Review Special Issues

Mitochondrial dynamics in neurodegeneration: from cell death to energetic states

  • Received: 17 March 2015 Accepted: 04 May 2015 Published: 08 May 2015
  • From Parkinson's disease to an ischemic stroke, a consistently reoccurring theme in the context of neuronal degeneration is the dysfunction of mitochondria as the underlying factor. Insight into the mechanistic basis for mitochondrial dysfunction in neurodegenerative disorders has allowed the theme of mitochondrial dynamics to be highlighted as a central player. The precise balance of mitochondrial dynamics is among the most critical features for the juxtaposed processes of cell death and survival. More recently, studies have allowed mitochondrial shape to emerge as a key regulator of respiratory efficiency that can enforce the bioenergetic status of cells and thereby determine cell fate. Here we review the most current advances that provide an explanation for the long-standing question of how mitochondrial shape can impact cellular metabolism. Furthermore, we discuss the implications of an imbalance in mitochondrial dynamics in neurodegenerative disorders.

    Citation: Mireille Khacho, Ruth S. Slack. Mitochondrial dynamics in neurodegeneration: from cell death to energetic states[J]. AIMS Molecular Science, 2015, 2(2): 161-174. doi: 10.3934/molsci.2015.2.161

    Related Papers:

  • From Parkinson's disease to an ischemic stroke, a consistently reoccurring theme in the context of neuronal degeneration is the dysfunction of mitochondria as the underlying factor. Insight into the mechanistic basis for mitochondrial dysfunction in neurodegenerative disorders has allowed the theme of mitochondrial dynamics to be highlighted as a central player. The precise balance of mitochondrial dynamics is among the most critical features for the juxtaposed processes of cell death and survival. More recently, studies have allowed mitochondrial shape to emerge as a key regulator of respiratory efficiency that can enforce the bioenergetic status of cells and thereby determine cell fate. Here we review the most current advances that provide an explanation for the long-standing question of how mitochondrial shape can impact cellular metabolism. Furthermore, we discuss the implications of an imbalance in mitochondrial dynamics in neurodegenerative disorders.


    加载中
    [1] Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112: 481-490. doi: 10.1016/S0092-8674(03)00116-8
    [2] Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21: 1133-1145.
    [3] Kann O, Kovács R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292: C641-C657.
    [4] Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8: 870-879. doi: 10.1038/nrm2275
    [5] Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell125: 1241-1252.
    [6] Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148: 1145-1159. doi: 10.1016/j.cell.2012.02.035
    [7] Burté F, Carelli V, Chinnery PF, et al. (2015) Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol 11: 11-24.
    [8] Archer SL (2013) Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med 369: 2236-2251. doi: 10.1056/NEJMra1215233
    [9] Itoh K, Nakamura K, Iijima M, et al. (2013) Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 23: 64-71. doi: 10.1016/j.tcb.2012.10.006
    [10] Benard G, Rossignol R (2008) Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal 10: 1313-1342. doi: 10.1089/ars.2007.2000
    [11] Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46: 265-287. doi: 10.1146/annurev-genet-110410-132529
    [12] Liesa M, Shirihai OS (2013) Mitochondrial Dynamics in the Regulation of Nutrient Utilization and Energy Expenditure. Cell Metabolism 17: 491-506. doi: 10.1016/j.cmet.2013.03.002
    [13] Khacho M, Tarabay M, Patten D, et al. (2014) Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nat Commun 5: 3550.
    [14] Stroud DA, Ryan MT (2013) Mitochondria: Organization of Respiratory Chain Complexes Becomes Cristae-lized. CURBIO 23: R969-R971.
    [15] Germain M (2015) OPA1 and mitochondrial solute carriers in bioenergetic metabolism. Mol Cell Oncol [in press].
    [16] Patten DA, Wong J, Khacho M, et al. (2014) OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J 33: 2676-2691. doi: 10.15252/embj.201488349
    [17] Cogliati S, Frezza C, Soriano ME, et al. (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155: 160-171. doi: 10.1016/j.cell.2013.08.032
    [18] Mannella CA (2006) Structure and dynamics of the mitochondrial inner membrane cristae. Biochimica et Biophysica Acta (BBA). Mol Cell Res 1763: 542-548. doi: 10.1016/j.bbamcr.2006.04.006
    [19] Song Z, Ghochani M, McCaffery JM, et al. (2009) Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20: 3525-3532. doi: 10.1091/mbc.E09-03-0252
    [20] Cipolat S, Martins de Brito O, Dal Zilio B, et al. (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 101: 15927-15932. doi: 10.1073/pnas.0407043101
    [21] Chen H, Detmer SA, Ewald AJ, et al. (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160: 189-200. doi: 10.1083/jcb.200211046
    [22] Meeusen S, DeVay R, Block J, et al. (2006) Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127: 383-395. doi: 10.1016/j.cell.2006.09.021
    [23] Frezza C, Cipolat S, Martins de Brito O, et al. (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126: 177-189. doi: 10.1016/j.cell.2006.06.025
    [24] Smirnova E, Griparic L, Shurland DL, et al. (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12: 2245-2256. doi: 10.1091/mbc.12.8.2245
    [25] Losón OC, Song Z, Chen H, et al. (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24: 659-667. doi: 10.1091/mbc.E12-10-0721
    [26] Li S, Xu S, Roelofs BA, et al. (2015) Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission. J Cell Biol 208: 109-123. doi: 10.1083/jcb.201404050
    [27] Friedman JR, Lackner LL, West M, et al. (2011) ER tubules mark sites of mitochondrial division. Science 334: 358-362. doi: 10.1126/science.1207385
    [28] Korobova F, Ramabhadran V, Higgs HN (2013) An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339: 464-467. doi: 10.1126/science.1228360
    [29] Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13: 589-598. doi: 10.1038/ncb2220
    [30] Tondera D, Grandemange S, Jourdain A, et al. (2009) SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28: 1589-1600. doi: 10.1038/emboj.2009.89
    [31] Mannella CA (2006) The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta 1762: 140-147. doi: 10.1016/j.bbadis.2005.07.001
    [32] Gomes LC, Di Benedetto G, Scorrano L (2011) Essential amino acids and glutamine regulate induction of mitochondrial elongation during autophagy. Cell Cycle 10: 2635-2639. doi: 10.4161/cc.10.16.17002
    [33] Molina AJA, Wikstrom JD, Stiles L, et al. (2009) Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes 58: 2303-2315. doi: 10.2337/db07-1781
    [34] Khacho M, Tarabay M, Patten D, et al. (2014) Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nat Commun 5: 3550.
    [35] Kijima K, Numakura C, Izumino H, et al. (2005) Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A. Hum Genet 116: 23-27. doi: 10.1007/s00439-004-1199-2
    [36] Züchner S, Mersiyanova IV, Muglia M, et al. (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36: 449-451. doi: 10.1038/ng1341
    [37] Alexander C, Votruba M, Pesch UE, et al. (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26:211-215. doi: 10.1038/79944
    [38] Delettre C, Lenaers G, Griffoin JM, et al. (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26: 207-210. doi: 10.1038/79936
    [39] Knott AB, Perkins G, Schwarzenbacher R, et al. (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9: 505-518. doi: 10.1038/nrn2417
    [40] Cavallucci V, Bisicchia E, Cencioni MT, et al. (2014) Acute focal brain damage alters mitochondrial dynamics and autophagy in axotomized neurons. Cell Death Disease 5: e1545-12. doi: 10.1038/cddis.2014.511
    [41] Oettinghaus B, Licci M, Scorrano L, et al. (2012) Less than perfect divorces: dysregulated mitochondrial fission and neurodegeneration. Acta Neuropathol 123: 189-203. doi: 10.1007/s00401-011-0930-z
    [42] Dodson MW, Guo M (2007) Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease. Curr Opin Neurobiol 17: 331-337. doi: 10.1016/j.conb.2007.04.010
    [43] Wood-Kaczmar A, Gandhi S, Wood NW (2006) Understanding the molecular causes of Parkinson's disease. Trends Mol Med 12: 521-528. doi: 10.1016/j.molmed.2006.09.007
    [44] Yang Y, Ouyang Y, Yang L, et al. (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci USA 105: 7070-7075. doi: 10.1073/pnas.0711845105
    [45] Deng H, Dodson MW, Huang H, et al. (2008) The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci USA 105:14503-14508. doi: 10.1073/pnas.0803998105
    [46] Poole AC, Thomas RE, Andrews LA, et al. (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA 105: 1638-1643. doi: 10.1073/pnas.0709336105
    [47] Wang H, Song P, Du L, et al. (2011) Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem 286: 11649-11658. doi: 10.1074/jbc.M110.144238
    [48] Wang X, Yan MH, Fujioka H, et al. (2012) LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet 21: 1931-1944. doi: 10.1093/hmg/dds003
    [49] Niu J, Yu M, Wang C, et al. (2012) Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin-like protein. J Neurochem 122: 650-658. doi: 10.1111/j.1471-4159.2012.07809.x
    [50] Wang X, Su B, Lee H-G, et al. (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. J Neurosci 29: 9090-9103. doi: 10.1523/JNEUROSCI.1357-09.2009
    [51] Calkins MJ, Manczak M, Mao P, et al. (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. Hum Mol Genet 20: 4515-4529. doi: 10.1093/hmg/ddr381
    [52] Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage. Hum Mol Genet 20: 2495-2509. doi: 10.1093/hmg/ddr139
    [53] Bossy-Wetzel E, Petrilli A, Knott AB (2008) Mutant huntingtin and mitochondrial dysfunction. Trends Neurosci 31: 609-616. doi: 10.1016/j.tins.2008.09.004
    [54] Song W, Chen J, Petrilli A, et al. (2011) Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat Med 17: 377-382. doi: 10.1038/nm.2313
    [55] Jendrach M, Pohl S, Vöth M, et al. (2005) Morpho-dynamic changes of mitochondria during ageing of human endothelial cells. Mech Ageing Dev 126: 813-821. doi: 10.1016/j.mad.2005.03.002
    [56] Chauhan A, Vera J, Wolkenhauer O (2014) The systems biology of mitochondrial fission and fusion and implications for disease and aging. Biogerontology 15: 1-12. doi: 10.1007/s10522-013-9474-z
    [57] Scheckhuber CQ, Erjavec N, Tinazli A, et al. (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 9: 99-105. doi: 10.1038/ncb1524
    [58] Crane JD, Devries MC, Safdar A, et al. (2010) The effect of aging on human skeletal muscle mitochondrial and intramyocellular lipid ultrastructure. J Gerontol A Biol Sci Med Sci 65:119-128.
    [59] Daum B, Walter A, Horst A, et al. (2013) Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. Proc Natl Acad Sci USA 110:15301-15306. doi: 10.1073/pnas.1305462110
    [60] Stauch KL, Purnell PR, Fox HS (2014) Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function. Aging (Albany NY) 6: 320-334.
    [61] Barsoum MJ, Yuan H, Gerencser AA, et al. (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25: 3900-3911. doi: 10.1038/sj.emboj.7601253
    [62] Frank S, Gaume B, Bergmann-Leitner ES, et al. (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1: 515-525. doi: 10.1016/S1534-5807(01)00055-7
    [63] Almeida A, Delgado-Esteban M, Bolaños JP, et al. (2002) Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J Neurochem 81: 207-217. doi: 10.1046/j.1471-4159.2002.00827.x
    [64] Schinder AF, Olson EC, Spitzer NC, et al. (1996) Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 16: 6125-6133.
    [65] Grohm J, Kim S-W, Mamrak U, et al. (2012) Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death Differ 19: 1446-1458. doi: 10.1038/cdd.2012.18
    [66] Jahani-Asl A, Pilon-Larose K, Xu W, et al. (2011) The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity. J Biol Chem 286: 4772-4782. doi: 10.1074/jbc.M110.167155
    [67] Jahani-Asl A, Cheung EC, Neuspiel M, MacLaurin JG, Fortin A, et al. (2007) Mitofusin 2 protects cerebellar granule neurons against injury-induced cell death. J Biol Chem 282:23788-23798. doi: 10.1074/jbc.M703812200
    [68] Zanelli SA, Trimmer PA, Solenski NJ (2006) Nitric oxide impairs mitochondrial movement in cortical neurons during hypoxia. J Neurochem 97: 724-736. doi: 10.1111/j.1471-4159.2006.03767.x
    [69] Liu X, Hajnoczky G (2011) Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress. Cell Death Differ 18: 1561-1572. doi: 10.1038/cdd.2011.13
    [70] Dagda RK, Cherra SJ, Kulich SM, et al. (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284: 13843-13855. doi: 10.1074/jbc.M808515200
    [71] Lutz AK, Exner N, Fett ME, et al. (2009) Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem 284: 22938-22951. doi: 10.1074/jbc.M109.035774
    [72] Grünewald A, Gegg ME, Taanman J-W, et al. (2009) Differential effects of PINK1 nonsense and missense mutations on mitochondrial function and morphology. Exp Neurol 219: 266-273. doi: 10.1016/j.expneurol.2009.05.027
    [73] Cui M, Tang X, Christian WV, et al. (2010) Perturbations in mitochondrial dynamics induced by human mutant PINK1 can be rescued by the mitochondrial division inhibitor mdivi-1. J Biol Chem 285: 11740-11752. doi: 10.1074/jbc.M109.066662
    [74] Rappold PM, Cui M, Grima JC, et al. (2014) Drp1 inhibition attenuates neurotoxicity and dopamine release deficits in vivo. Nat Commun 5: 5244. doi: 10.1038/ncomms6244
    [75] Su Y-C, Qi X (2013) Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. Hum Mol Genet 22: 4545-4561. doi: 10.1093/hmg/ddt301
    [76] Zhang N, Wang S, Li Y, et al. (2013) A selective inhibitor of Drp1, mdivi-1, acts against cerebral ischemia/reperfusion injury via an anti-apoptotic pathway in rats. Neurosci Lett 535:104-109. doi: 10.1016/j.neulet.2012.12.049
    [77] Cui M, Ding H, Chen F, et al. (2014) Mdivi-1 Protects Against Ischemic Brain Injury via Elevating Extracellular Adenosine in a cAMP/CREB-CD39-Dependent Manner. Mol Neurobiol [in press].
    [78] Zhao Y-X, Cui M, Chen S-F, et al. (2014) Amelioration of ischemic mitochondrial injury and Bax-dependent outer membrane permeabilization by Mdivi-1. CNS Neurosci Ther 20: 528-538. doi: 10.1111/cns.12266
    [79] Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062-1065. doi: 10.1126/science.1219855
    [80] Ramonet D, Perier C, Recasens A, et al. (2013) Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency. Cell Death Differ 20: 77-85. doi: 10.1038/cdd.2012.95
    [81] Cipolat S, Rudka T, Hartmann D, et al. (2006) Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126:163-175. doi: 10.1016/j.cell.2006.06.021
    [82] Germain M, Mathai JP, McBride HM, et al. (2005) Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J 24: 1546-1556. doi: 10.1038/sj.emboj.7600592
    [83] Montessuit S, Somasekharan SP, Terrones O, et al. (2010) Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142: 889-901. doi: 10.1016/j.cell.2010.08.017
    [84] Rambold AS, Kostelecky B, Elia N, et al. (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 108: 10190-10195. doi: 10.1073/pnas.1107402108
    [85] Hall CN, Klein-Flügge MC, Howarth C, et al. (2012) Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J Neurosci 32: 8940-8951. doi: 10.1523/JNEUROSCI.0026-12.2012
    [86] Bolaños JP, Almeida A, Moncada S (2010) Glycolysis: a bioenergetic or a survival pathway? Trends Biochem Sci 35: 145-149. doi: 10.1016/j.tibs.2009.10.006
    [87] Kasischke KA, Vishwasrao HD, Fisher PJ, et al. (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305: 99-103. doi: 10.1126/science.1096485
    [88] Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029-1033. doi: 10.1126/science.1160809
    [89] Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer“s Achilles” heel. Cancer Cell13: 472-482.
    [90] Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134: 703-707. doi: 10.1016/j.cell.2008.08.021
    [91] Zorzano A, Liesa M, Sebastián D, et al. (2010) Mitochondrial fusion proteins: dual regulators of morphology and metabolism. Semin Cell Dev Biol 21: 566-574. doi: 10.1016/j.semcdb.2010.01.002
    [92] Amati-Bonneau P, Guichet A, Olichon A, et al. (2005) OPA1 R445H mutation in optic atrophy associated with sensorineural deafness. Ann Neurol 58: 958-963. doi: 10.1002/ana.20681
    [93] Zanna C, Ghelli A, Porcelli AM, et al. (2008) OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion. Brain 131: 352-367 doi: 10.1093/brain/awm335
    [94] Pich S, Bach D, Briones P, et al. (2005) The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum Mol Genet 14:1405-1415. doi: 10.1093/hmg/ddi149
    [95] Agier V, Oliviero P, Lainé J, et al. (2012) Defective mitochondrial fusion, altered respiratory function, and distorted cristae structure in skin fibroblasts with heterozygous OPA1 mutations. Biochim Biophys Acta 1822: 1570-1580. doi: 10.1016/j.bbadis.2012.07.002
    [96] Chen H, Vermulst M, Wang YE, et al. (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141: 280-289. doi: 10.1016/j.cell.2010.02.026
    [97] Ono T, Isobe K, Nakada K, et al. (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet 28:272-275. doi: 10.1038/90116
    [98] Hackenbrock CR (1968) Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. Proc Natl Acad Sci USA 61: 598-605. doi: 10.1073/pnas.61.2.598
    [99] Hackenbrock CR (1966) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol 30: 269-297.
    [100] Hackenbrock CR (1968) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol 37: 345-369.
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9396) PDF downloads(1634) Cited by(7)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog