Citation: Soufiane Bentout, Abdennasser Chekroun, Toshikazu Kuniya. Parameter estimation and prediction for coronavirus disease outbreak 2019 (COVID-19) in Algeria[J]. AIMS Public Health, 2020, 7(2): 306-318. doi: 10.3934/publichealth.2020026
[1] | Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc R Soc London Ser A 115: 700-721. doi: 10.1098/rspa.1927.0118 |
[2] | Bentout S, Touaoula TM (2016) Global analysis of an infection age model with a class of nonlinear incidence rates. J Math Anal Appl 434: 1211-1239. doi: 10.1016/j.jmaa.2015.09.066 |
[3] | Chekroun A, Frioui MN, Kuniya T, et al. (2020) Mathematical analysis of an age structured heroin-cocaine epidemic model. Discrete Contin Dyn Syst Ser B 25: 1-13. |
[4] | Diekmann O, Heesterbeek J (2000) Mathematical Epidemiology of Infective Diseases: Model Building, Analysis and Interpretation New York: Wiley. |
[5] | Hattaf K, Yang Y (2018) Global dynamics of an age-structured viral infection model with general incidence function and absorption. Int J Biomath 11: 1-18. doi: 10.1142/S1793524518500651 |
[6] | Liu L, Wanga J, Liu X (2015) Global stability of an SEIR epidemic model with age-dependent latency and relapse. Nonlinear Anal Real World Appl 24: 18-35. doi: 10.1016/j.nonrwa.2015.01.001 |
[7] | Magal P, McCluskey CC, Webb GF (2010) Lyapunov functional and global asymptotic stability for an infection-age model. Appl Anal 89: 1109-1140. doi: 10.1080/00036810903208122 |
[8] | Korobeinikov A (2004) Lyapunov functions and global properties for SEIR and SEIS epidemic models. Math Med Biol 21: 75-83. doi: 10.1093/imammb/21.2.75 |
[9] | Korobeinikov A, Maini PK (2004) A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math Biosci Eng 1: 57-60. doi: 10.3934/mbe.2004.1.57 |
[10] | Li MY, Graef JR, Wang L, et al. (1999) Global dynamics of a SEIR model with varying total population size. Math Biosci 160: 191-213. doi: 10.1016/S0025-5564(99)00030-9 |
[11] | Li G, Jin Z (2005) Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period. Chaos Solitons Fractals 25: 1177-1184. doi: 10.1016/j.chaos.2004.11.062 |
[12] | Li MY, Muldowney JS (1995) Global stability for the SEIR model in epidemiology. Math Biosci 12: 155-164. |
[13] | Zhang J, Ma Z (2003) Global dynamics of an SEIR epidemic model with saturating contact rate. Math Biosci 185: 15-32. doi: 10.1016/S0025-5564(03)00087-7 |
[14] | WHO (2020) Coronavirus disease (COVID-2019) situation reports.Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. |
[15] | Rothe C, Schunk M, Sothmann P, et al. (2020) Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. New Eng J 382: 970-971. doi: 10.1056/NEJMc2001468 |
[16] | African Future (2020) Algerian health minister confirms first COVID-19 case.Available from: https://africatimes.com/2020/02/25/algerian-health-minister-confirms-first-covid-19-case/. |
[17] | COVID-19 pandemic in Algeria (2020) Available from: https://fr.wikipedia.org/wiki/Pand%C3%A9mie_de_Covid-19_en_Alg%C3%A9rie. |
[18] | Epidemiological map (in Arabic and French) (2020) COVID-19-Algérie - Evolution de la situation (in Arabic and French).Available from: http://covid19.sante.gov.dz/carte/. |
[19] | Jia J, Ding J, Liu S, et al. (2020) Modeling the Control of COVID-19: Impact of Policy Interventions and Meteorological Factors. Electron J Differ Equations 23: 1-24. |
[20] | Kuniya T (2020) Prediction of the Epidemic Peak of Coronavirus Disease in Japan, 2020. J Clin Med 9: 1-7. doi: 10.3390/jcm9030789 |
[21] | Liu Y, Gayle A, Wilder Smith A, et al. (2020) The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med 27: 1-4. |
[22] | Liu Z, Magal P, Seydi O, et al. (2020) Understanding Unreported Cases in the COVID-19 Epidemic Outbreak in Wuhan, China, and the Importance of Major Public Health Interventions. Biology 9: 1-22. |
[23] | Volpert V, Banerjee M, Petrovskii S (2020) On a quarantine model of coronavirus infection and data analysis. Math Model Nat Phenom 15: 1-6. doi: 10.1051/mmnp/2020006 |
[24] | Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol 28: 365-382. doi: 10.1007/BF00178324 |
[25] | Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180: 29-48. doi: 10.1016/S0025-5564(02)00108-6 |
[26] | Sanche S, Lin YT, Xu C, et al. (2020) High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg Infect Diseases 26: 1-4. doi: 10.3201/eid2607.200282 |
[27] | Liu Y, Gayle AA, Wilder-Smith A, et al. (2020) The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med 27: 1-4. |
[28] | Anderson RM, Heesterbeek H, Klinkenberg D, et al. (2020) How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 395: 931-934. doi: 10.1016/S0140-6736(20)30567-5 |
[29] | Zou L, Ruan F, Huang M, et al. (2020) SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med . |
[30] | Li Q, Guan X, Wu P, et al. (2020) Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med . |
[31] | Office National des Statistiques (in French) (2020) Available from: http://www.ons.dz/-Demographie-.html. |