It has seven different variables and its design is shown in Figure 7. The formulation of the SRD can be descriped mathematically as follows:

    Figure 7.  Speed reducer design problem.

    Minimize:f(z)=0.7854z1z22(3.3333z23+14.9334z343.0934)1.508z1

    (z26+z27)+7.4777(z36+z37)+0.7854(z4z26+z5z27)

    Subject to:

    g1(z)=27z1z22z310

    g2(z)=397.5z1z22z310

    g3(z)=1.93z34z2z3z461

    g4(z)=1.93z35z2z3z4710

    g5(z)=1110z36(745z4z2z3)2+16.9×10610

    g6(z)=185z37(745z5z2z3)2+157.5×10610

    g7(z)=z2z34010

    g8(z)=5z2z110

    g9(z)=z112z210

    g10(z)=1.5z6+1.9z410

    g11(z)=1.1z7+1.9z510

    with

    2.6z13.6

    0.7z20.8

    17z328

    7.3z48.3

    7.8z58.3

    2.9z63.9

    and5z75.5

    mAO is compared with different metaheuristics optimizers including PSO [95], MDA [96], GSA [93], HS [29], SCA [97], SES [98], SBSM [99], and hHHO-SCA [100] as shown in Table 12. From this table, it's obvious that mAO outperformed other algorithms. mAO ranked first with a fitness value of 3002.7328 and decision values (x1,x2,x3,x4,x5,x6,x7) = (3.5012, 0.7, 17, 7.3100, 7.8873, 3.0541, 5.2994).

    Table 12.  Comparison of optimum results for Speed Reducer problem.
    Algorithm z1 z2 z3 z4 z5 z6 z7 Cost
    Cost
    PSO 3.5001 0.7000 17.0002 7.5177 7.7832 3.3508 5.2867 3145.922
    MDA 3.5 0.7 17 7.3 7.670396 3.542421 5.245814 3019.583365
    GSA 3.600000 0.7 17 8.3 7.8 3.369658 5.289224 3051.120
    HS 3.520124 0.7 17 8.37 7.8 3.366970 5.288719 3029.002
    SCA 3.508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563
    SES 3.506163 0.700831 17 7.460181 7.962143 3.362900 5.308949 3025.005127
    SBSM 3.506122 0.700006 17 7.549126 7.859330 3.365576 5.289773 3008.08
    hHHO-SCA 3.506119 0.7 17 7.3 7.99141 3.452569 5.286749 3029.873076
    AO 3.5021 0.7000 17.0000 7.3099 7.7476 3.3641 5.2994 3007.7328
    mAO 3.5012 0.7 17 7.3100 7.8873 3.0541 5.2994 3002.7328

     | Show Table
    DownLoad: CSV

    The last engineering problem addressed in this manuscript is called the Three-bar truss design (TBD) problem. TBD is a fraction and nonlinear civil engineering problem introduced by Nowcki [101]. Its objective is to find the minimum values of truss weight. It has two variables and its mathematical formulation is shown below:

    Minimize: f(x)=(22x1+x2)l

    Subject to: g1(x)=2x1+x22x21+2x1x2Pσ0

    g2(x)=x22x21+2x1x2Pσ0

    g3(x)=12x21+2x1x2Pσ0

    Variable Range

    0x1,x21

    Figure 8.  Three-bar truss design problem.

    mAO results are compared with CS [102], GOA [46], DEDS [103], MBA [104], PSO-DE [84], AAA [105], PSO-DE [84], DEDS [103] and AO. The results of TBD are listed in table 13 in which mAO results outperformed other competitors. mAO ranked first with a fitness value of 231.8681 and decision values (x1,x2) = (30.7886, 0.3844).

    Table 13.  Optimization results for the Three-bar truss design problem.
    Algorithm x1 x2 Cost
    CS 0.78867 0.40902 263.9716
    GOA 0.78889755557 0.40761957011 263.89588149
    DEDS 0.78867513 0.40824828 263.89584
    MBA 0.7885650 0.4085597 263.89585
    PSO-DE 0.7886751 0.4082482 263.89584
    AAA 0.7887354 0.408078 263.895880
    CS 0.78867 0.40902 263.9716
    PSO-DE 0.7886751 0.4082482 263.89584
    DEDS 0.78867513 0.40824828 263.89584
    AO 0.7926 0.3966 263.8684
    mAO 0.7886 0.3844 231.8681

     | Show Table
    DownLoad: CSV

    In this study, a novel AO version is suggested called mAO to tackle various optimization issues. mAO is based on 3 different techniques: 1) Opposition-based Learning to improve optimizer exploration phase 2) Restart Strategy to remove the worse agents and replace them with totally random agents. 3) Chaotic Local Search to add more exploitation abilities to the original algorithm. mAO is tested using 29 CEC2017 functions and different five engineering optimization problems. Statistical analysis and experimental numbers show the significance of the suggested optimizer in solving various optimization issues. However, mAO like other swarm-based algorithms has a slow convergence in high-dimensional problems so, it won't be able to solve all optimization problem types.

    In future, we can apply mAO to feature selection, job scheduling, combinatorial optimization problems, and stress suitability. Binary and multi-objective versions may be proposed in future.

    The authors would like to thank the support of Digital Fujian Research Institute for Industrial Energy Big Data, Fujian Province University Key Lab for Industry Big Data Analysis and Application, Fujian Key Lab of Agriculture IOT Application, IOT Application Engineering Research Center of Fujian Province Colleges and Universities, Sanming City 5G Innovation Laboratory, and also the anonymous reviewers and the editor for their careful reviews and constructive suggestions to help us improve the quality of this paper. Educational research projects of young and middle-aged teachers in Fujian Province (JAT200648), Fujian Natural Science Foundation Project (2021J011128).

    The authors declare there is no conflict of interest.



    [1] Dippong T, Levei EA, Diamandescu L, et al. (2015) Structural and magnetic properties of CoxFe3−xO4 versus Co/Fe molar ratio. J Magn Magn Mater 394: 111–116. doi: 10.1016/j.jmmm.2015.06.055
    [2] Dippong T, Levei EA, Cadar O, et al. (2017) Size and shape-controlled synthesis and characterization of CoFe2O4 nanoparticles embedded in a PVA-SiO2 hybrid matrix. J Anal Appl Pyrol 128: 121–130. doi: 10.1016/j.jaap.2017.10.018
    [3] Dippong T, Levei EA, Tanaselia C, et al. (2016) Magnetic properties evolution of the CoxFe3−xO4/SiO2 system due to advanced thermal treatment at 700 ℃ and 1000 ℃. J Magn Magn Mater 410: 47–54. doi: 10.1016/j.jmmm.2016.03.020
    [4] Dippong T, Cadar O, Levei EA, et al. (2017) Structure and magnetic properties of CoFe2O4/SiO2 nanocomposites obtained by sol-gel and post annealing pathways. Ceram Int 43: 2113–2122. doi: 10.1016/j.ceramint.2016.10.192
    [5] Ahmed AI, Siddig MA, Mirghni AA, et al. (2015) Structural and optical properties of Mg1−xZnxFe2O4 nano-ferrites synthesized using co-precipitation method. Adv Nanoparticles 4: 45–52. doi: 10.4236/anp.2015.42006
    [6] Indrayana IPT, Julian T, Suharyadi E (2018) UV light-driven photodegradation of methylene blue by using Mn0.5Zn0.5Fe2O4/SiO2 nanocomposites. J Phys Conf Ser 1011: 012062.
    [7] Dippong T, Levei EA, Cadar O, et al. (2017) Sol-gel synthesis of CoFe2O4:SiO2 nanocomposites-insights into the thermal decomposition process of precursors. J Anal Appl Pyrol 125: 169–177. doi: 10.1016/j.jaap.2017.04.005
    [8] Suwanchawalit C, Somjit V (2015) A facile hydrothermal synthesis of magnetic CoFe2O4 nanoparticles and photocatalytic performance. Dig J Nanomater Bios 10: 705–713.
    [9] Köferstein R, Walther T, Hesse D, et al. (2013) Preparation and characterization of nanosized magnesium ferrite powders by a starch-gel process and corresponding ceramics. J Mater Sci 48: 6509–6518. doi: 10.1007/s10853-013-7447-x
    [10] Cataldo F (1998) Thermal depolymerization and pyrolysis of cis-1,4-polyisoprene: preparation of liquid polyisoprene and terpene resin. J Anal Appl Pyrol 44: 121–130. doi: 10.1016/S0165-2370(97)00081-8
    [11] Gowreesan S, Kumar AR (2017) Effects of Mg2+ ion substitution on the structural and electric studies of spinel structure of Co1−xMgxFe2O4. J Mater Sci-Mater El 28: 4553–4564. doi: 10.1007/s10854-016-6091-z
    [12] Erdem D, Bingham NS, Heiligtag FJ, et al. (2016) CoFe2O4 and CoFe2O4-SiO2 nanoparticle thin films with perpendicular magnetic anisotropy for magnetic and magneto-optical applications. Adv Funct Mater 26: 1954–1963. doi: 10.1002/adfm.201504538
    [13] Balakrishnan P, Veluchamy P (2015) Synthesis and characterization of CoFe2O4 magnetic nanoparticles using sol-gel method. Int J ChemTech Res 8: 271–276.
  • This article has been cited by:

    1. Vahid Rezania, Dennis Coombe, Jack Tuszynski, Liver Bioreactor Design Issues of Fluid Flow and Zonation, Fibrosis, and Mechanics: A Computational Perspective, 2020, 11, 2079-4983, 13, 10.3390/jfb11010013
    2. Yunjie Liao, Nathan A. Davies, I. David L. Bogle, Computational Modeling of Fructose Metabolism and Development in NAFLD, 2020, 8, 2296-4185, 10.3389/fbioe.2020.00762
    3. Theodore R. Rieger, Richard J. Allen, Cynthia J. Musante, A Quantitative Systems Pharmacology Model of Liver Lipid Metabolism for Investigation of Non-Alcoholic Fatty Liver Disease, 2022, 13, 1663-9812, 10.3389/fphar.2022.910789
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5380) PDF downloads(945) Cited by(16)

Figures and Tables

Figures(3)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog