Starting February 2020, COVID-19 was confirmed in 11,946 people worldwide, with a mortality rate of almost 2%. A significant number of epidemic diseases consisting of human Coronavirus display patterns. In this study, with the benefit of data analytic, we develop regression models and a Susceptible-Infected-Recovered (SIR) model for the contagion to compare the performance of models to predict the number of cases. First, we implement a good understanding of data and perform Exploratory Data Analysis (EDA). Then, we derive parameters of the model from the available data corresponding to the top 4 regions based on the history of infections and the most infected people as of the end of August 2020. Then models are compared, and we recommend further research.
Citation: Saina Abolmaali, Samira Shirzaei. A comparative study of SIR Model, Linear Regression, Logistic Function and ARIMA Model for forecasting COVID-19 cases[J]. AIMS Public Health, 2021, 8(4): 598-613. doi: 10.3934/publichealth.2021048
Starting February 2020, COVID-19 was confirmed in 11,946 people worldwide, with a mortality rate of almost 2%. A significant number of epidemic diseases consisting of human Coronavirus display patterns. In this study, with the benefit of data analytic, we develop regression models and a Susceptible-Infected-Recovered (SIR) model for the contagion to compare the performance of models to predict the number of cases. First, we implement a good understanding of data and perform Exploratory Data Analysis (EDA). Then, we derive parameters of the model from the available data corresponding to the top 4 regions based on the history of infections and the most infected people as of the end of August 2020. Then models are compared, and we recommend further research.
[1] | Porta M (2014) A dictionary of epidemiology Oxford university press. doi: 10.1093/acref/9780199976720.001.0001 |
[2] | WHO COVID-19 Epidemic disease Available from: https://www.who.int/emergencies/diseases/news. |
[3] | AJMC Staff A Timeline of COVID-19 Developments in 2020 (2021) .Available from: https://www.ajmc.com/view/a-timeline-of-covid19-developments-in-2020. |
[4] | COVID-19 CORONAVIRUS PANDEMIC Available from: https://www.worldometers.info/coronavirus/. |
[5] | Bontempi E, Coccia M (2021) International trade as critical parameter of COVID-19 spread that outclasses demographic, economic, environmental, and pollution factors. Environ Res 201: 111514. doi: 10.1016/j.envres.2021.111514 |
[6] | Bontempi E (2020) Commercial exchanges instead of air pollution as possible origin of COVID-19 initial diffusion phase in Italy: more efforts are necessary to address interdisciplinary research. Environ Res 188: 109775. doi: 10.1016/j.envres.2020.109775 |
[7] | Bontempi E, Coccia M, Vergalli S, et al. (2021) Can commercial trade represent the main indicator of the COVID-19 diffusion due to human-to-human interactions? A comparative analysis between Italy, France, and Spain. Environ Res 201: 111529. doi: 10.1016/j.envres.2021.111529 |
[8] | Anand U, Cabreros C, Mal J, et al. (2021) Novel coronavirus disease 2019 (COVID-19) pandemic: From transmission to control with an interdisciplinary vision. Environ Res 197: 111126. doi: 10.1016/j.envres.2021.111126 |
[9] | Bontempi E, Vergalli S, Squazzoni F (2020) Understanding COVID-19 diffusion requires an interdisciplinary, multi-dimensional approach. Environ Res 188: 109814. doi: 10.1016/j.envres.2020.109814 |
[10] | Al Huraimel K, Alhosani M, Kunhabdulla S, et al. (2020) SARS-CoV-2 in the environment: Modes of transmission, early detection and potential role of pollutions. Sci Total Environ 744: 140946. doi: 10.1016/j.scitotenv.2020.140946 |
[11] | Yuan J, Li M, Lv G, et al. (2020) Monitoring transmissibility and mortality of COVID-19 in Europe. Int J Infect Dis 95: 311-315. doi: 10.1016/j.ijid.2020.03.050 |
[12] | Liu Y, Gayle A, Wilder-Smith A, et al. (2020) The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med 27: taaa021. doi: 10.1093/jtm/taaa021 |
[13] | Rosario D, Mutz Y, Bernardes P, et al. (2020) Relationship between COVID-19 and weather: Case study in a tropical country. Int J Hyg Environ Health 229: 113587. doi: 10.1016/j.ijheh.2020.113587 |
[14] | Coccia M (2020) Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Sci Total Environ 729: 138474. doi: 10.1016/j.scitotenv.2020.138474 |
[15] | Coccia M (2021) The effects of atmospheric stability with low wind speed and of air pollution on the accelerated transmission dynamics of COVID-19. Int J Environ Stud 78: 1-27. doi: 10.1080/00207233.2020.1802937 |
[16] | Coccia M (2021) High health expenditures and low exposure of population to air pollution as critical factors that can reduce fatality rate in COVID-19 pandemic crisis: a global analysis. Environ Res 199: 111339. doi: 10.1016/j.envres.2021.111339 |
[17] | Coccia M (2021) Effects of the spread of COVID-19 on public health of polluted cities: results of the first wave for explaining the dej vu in the second wave of COVID-19 pandemic and epidemics of future vital agents. Environ Sci Pollut Res Int 28: 19147-19154. doi: 10.1007/s11356-020-11662-7 |
[18] | Coccia M (2021) How do low wind speeds and high levels of air pollution support the spread of COVID-19? Atmos Pollut Res 12: 437-445. doi: 10.1016/j.apr.2020.10.002 |
[19] | Coccia M (2020) An index to quantify environmental risk of exposure to future epidemics of the COVID-19 and similar viral agents: Theory and practice. Environ Res 191: 110155. doi: 10.1016/j.envres.2020.110155 |
[20] | Coccia M (2021) Preparedness of countries to face covid-19 pandemic crisis: Strategic positioning and underlying structural factors to support strategies of prevention of pandemic threats. Environ Res 111678. |
[21] | Coccia M (2021) The relation between length of lockdown, numbers of infected people and deaths of Covid-19, and economic growth of countries: Lessons learned to cope with future pandemics similar to Covid-19 and to constrain the deterioration of economic system. Sci Total Environ 775: 145801. doi: 10.1016/j.scitotenv.2021.145801 |
[22] | Bashir M, Jiang B, Komal B, et al. (2020) Correlation between environmental pollution indicators and COVID-19 pandemic: a brief study in Californian context. Environ Res 187: 109652. doi: 10.1016/j.envres.2020.109652 |
[23] | Abolmaali S, Roodposhti F (2018) Portfolio Optimization Using Ant Colony Method a Case Study on Tehran Stock Exchange. J Account 8. |
[24] | Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases (NCIRD) 1918 Pandemic (H1N1 virus) Available from: https://www.cdc.gov/flu/pandemic-resources/1918-pandemic-h1n1.html. |
[25] | Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases (NCIRD) 2009 H1N1 Pandemic (H1N1pdm09 virus) Available from: https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html. |
[26] | Ebola Lessons for Global Health and PPE Preparedness during Outbreak Available from: https://www.derekduck.com/page/267. |
[27] | Chowell G, Sattenspiel L, Bansal S, et al. (2016) Mathematical models to characterize early epidemic growth: A review. Phys Life Rev 18: 66-97. doi: 10.1016/j.plrev.2016.07.005 |
[28] | Mutalik A (2017) Models to predict H1N1 outbreaks: a literature review. Int J Community Med Public Health 4: 3068-3075. doi: 10.18203/2394-6040.ijcmph20173814 |
[29] | Zhan C, Chi K, Lai Z, et al. (2020) Prediction of COVID-19 Spreading Profiles in South Korea, Italy and Iran by Data-Driven Coding. PLoS One 15: e0234763. doi: 10.1371/journal.pone.0234763 |
[30] | Lover A, McAndrew T (2020) Sentinel Event Surveillance to Estimate Total SARS-CoV-2 Infections, United States. MedRxiv . |
[31] | Liu P, Beeler P, Chakrabarty R (2020) COVID-19 Progression Timeline and Effectiveness of Response-to-Spread Interventions across the United States. MedRxiv . |
[32] | Abolmaali S, Shirzaei S (2021) Forecasting COVID-19 Number of Cases by Implementing ARIMA and SARIMA with Grid Search in the United States. MedRxiv . |
[33] | Roosa K, Lee Y, Luo R, et al. (2020) Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020. Infect Dis Model 5: 256-263. |
[34] | Gupta R, Pal S (2020) Trend Analysis and Forecasting of COVID-19 outbreak in India. MedRxiv . |
[35] | Moein S, Nickaeen N, Roointan A, et al. (2021) Inefficiency of SIR models in forecasting COVID-19 epidemic: a case study of Isfahan. Sci Rep 11: 4725. doi: 10.1038/s41598-021-84055-6 |
[36] | Calafiore G, Novara C, Possieri C (2020) A modified SIR model for the COVID-19 contagion in Italy. Annu Rev Control 50: 361-372. doi: 10.1016/j.arcontrol.2020.10.005 |
[37] | Satsuma J, Willox R, Ramani A, et al. (2004) Extending the SIR epidemic model. Physica A: Statistical Mechanics And Its Applications 369-375. doi: 10.1016/j.physa.2003.12.035 |
[38] | Anastassopoulou C, Russo L, Tsakris A, et al. (2020) Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PloS One 15: e0230405. doi: 10.1371/journal.pone.0230405 |
[39] | Read J, Bridgen J, Cummings D, et al. (2021) Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. Philos Trans R Soc Lond B Biol Sci 376: 20200265. doi: 10.1098/rstb.2020.0265 |
[40] | Lin Q, Zhao S, Gao D, et al. (2020) A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int J Infect Dis 93: 211-216. doi: 10.1016/j.ijid.2020.02.058 |
[41] | Giordano G, Blanchini F, Bruno R, et al. (2020) Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat Med 26: 855-860. doi: 10.1038/s41591-020-0883-7 |
[42] | Roda W, Varughese M, Han D, et al. (2020) Why is it difficult to accurately predict the COVID-19 epidemic? Infect Dis Model 5: 271-281. |
[43] | Furtado P (2021) Epidemiology SIR with Regression, Arima, and Prophet in Forecasting Covid-19. Eng Proc 5: 52. doi: 10.3390/engproc2021005052 |
[44] | Abuhasel K, Khadr M, Alquraish M (2020) Analyzing and forecasting COVID-19 pandemic in the Kingdom of Saudi Arabia using ARIMA and SIR models. Comput Intell . |
[45] | Diekmann O, Heesterbeek J (2008) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Math Biosci 213: 1-12. doi: 10.1016/j.mbs.2008.02.005 |
[46] | Kermack W, McKendrick A (1991) Contributions to the mathematical theory of epidemics. Bull Math Biol 53: 33-55. |
[47] | Bjrnstad O, Finkenstdt B, Grenfell B (2002) Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model. Ecol Monogr 72: 169-184. doi: 10.1890/0012-9615(2002)072[0169:DOMEES]2.0.CO;2 |
[48] | Tabachnick BG, Fidell LS, Ullman JB (2007) Using multivariate statistics Boston, MA: Pearson. |