The Virtual reality electrical substation field trip: Exploring student perceptions and cognitive learning

  • Received: 01 November 2020 Revised: 01 January 2021
  • Research article

  • COVID19 has disrupted many higher education's learning experiences, including those related to work integrated learning. This included the cancelling of the annual electrical engineering field trip to a local electrical substation. Field trips provides students an opportunity to connect their classroom learning with industry relevant engaging experiences. While virtual reality (VR) alternatives to electrical substations have been implemented and researched, the focus has been on the innovation and not on the educational benefits. The impact on learning is not well documented and understood. To address this gap an experimental study is conducted on fifty electrical engineering students at the University of Wollongong to determine if a VR replica of an electrical substation can provide an equal or better learning and student experience compared to traditional methods. A successful finding would provide confidence to implement such alternatives for situations that include: addressing COVID disruptions; for students that miss the field trip; and for providers that don't have the funds or resources to visit a substation. It was found that the VR substation simulation provided a comparable student experience and stronger cognitive learning benefits than traditional methods. Further research is needed to explore learning impact beyond the cognitive domain.

    Citation: Erdem Memik, Sasha Nikolic. The Virtual reality electrical substation field trip: Exploring student perceptions and cognitive learning[J]. STEM Education, 2021, 1(1): 47-59. doi: 10.3934/steme.2021004

    Related Papers:

  • COVID19 has disrupted many higher education's learning experiences, including those related to work integrated learning. This included the cancelling of the annual electrical engineering field trip to a local electrical substation. Field trips provides students an opportunity to connect their classroom learning with industry relevant engaging experiences. While virtual reality (VR) alternatives to electrical substations have been implemented and researched, the focus has been on the innovation and not on the educational benefits. The impact on learning is not well documented and understood. To address this gap an experimental study is conducted on fifty electrical engineering students at the University of Wollongong to determine if a VR replica of an electrical substation can provide an equal or better learning and student experience compared to traditional methods. A successful finding would provide confidence to implement such alternatives for situations that include: addressing COVID disruptions; for students that miss the field trip; and for providers that don't have the funds or resources to visit a substation. It was found that the VR substation simulation provided a comparable student experience and stronger cognitive learning benefits than traditional methods. Further research is needed to explore learning impact beyond the cognitive domain.



    加载中


    [1] Gregory, S., Gregory, B., Wood, D., Grant, S., Nikolic, S., Hillier, M. (2017) Me, us and IT: Insiders' views of the complex technical, organisational and personal elements in using virtual worlds in education. ASCILITE Annual Conference.
    [2] Kayhani, N., Taghaddos, H., Noghabaee, M. (2018) Utilization of virtual reality visualizations on heavy mobile crane planning for modular construction. The International Association for Automation and Robotics in Construction Conference.
    [3] Nikolic. S., Lee, M.J.W., Goldfinch, T., Ritz, C.H. (2016). Addressing misconceptions about engineering through student–industry interaction in a video-augmented 3D immersive virtual world. Frontiers in Education Conference.
    [4] Arroyo, E., Arcos, J.L.L. (1999) SRV: A virtual reality application to electrical substations operation training. Proceedings IEEE International Conference on Multimedia Computing and Systems.
    [5] Tanaka, E.H., Paludo, J.A., Bacchetti, R., Gadbem, E.V., Domingues, L.R., Cordeiro, C.S. (2017) Immersive virtual training for substation electricians. 2017 IEEE Virtual Reality.
    [6] Learning as immersive experiences: Using the four-dimensional framework for designing and evaluating immersive learning experiences in a virtual world. British Journal of Educational Technology (2010) 41: 69-85.
    [7] Gregory, S., Gregory, B., Wood, D., O'Connell, J., Grant, S., Hillier, M. (2015) New applications, new global audiences: Educators repurposing and reusing 3D virtual and immersive learning resources. Australasian Society for Computers in Learning in Tertiary Education.
    [8] What are the learning affordances of 3-D virtual environments?. British Journal of Educational Technology (2010) 41: 10-32.
    [9] The use of a virtual reality training system to improve technical skill in the maintenance of live-line power distribution networks. Interactive Learning Environments (2019) 2019: 1-18.
    [10] Mu, Z., Huang, R., Liu, M. (2017) A study on the application of virtual reality technology in the field of nuclear power. 2017 International Conference on Smart Grid and Electrical Automation.
    [11] Solar energy education through a cloud-based desktop virtual reality system. IEEE Access (2019) 7: 147081-93.
    [12] Woodworth, J.W., Ekong, S., Borst, C.W. (2017) Virtual field trips with networked depth-camera-based teacher, heterogeneous displays, and example energy center application. 2017 IEEE Virtual Reality.
    [13] Grivokostopoulou, F., Paraskevas, M., Perikos, I., Nikolic, S., Kovas, K., Hatzilygeroudis, I. (2018) Examining the impact of pedagogical agents on students learning xxperience in virtual worlds. 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering.
    [14] Improving student understanding of complex spatial arrangements with virtual reality. Journal of Professional Issues in Engineering Education and Practice (2018) 144: 04017013.
    [15] Applications of virtual reality in learning the photoelectric effect of liquid crystal display. Computer Applications in Engineering Education (2018) 26: 1956-67.
    [16] Hatchard, T., Azmat, F., Al-Amin, M., Rihawi, Z., Ahmed, B., Alsebae, A. (2019) Examining student response to virtual reality in education and training. The 17th IEEE International Conference on Industrial Informatics.
    [17] Development of an educational virtual reality training system for marine engineers. Computer Applications in Engineering Education (2019) 27: 580-602.
    [18] Makransky, G., Andreasen, N.K., Baceviciute, S., Mayer, R.E. (2020) Immersive virtual reality increases liking but not learning with a science simulation and generative learning strategies promote learning in immersive virtual reality. Journal of Educational Psychology (online first). https://doi.org/10.1037/edu0000473
    [19] Latency requirements for foveated rendering in virtual reality. ACM Transactions on Applied Perception (2017) 14: 1-13.
    [20] Virtual reality applied to the study of the integration of transformers in substations of power systems. International journal of electrical engineering education (2015) 52: 203-18.
    [21] Nikolic, S., Suesse, T., Jovanovic, K., Stanisavljevic, Z. (2020) Laboratory learning objectives measurement: Relationships between student evaluation scores and perceived learning. IEEE Transactions on Education (online first). doi: 10.1109/TE.2020.3022666.
    [22] Making sense of Cronbach's alpha. International journal of medical education (2011) 2: 53-55.
    [23] Efficacy investigation of virtual reality teaching module in manufacturing system design course. Journal of Mechanical Design (2019) 141:.
    [24] Gregory, S., Gregory, B., Grant, S., McDonald, M., Nikolic, S., Farley, H. (2016) Exploring virtual world innovations and design through learner voices. Australasian Society for Computers in Learning and Tertiary Education.
    [25] Nikolic, S., Lee, M.J.W., Vial, P.J. (2015) 2D versus 3D collaborative online spaces for student team meetings: Comparing a web conferencing environment and a video-augmented virtual world. The 26th Annual Conference of the Australasian Association for Engineering Education.
    [26] Wang, W., Li, G. (2010) Virtual reality in the substation training simulator. The 14th International Conference on Computer Supported Cooperative Work in Design.
    [27] Ribeiro, T.R., dos Reis, P.R.J., Júnior, G.B., de Paiva, A.C., Silva, A.C., Maia, I.M.O. (2014) Agito: Virtual reality environment for power systems substations operators training. International Conference on Augmented and Virtual Reality.
    [28] Evaluating the impact of the augmented reality learning environment on electronics laboratory skills of engineering students. Computer Applications in Engineering Education (2019) 27: 1361-75.
    [29] Jackson, T., Nikolic, S., Shen, J., Xia, G. (2018) Knowledge sharing in digital learning communities: A comparative review of issues between education and industry. The IEEE International Conference on Teaching, Assessment, and Learning for Engineering.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2968) PDF downloads(372) Cited by(7)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog