Citation: Ann De Vos, Tine Bynens, Joëlle Rosseels, Catherina Coun, Julia Ring, Frank Madeo, Marie-Christine Galas, Joris Winderickx, Vanessa Franssens. The peptidyl prolyl cis/trans isomerase Pin1/Ess1 inhibits phosphorylation and toxicity of tau in a yeast model for Alzheimer's disease[J]. AIMS Molecular Science, 2015, 2(2): 144-160. doi: 10.3934/molsci.2015.2.144
[1] |
Stoothoff WH, Johnson GV (2005) Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta 1739: 280-297. doi: 10.1016/j.bbadis.2004.06.017
![]() |
[2] |
Schutkowski M, Bernhardt A, Zhou XZ, et al. (1998) Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Biochemistry 37: 5566-5575. doi: 10.1021/bi973060z
![]() |
[3] |
Zhou XZ, Kops O, Werner A, et al. (2000) Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 6: 873-883. doi: 10.1016/S1097-2765(05)00083-3
![]() |
[4] |
Nakamura K, Greenwood A, Binder L, et al. (2012) Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer's disease. Cell 149: 232-244. doi: 10.1016/j.cell.2012.02.016
![]() |
[5] |
Pastorino L, Sun A, Lu PJ, et al. (2006) The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 440: 528-534. doi: 10.1038/nature04543
![]() |
[6] |
Martic S, Beheshti S, Kraatz HB, et al. (2012) Electrochemical investigations of tau protein phosphorylations and interactions with pin1. Chem Biodivers 9: 1693-1702. doi: 10.1002/cbdv.201100418
![]() |
[7] |
Smet C, Sambo AV, Wieruszeski JM, et al. (2004) The peptidyl prolyl cis/trans-isomerase Pin1 recognizes the phospho-Thr212-Pro213 site on Tau. Biochemistry 43: 2032-2040. doi: 10.1021/bi035479x
![]() |
[8] |
Lu PJ, Wulf G, Zhou XZ, et al. (1999) The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399: 784-788. doi: 10.1038/21650
![]() |
[9] |
Liou YC, Sun A, Ryo A, et al. (2003) Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424: 556-561. doi: 10.1038/nature01832
![]() |
[10] | Ando K, Dourlen P, Sambo AV, et al. (2012) Tau pathology modulates Pin1 post-translational modifications and may be relevant as biomarker. Neurobiol Aging 34: 757-769. |
[11] |
Sultana R, Boyd-Kimball D, Poon HF, et al. (2006) Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: A redox proteomics analysis. Neurobiol Aging 27: 918-925. doi: 10.1016/j.neurobiolaging.2005.05.005
![]() |
[12] |
Vandebroek T, Terwel D, Vanhelmont T, et al. (2006) Microtubule binding and clustering of human Tau-4R and Tau-P301L proteins isolated from yeast deficient in orthologues of glycogen synthase kinase-3beta or cdk5. J Biol Chem 281: 25388-25397. doi: 10.1074/jbc.M602792200
![]() |
[13] |
Vandebroek T, Vanhelmont T, Terwel D, et al. (2005) Identification and isolation of a hyperphosphorylated, conformationally changed intermediate of human protein tau expressed in yeast. Biochemistry 44: 11466-11475. doi: 10.1021/bi0506775
![]() |
[14] |
Vanhelmont T, Vandebroek T, De Vos A, et al. (2010) Serine-409 phosphorylation and oxidative damage define aggregation of human protein tau in yeast. FEMS Yeast Res 10: 992-1005. doi: 10.1111/j.1567-1364.2010.00662.x
![]() |
[15] |
Hanes SD, Shank PR, Bostian KA (1989) Sequence and mutational analysis of ESS1, a gene essential for growth in Saccharomyces cerevisiae. Yeast 5: 55-72. doi: 10.1002/yea.320050108
![]() |
[16] |
Lu KP, Hanes SD, Hunter T (1996) A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380: 544-547. doi: 10.1038/380544a0
![]() |
[17] |
Wu X, Wilcox CB, Devasahayam G, et al. (2000) The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. Embo J 19: 3727-3738. doi: 10.1093/emboj/19.14.3727
![]() |
[18] |
Landrieu I, Smet-Nocca C, Amniai L, et al. (2011) Molecular implication of PP2A and Pin1 in the Alzheimer's disease specific hyperphosphorylation of Tau. PLoS One 6: e21521. doi: 10.1371/journal.pone.0021521
![]() |
[19] |
Kimura T, Tsutsumi K, Taoka M, et al. (2013) Isomerase Pin1 stimulates dephosphorylation of tau protein at cyclin-dependent kinase (Cdk5)-dependent Alzheimer phosphorylation sites. J Biol Chem 288: 7968-7977. doi: 10.1074/jbc.M112.433326
![]() |
[20] |
Gietz D, St Jean A, Woods RA, et al. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20: 1425. doi: 10.1093/nar/20.6.1425
![]() |
[21] |
Herker E, Jungwirth H, Lehmann KA, et al. (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164: 501-507. doi: 10.1083/jcb.200310014
![]() |
[22] |
Madeo F, Herker E, Maldener C, et al. (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9: 911-917. doi: 10.1016/S1097-2765(02)00501-4
![]() |
[23] |
Buttner S, Eisenberg T, Carmona-Gutierrez D, et al. (2007) Endonuclease G regulates budding yeast life and death. Mol Cell 25: 233-246. doi: 10.1016/j.molcel.2006.12.021
![]() |
[24] | Galas MC, Dourlen P, Begard S, et al. (2006) The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons. Implication in a pathological mechanism related to Alzheimer disease. J Biol Chem 281: 19296-19304. |
[25] |
Hamdane M, Dourlen P, Bretteville A, et al. (2006) Pin1 allows for differential Tau dephosphorylation in neuronal cells. Mol Cell Neurosci 32: 155-160. doi: 10.1016/j.mcn.2006.03.006
![]() |
[26] | Cho JH, Johnson GV (2004) Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules. J Neurochem 88: 349-358. |
[27] |
Bulbarelli A, Lonati E, Cazzaniga E, et al. (2009) Pin1 affects Tau phosphorylation in response to Abeta oligomers. Mol Cell Neurosci 42: 75-80. doi: 10.1016/j.mcn.2009.06.001
![]() |
[28] | Avila J, Santa-Maria I, Perez M, et al. (2006) Tau phosphorylation, aggregation, and cell toxicity. J Biomed Biotechnol 2006: 74539. |
[29] |
Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26: 267-298. doi: 10.1146/annurev.neuro.26.010302.081142
![]() |
[30] |
Alonso Adel C, Li B, Grundke-Iqbal I, et al. (2006) Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc Natl Acad Sci U S A 103: 8864-8869. doi: 10.1073/pnas.0603214103
![]() |
[31] |
Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, et al. (2005) Tau, tangles, and Alzheimer's disease. Biochim Biophys Acta 1739: 216-223. doi: 10.1016/j.bbadis.2004.08.014
![]() |
[32] | Iqbal K, Alonso Adel C, Grundke-Iqbal I (2008) Cytosolic abnormally hyperphosphorylated tau but not paired helical filaments sequester normal MAPs and inhibit microtubule assembly. J Alzheimers Dis 14: 365-370. |
[33] |
Santacruz K, Lewis J, Spires T, et al. (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309: 476-481. doi: 10.1126/science.1113694
![]() |
[34] |
Ramakrishnan P, Dickson DW, Davies P (2003) Pin1 colocalization with phosphorylated tau in Alzheimer's disease and other tauopathies. Neurobiol Dis 14: 251-264. doi: 10.1016/S0969-9961(03)00109-8
![]() |
[35] |
Ehehalt R, Keller P, Haass C, et al. (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160: 113-123. doi: 10.1083/jcb.200207113
![]() |
[36] |
Fortin DL, Troyer MD, Nakamura K, et al. (2004) Lipid rafts mediate the synaptic localization of alpha-synuclein. J Neurosci 24: 6715-6723. doi: 10.1523/JNEUROSCI.1594-04.2004
![]() |
[37] |
Hattori C, Asai M, Onishi H, et al. (2006) BACE1 interacts with lipid raft proteins. J Neurosci Res 84: 912-917. doi: 10.1002/jnr.20981
![]() |
[38] |
Sarnataro D, Campana V, Paladino S, et al. (2004) PrP(C) association with lipid rafts in the early secretory pathway stabilizes its cellular conformation. Mol Biol Cell 15: 4031-4042. doi: 10.1091/mbc.E03-05-0271
![]() |
[39] |
Taylor DR, Hooper NM (2006) The prion protein and lipid rafts. Mol Membr Biol 23: 89-99. doi: 10.1080/09687860500449994
![]() |
[40] | Hernandez P, Lee G, Sjoberg M, et al. (2009) Tau phosphorylation by cdk5 and Fyn in response to amyloid peptide Abeta (25-35): involvement of lipid rafts. J Alzheimers Dis 16: 149-156. |
[41] |
Kawarabayashi T, Shoji M, Younkin LH, et al. (2004) Dimeric amyloid beta protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer's disease. J Neurosci 24: 3801-3809. doi: 10.1523/JNEUROSCI.5543-03.2004
![]() |
[42] | Williamson R, Usardi A, Hanger DP, et al. (2008) Membrane-bound beta-amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. Faseb J 22: 1552-1559. |
[43] |
Maas T, Eidenmuller J, Brandt R (2000) Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J Biol Chem 275: 15733-15740. doi: 10.1074/jbc.M000389200
![]() |
[44] |
Magee AI, Parmryd I (2003) Detergent-resistant membranes and the protein composition of lipid rafts. Genome Biol 4: 234. doi: 10.1186/gb-2003-4-11-234
![]() |
[45] |
Farah CA, Perreault S, Liazoghli D, et al. (2006) Tau interacts with Golgi membranes and mediates their association with microtubules. Cell Motil Cytoskeleton 63: 710-724. doi: 10.1002/cm.20157
![]() |
[46] |
Liazoghli D, Perreault S, Micheva KD, et al. (2005) Fragmentation of the Golgi apparatus induced by the overexpression of wild-type and mutant human tau forms in neurons. Am J Pathol 166: 1499-1514. doi: 10.1016/S0002-9440(10)62366-8
![]() |