Research article Special Issues

A linearly implicit energy-preserving exponential time differencing scheme for the fractional nonlinear Schrödinger equation

  • Received: 13 December 2022 Revised: 16 February 2023 Accepted: 16 March 2023 Published: 03 April 2023
  • In this paper, we present a new method to solve the fractional nonlinear Schrödinger equation. Our approach combines the invariant energy quadratization method with the exponential time differencing method, resulting in a linearly-implicit energy-preserving scheme. To achieve this, we introduce an auxiliary variable to derive an equivalent system with a modified energy conservation law. The proposed scheme uses stabilized exponential time differencing approximations for time integration and Fourier pseudo-spectral discretization in space to obtain a linearly-implicit, fully-discrete scheme. Compared to the original energy-preserving exponential integrator scheme, our approach is more efficient as it does not require nonlinear iterations. Numerical experiments confirm the effectiveness of our scheme in conserving energy and its efficiency in long-time computations.

    Citation: Tingting Ma, Yayun Fu, Yuehua He, Wenjie Yang. A linearly implicit energy-preserving exponential time differencing scheme for the fractional nonlinear Schrödinger equation[J]. Networks and Heterogeneous Media, 2023, 18(3): 1105-1117. doi: 10.3934/nhm.2023048

    Related Papers:

  • In this paper, we present a new method to solve the fractional nonlinear Schrödinger equation. Our approach combines the invariant energy quadratization method with the exponential time differencing method, resulting in a linearly-implicit energy-preserving scheme. To achieve this, we introduce an auxiliary variable to derive an equivalent system with a modified energy conservation law. The proposed scheme uses stabilized exponential time differencing approximations for time integration and Fourier pseudo-spectral discretization in space to obtain a linearly-implicit, fully-discrete scheme. Compared to the original energy-preserving exponential integrator scheme, our approach is more efficient as it does not require nonlinear iterations. Numerical experiments confirm the effectiveness of our scheme in conserving energy and its efficiency in long-time computations.



    加载中


    [1] J. Cai, J. Shen, Two classes of linearly implicit local energy-preserving approach for general multi-symplectic Hamiltonian PDEs, J. Comput. Phys., 401 (2020), 108975. https://doi.org/10.1016/j.jcp.2019.108975 doi: 10.1016/j.jcp.2019.108975
    [2] Q. Du, L. Ju, X. Li, Z. Qiao, Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation, SIAM J. Numer. Anal., 57 (2019), 875–898. https://doi.org/10.1137/18M118236X doi: 10.1137/18M118236X
    [3] Y. Fang. G. Wu, N. Kudryashov, Y. Wang, C. Dai, Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method, Chaos Solitons Fractals, 158 (2022), 112118. https://doi.org/10.1016/j.chaos.2022.112118 doi: 10.1016/j.chaos.2022.112118
    [4] Y. Fu, W. Cai, Y. Wang, Structure-preserving algorithms for the two-dimensional fractional Klein-Gordon-Schrödinger equation, Appl. Numer. Math., 156 (2020), 77–93. https://doi.org/10.1016/j.apnum.2020.04.011 doi: 10.1016/j.apnum.2020.04.011
    [5] Y. Gong, J. Zhao, X. Yang, Q. Wang, Fully discrete second-order linear schemes for hydrodynamic phase field models of binary viscous fluid flows with variable densities, SIAM J. Sci. Comput., 40 (2018), B138–B167. https://doi.org/10.1137/17M1111759 doi: 10.1137/17M1111759
    [6] B. Guo, Y. Han, J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Appl. Math. Comput., 204 (2008), 468–477. https://doi.org/10.1016/j.amc.2008.07.003 doi: 10.1016/j.amc.2008.07.003
    [7] N. Higham, Functions of Matrices: Theory and Computation, Philadelphia: SIAM, 2008. https://doi.org/10.1137/1.9780898717778
    [8] D. Hu, W. Cai, Y. Wang, Structure-preserving Fourier pseudo-spectral method for the fractional nonlinear sine-Gordon equation with damping, Preprint, 2020.
    [9] A. Ionescu, F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal., 266 (2014), 139–176. https://doi.org/10.1016/j.jfa.2013.08.027 doi: 10.1016/j.jfa.2013.08.027
    [10] C. Jiang, W. Cai, Y. Wang, A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach, J. Sci. Comput., 80 (2019), 1629–1655. https://doi.org/10.1007/s10915-019-01001-5 doi: 10.1007/s10915-019-01001-5
    [11] N. Laskin, Fractional quantum mechanics, Phys. Rev. E., 62 (2000), 3135. https://doi.org/10.1103/PhysRevE.62.3135
    [12] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A., 268: 298–305, 2000.
    [13] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E., 66 (2002), 056108. https://doi.org/10.1103/PhysRevE.66.056108 doi: 10.1103/PhysRevE.66.056108
    [14] Z. Liu, X. Liao, The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing, SIAM J. Sci. Comput., 42 (2020), B630–B655. https://doi.org/10.1137/19M1305914 doi: 10.1137/19M1305914
    [15] S. Longhi, Fractional Schrödinger equation in optics, Opt. Lett., 40 (2015), 1117–1120. https://doi.org/10.1364/OL.40.001117 doi: 10.1364/OL.40.001117
    [16] M. Li, X. Gu, C. Huang, M. Fei, G. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comput. Phys., 358 (2018), 256–282. https://doi.org/10.1016/j.jcp.2017.12.044 doi: 10.1016/j.jcp.2017.12.044
    [17] Y. Li, X. Wu, Exponential integrators preserving first integrals or Lyapunov functions for conservative or dissipative systems, SIAM J. Sci. Comput., 38 (2016), A1876–A1895. https://doi.org/10.1137/15M1023257 doi: 10.1137/15M1023257
    [18] J. Macías-Díaz, A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives, J. Comput. Phys., 351 (2017), 40–58. https://doi.org/10.1016/j.jcp.2017.09.028 doi: 10.1016/j.jcp.2017.09.028
    [19] B. Taylor, Partial Differential Equations I, New York: Springer, 2011. https://doi.org/10.1007/978-1-4419-7055-8
    [20] D. Wang, A. Xiao, W. Yang, A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys., 272(2014), 644–655. https://doi.org/10.1016/j.jcp.2014.04.047 doi: 10.1016/j.jcp.2014.04.047
    [21] P. Wang, C. Huang, A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation, Numer. Algorithms, 69 (2015), 625–641. https://doi.org/10.1007/s11075-014-9917-x doi: 10.1007/s11075-014-9917-x
    [22] W. Zeng, A. Xiao, X. Li, Error estimate of Fourier pseudo-spectral method for multidimensional nonlinear complex fractional Ginzburg-Landau equations, Appl. Math. Lett., 93 (2019), 40–45. https://doi.org/10.1016/j.aml.2019.01.041 doi: 10.1016/j.aml.2019.01.041
    [23] L. Zhang, C. Li, H. Zhong, C. Xu, D. Lei, Y. Li, et al., Propagation dynamics of super–Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes, Opt. Express., 24 (2016), 14406–14418. https://doi.org/10.1364/OE.24.014406 doi: 10.1364/OE.24.014406
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1105) PDF downloads(38) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog