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Abstract: In this paper, we present a new method to solve the fractional nonlinear Schrödinger
equation. Our approach combines the invariant energy quadratization method with the exponential time
differencing method, resulting in a linearly-implicit energy-preserving scheme. To achieve this, we
introduce an auxiliary variable to derive an equivalent system with a modified energy conservation law.
The proposed scheme uses stabilized exponential time differencing approximations for time integration
and Fourier pseudo-spectral discretization in space to obtain a linearly-implicit, fully-discrete scheme.
Compared to the original energy-preserving exponential integrator scheme, our approach is more
efficient as it does not require nonlinear iterations. Numerical experiments confirm the effectiveness of
our scheme in conserving energy and its efficiency in long-time computations.
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1. Introduction

In 2000, Laskin, a Canadian scholar, explored non-Brownian motion as a possible approach to
deriving the path integral. He expanded on Feynmann’s path integral by incorporating Levy paths, as
documented in his works [11, 12], which allowed for the modification of the Schrödinger equation.
By utilizing the non-local Laplacian operator (−∆)α/2(1 < α ≤ 2), he established the Schrödinger
model [13], which accurately describes the quantum state variations of non-local physical systems
over time, surpassing the classical Schrödinger equation. The model has been successfully applied to
various fields [9, 15, 23]. This paper focuses on the fractional nonlinear Schrödinger (NLS) equation
with the form

i
∂u(x, t)
∂t

− (−∆)
α
2 u(x, t) + β|u(x, t)|2u(x, t) = 0, x ∈ Ω ⊂ R2, t ∈ (0,T ], (1.1)
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u(x, 0) = u0(x), x ∈ Ω, (1.2)

where 1 < α ≤ 2, i2 = −1, u0(x) is a given smooth function, β is a real positive constant. The fractional
Laplacian −(−∆)

α
2 with period 2L can be defined by [22]

−(−∆)
α
2 u(x, t) = −

∑
k1∈Z

∑
k2∈Z

|υ2
k1
+ υ2

k2
|
α
2 ûkeiυk·(x+L), with ûk =

1
(2L)2

∫
Ω

u(x, t)e−iυk ·(x+L)dx, (1.3)

where υk1 =
k1π
L , υk2 =

k2π
L , υk · (x + L) = υk1(x + L) + υk2(y + L). By setting u = p + iq, we can rewrite

system (1.1) as a pair of real-valued equations

pt = (−∆)
α
2 q − β(p2 + q2)q, (1.4)

qt = −(−∆)
α
2 p + β(p2 + q2)p. (1.5)

Guo et al. derive the equation possessing the energy conservation law [6], namely

H(p, q) =
1
2

∫
Ω

[(
(−∆)

α
4 p

)2
+

(
(−∆)

α
4 q

)2
]
dx −

β

4

∫
Ω

(p2 + q2)2dx, (1.6)

where H is energy function. From variational derivative formula [4], systems (1.4) and (1.5) can be
rewritten as as an Hamiltonian system

dz
dt
= J−1 δH

δz
, with z = (p, q)T , J =

(
0 1
−1 0

)
.

It is widely acknowledged that conserving energy is crucial in establishing the existence and
uniqueness of solutions for PDEs [3, 19]. Traditional methods fail to maintain these conservation
laws, making structure-preserving algorithms essential for the numerical analysis of classical
differential equations. Recently, researchers have been exploring structure-preserving numerical
schemes for fractional equations [18], with a focus on the fractional NLS equation. For example, Li
et al. [16] developed a fast conservative finite element scheme for the strongly coupled fractional NLS
equation. Wang et al. [20, 21] also presented different schemes that can exactly conserve energy for
various fractional NLS equations. Additional related research can be found in [4] and the references
therein. However, most structure-preserving schemes for the fractional NLS equation are fully
implicit, requiring iterations to solve algebraic systems at each time step. This leads to a substantial
number of calculations.

In [2], the exponential integrators scheme was studied in depth. This scheme has a unique
advantage in that it accurately evaluates the contribution of the linear part, allowing for stable and
precise computations even when dealing with highly rigid linear terms. As a result, this scheme has
been successfully applied to Hamiltonian PDEs [17] and has been found to permit larger step sizes
and achieve greater accuracy than non-exponential schemes. Additionally, the invariant energy
quadratization (IEQ) method, developed by Yang and colleagues, has been used to create efficient and
accurate linearly-implicit schemes for certain gradient models [5] and conservative differential
equations [1, 10]. For example, in [1], a linearly implicit scheme for the fractional NLS equation was
developed using the IEQ method. However, practical computations using these schemes still require
smaller step sizes, making them computationally expensive for long-time numerical simulations. To
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address these challenges, we propose a novel approach that combines the exponential time
differencing method with the IEQ approach to develop an efficient linearly-implicit energy-preserving
scheme for the fractional NLS equation. Surprisingly, there has been little research in this area to
date. The main goal of this paper is to develop a linearly-implicit exponential integrator scheme for
this equation, using the IEQ method. Our contributions can be summarized as follows: (i) we
introduce the Hamiltonian form of the equation; (ii) we combine the IEQ method and the exponential
integrators technique to develop a linearly implicit scheme that conserves energy; (iii) we demonstrate
that the construction process of the proposed scheme can be extended to develop conservative
schemes for other differential equations. Moreover, our numerical results show that the scheme
inherits the modified energy and has better numerical stability than traditional energy-preserving
schemes in practical computations.

The paper is arranged as follows. In Section 2, we obtain a new equivalent system with modified
energy via the IEQ method. In Section 3, we construct a linearly-implicit exponential integrator scheme
for solving the fractional NLS equation, and prove that the proposed scheme can preserve the discrete
energy. A numerical example is presented in Section 4 to illustrate the theoretical results. We draw
some conclusions in Section 5.

2. IEQ method for the equation

In this Section, we utilize the IEQ idea to transform Eqs (1.4) and (1.5) into an equivalent system.
Following the idea of the IEQ approach, we introduce an auxiliary variable w := w(t) =

√
G(p, q) +C0,

where G(p, q) = β4 (p2 + q2)2, by choosing a sufficiently large constant C0, the well-posedness of w is
ensured. This results in a modified formalism for the Hamiltonian energy (1.6).

E(t) =
1
2

∫
Ω

[
((−∆)

α
4 p)2 + ((−∆)

α
4 q)2

]
dx −

∫
Ω

w2dx, (2.1)

and the corresponding fractional NLS systems (1.4) and (1.5) can be written as

pt = (−∆)
α
2 q −

β(p2 + q2)q√
G(p, q) +C0

w, (2.2)

qt = −(−∆)
α
2 p +

β(p2 + q2)p√
G(p, q) +C0

w, (2.3)

wt =
β(p2 + q2)ppt + β(p2 + q2)qqt

2
√

G(p, q) +C0

, (2.4)

with the consistent initial condition p0 = p0(x, 0) = Re
(
u0(x)

)
, q0 = q0(x, 0) = Im

(
u0(x)

)
,w0 =√

G(p0, q0) +C0, and the periodic boundary condition. It is easy to prove the systems (2.2)–(2.4)
possesses the modified energy

E(t) = E(0). (2.5)

Networks and Heterogeneous Media Volume 18, Issue 3, 1105–1117.
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3. Construction of conservative scheme

3.1. Spatial discretization

For positive even integers Nx, Ny and N, we define: hx := 2L
Nx
, hy := 2L

Ny
, and set time step τ = T

N . The
spatial grid points are given: Ωh = {(xi, y j)| i = 0, 1, · · · ,Nx − 1; j = 0, 1, · · · ,Ny − 1}, where xi = −L +
ihx, 0 ≤ i ≤ Nx − 1, y j = −L + jhy, 0 ≤ j ≤ Ny − 1. LetUh = {u|u = (u0,0, · · · , uNx−1,0, u0,1, · · · , uNx−1,1,
· · · , u0,Ny−1, · · · , uNx−1,Ny−1)T }. For u, v ∈ Uh, we define

⟨u, v⟩h = hxhy

Nx−1∑
i=0

Ny−1∑
j=0

ui, jv̄i, j, ∥u∥ = ⟨u,u⟩
1
2
h , ∥u∥∞ = sup

(xi,y j)∈Ωh

|ui, j|,

where v̄i, j is the conjugate of vi, j, and we introduce some operators

δtun =
un+1 − un

τ
, un+1/2 =

un+1 + un

2
, ûn+1/2 =

3un − un−1

2
.

Let (xi, y j) ∈ Ωh be the Fourier collocation points. Using the interpolation polynomial IN p(x, y) to
approximate pN(x, y) of the function p(x, y), and we have

IN p(x, y) = pN(x, y) =
Nx/2∑

k1=−Nx/2

Ny/2∑
k2=−Ny/2

p̃k1,k2e
ik1µ(x+L)eik2µ(y+L),

where µ = πL , and the coefficient

p̃k1,k2 =
1

Nxck1

1
Nyck2

Nx−1∑
i=0

Ny−1∑
j=0

p(xi, y j)e−ik1µ(x+L)e−ik2µ(y+L),

with ck1 = 1 for |k1| < Nx/2, ck2 = 1 for |k2| < Ny/2, ck1 = 2 for k1 = ±Nx/2, and ck2 = 2 for k2 = ±Ny/2.
Then the −(−∆)

α
2 on p(xi, y j) can be discretized by [8]

(Dαp)i, j : = −(−∆)
α
2 pN(xi, y j)

= −
1

NxNy

Nx−1∑
k1=0

Ny−1∑
k2=0

d(s)
k1,k2

( Nx−1∑
i=0

Ny−1∑
j=0

pi, je−2πi(ik1+ jk2)/Nx
)
e2πi(ik1+ jk2)/Ny ,

(3.1)

where

d(α)
k1,k2
=


µα(k2

1 + k2
2)α/2, 0 ≤ k1 ≤ Nx/2, 0 ≤ k2 ≤ Ny/2,

µα
(
k2

1 + (k2 − N2)2)α/2, 0 ≤ k1 ≤ Nx/2, Ny/2 ≤ k2 ≤ Ny − 1,
µα

(
(k1 − N1)2 + k2

2
)α/2
, Nx/2 ≤ k1 ≤ Nx − 1, 0 ≤ k2 ≤ Ny/2,

µα
(
(k1 − N1)2 + (k2 − N2)2)α/2, Nx/2 ≤ k1 ≤ Nx − 1, Ny/2 ≤ k2 ≤ Ny − 1.

Especially for N = Nx = Ny, the negative definite and symmetric matrix Ds is given

Ds = −(F ⊗ F)−1Λ(F ⊗ F), Λ = diag(d(s)),

where F is a orthogonal matrix with the entries

(F) j,k =
1
√

N

[
e
−2πi( j−1)(k−1)

N
]
, k = 1, 2, · · · ,N.

One can observe that the expression (F ⊗ F)−1Λ(F ⊗ F)p can be efficiently calculated in O(N2 log N)
operations using the built-in function ifft2(Λ. ∗ fft2(p)) in Matlab.

Networks and Heterogeneous Media Volume 18, Issue 3, 1105–1117.



1109

3.2. Construction of the conservative exponential scheme

By applying the Fourier pseudo-spectral to Eqs (2.2)–(2.4), we obtain

pt = −Dαq −
g2(p, q)

√
G(p, q) +C0

w, (3.2)

qt = Dαp+
g1(p, q)

√
G(p, q) +C0

w, (3.3)

wt =
g1(p, q)pt + g2(p, q)qt

2
√

G(p, q) +C0
, (3.4)

where g1(p, q) = β(p2 + q2)p, g2(p, q) = β(p2 + q2)q.
Let

z(t) =
(
p(t), q(t)

)T
, f

(
p(t), q(t),w(t)

)
=

( g1(p, q)
√

G(p, q) +C0
w,

g2(p, q)
√

G(p, q) +C0
w
)T
,

S =

(
O −I
I O

)
, D =

(
Dα O
O Dα

)
,

then, systems (3.2)–(3.4) can be rewritten as

zt = SDz(t) + S f (3.5)

wt =
g1(p, q)pt + g2(p, q)qt

2
√

G(p, q) +C0
. (3.6)

LetV = τSD, then integrating systems (3.5) and (3.6) from tn to tn+1, we can obtain

zn+1 = exp(V)zn + τ

∫ 1

0
exp[(1 − ξ)V]S f

(
p(tn + ξτ), q(tn + ξτ),w(tn + ξτ)

)
dξ, (3.7)

wn+1 = wn + τ

∫ 1

0

g1
(
p(tn + ξτ), q(tn + ξτ)

)
pt + g2

(
p(tn + ξτ), q(tn + ξτ)

)
qt

2
√

G
(
p(tn + ξτ), q(tn + ξτ)

)
+C0

dξ. (3.8)

Then, we can use f
(
p(tn + ξτ), q(tn + ξτ),w(tn + ξτ)

)
and

g1
(
p(tn + ξτ), q(tn + ξτ)

)
pt + g2

(
p(tn + ξτ), q(tn + ξτ)

)
qt

2
√

G
(
p(tn + ξτ), q(tn + ξτ)

)
+C0

to approximate f ( p̂n+ 1
2 , q̂n+ 1

2 ,wn+ 1
2 ) and

g1
(
p̂n+ 1

2 , q̂n+ 1
2
)
δt pn + g2

(
p̂n+ 1

2 , q̂n+ 1
2
)
δtqn

2
√

G
(
p̂n+ 1

2 , q̂n+ 1
2
)
+C0

,

respectively, and obtain the following new scheme

zn+1 = exp(V)zn + τϕ(V)S f ( p̂n+ 1
2 , q̂n+ 1

2 ,wn+ 1
2 ), (3.9)
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wn+1 = wn + τ
g1

(
p̂n+ 1

2 , q̂n+ 1
2
)
δt pn + g2

(
p̂n+ 1

2 , q̂n+ 1
2
)
δtqn

2
√

G
(
p̂n+ 1

2 , q̂n+ 1
2
)
+C0

, (3.10)

where

ϕ(V) =
∫ 1

0
exp[(1 − ξ)V]dξ,

f ( p̂n+ 1
2 , q̂n+ 1

2 ,wn+ 1
2 ) =

( g1
(
p̂n+ 1

2 , q̂n+ 1
2
)
wn+ 1

2√
G( p̂n+ 1

2 , q̂n+ 1
2 ) +C0

,
g2

(
p̂n+ 1

2 , q̂n+ 1
2
)
wn+ 1

2√
G( p̂n+ 1

2 , q̂n+ 1
2 ) +C0

)T
, n = 1, 2, · · · .

Remark 3.1. It should be noted that the proposed schemes (3.9) and (3.10) are a three level method,
therefore, we can calculate the z1 and w1 by using the z0 instead of ẑ 1

2 for the first step.

Theorem 3.1. Schemes (3.4) and (3.5) conserve the modified energy

En+1 = En, with En =
1
2

(zn)TDzn + (wn)2, n = 0, 1, · · · .

To this end, we first give some lemmas.

Lemma 3.1. [7] Assuming that g(x) is a sufficiently smooth function, in the vicinity of zero, with 0
being a removable singularity, we can define g(0) as the limit of g(x) as x approaches zero.

g(x) =
∞∑

k=0

gk(0)
k!

xk,

and for a matrixA, the matrix valued function is defined by g(A) =
∞∑

k=0

gk(0)
k! A

k.

Lemma 3.2. [17] IfD is a symmetric matrix and τ is a non-negative scalar, then the matrixA defined
by A = exp(V)TD exp(V) − D is a nilpotent matrix, where V = τSD and S is a skew-symmetric
matrix.

Next, we show that the proposed scheme can preserve the modified energy.

Proof. If D is a singular matrix, let {Dϵ} be a series of symmetric and nonsingular matrices, which
converge toD when ϵ → 0. We assume zn

ϵ ,wn
ϵ satisfy the perturbed scheme

zn+1
ϵ = exp(Vϵ)zn

ϵ + τg(Vϵ)S f ( ẑn+ 1
2

ϵ ,w
n+ 1

2
ϵ ), (3.11)

wn+1
ϵ = wn

ϵ + τ
g1

(
p̂ϵn+

1
2 , q̂ϵn+

1
2
)
δt pϵn + g2

(
p̂ϵn+

1
2 , q̂ϵn+

1
2
)
δtqϵn

2
√

G
(
p̂ϵn+

1
2 , q̂ϵn+

1
2
)
+C0

, (3.12)

whereVϵ = τSDϵ , n = 0, 1, · · · . Then, we denote

f̃ϵ := D−1
ϵ fϵ = D−1

ϵ f ( ẑn+ 1
2

ϵ ,w
n+ 1

2
ϵ ),

and rewrite En as

En
ϵ =

1
2

(zn
ϵ )

T
Dϵ zn

ϵ + (wn
ϵ )

2. (3.13)
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According to Eq (3.4), we have

1
2

(
zn+1
ϵ

)T
Dϵ zn+1

ϵ =
1
2
[ (

zn
ϵ

)T exp (Vϵ)T + τ f T
ϵ S

Tϕ(Vϵ)T ]Dϵ[ exp (Vϵ) zn
ϵ + τϕ(Vϵ)S fϵ

]
=

1
2

(
zn
ϵ

)T exp (Vϵ)T
Dϵ exp (Vϵ) zn

ϵ +
(
zn
ϵ

)T exp (Vϵ)T
Dϵ

[
exp (Vϵ) − I

]
f̃ϵ

+
1
2

f̃ T
ϵ

[
exp (Vϵ)T

− I
]
Dϵ

[
exp (Vϵ) − I

]
f̃ϵ

=
1
2
[ (

zn
ϵ

)T exp (Vϵ)T + τ f T
ϵ S

Tϕ(Vϵ)T ]Dϵ[ exp (Vϵ) zn
ϵ + τϕ(Vϵ)S fϵ

]
=

1
2

(
zn
ϵ

)T exp (Vϵ)T
Dϵ exp (Vϵ) zn

ϵ +
(
zn
ϵ

)T exp (Vϵ)T
Dϵ

[
exp (Vϵ) − I

]
f̃ϵ

+
1
2

f̃ T
ϵ

[
exp (Vϵ)T

− I
]
Dϵ

[
exp (Vϵ) − I

]
f̃ϵ . (3.14)

On the other hand, from Eq (3.12), we have(
wn+1
ϵ

)2
−

(
wn
ϵ

)2
=

g1
(
p̂ϵn+

1
2 , q̂ϵn+

1
2
)
(pn+1
ϵ − pn

ϵ ) + g2
(
p̂ϵn+

1
2 , q̂ϵn+

1
2
)
(qn+1
ϵ − qn

ϵ )

2
√

G
(
p̂ϵn+

1
2 , q̂ϵn+

1
2
)
+C0

wn+ 1
2

ϵ

=

((
zn+1
ϵ

)T
−

(
zn
ϵ

)T
)

fϵ

=
(
zn
ϵ

)T
[
exp (Vϵ)T

− I
]

fϵ + τ f T
ϵ S

Tϕ(Vϵ)T fϵ

=
(
zn
ϵ

)T
[
exp (Vϵ)T

− I
]
D f̃ϵ + τ f T

ϵ S
Tϕ(Vϵ)TD f̃ϵ

=
(
zn
ϵ

)T
[
exp (Vϵ)T

Dϵ −Dϵ

]
f̃ϵ + f̃ T

ϵ V
T
ϵ ϕ(Vϵ)

TDϵ f̃ϵ

=
(
zn
ϵ

)T
[
exp (Vϵ)T

Dϵ −Dϵ

]
f̃ϵ + f̃ T

ϵ

[
exp (Vϵ)T

Dϵ −Dϵ

]
f̃ϵ . (3.15)

This together with Eq (3.9), we can deduce

En+1
ϵ − En

ϵ =
1
2

(
zn+1
ϵ

)T
Dϵ zn+1

ϵ −
1
2

(
zn
ϵ

)T
Dϵ zn

ϵ +
(
wn+1
ϵ

)2
−

(
wn
ϵ

)2

=
1
2

(
zn
ϵ

)T
[
exp (Vϵ)T

Dϵ exp (Vϵ) −Dϵ
]

zn
ϵ +

(
zn
ϵ

)T
[
exp (Vϵ)T

Dϵ exp (Vϵ) −Dϵ
]

f̃ϵ

+
1
2

f̃ T
ϵ

[
exp (Vϵ)T

Dϵ exp (Vϵ) −Dϵ
]

f̃ϵ +
1
2

f̃ T
ϵ

[
exp (Vϵ)T

Dϵ −Dϵ exp(Vϵ)
]

f̃ϵ

=
1
2

f̃ T
ϵ Bϵ f̃ϵ +

1
2

(
zn
ϵ + f̃ϵ

)T
Aϵ

(
zn
ϵ + f̃ϵ

)
= 0, (3.16)

where
Bϵ = exp (Vϵ)T

Dϵ −Dϵ exp(Vϵ),

Aϵ = exp (Vϵ)T
Dϵ exp (Vϵ) −Dϵ .

The last equality is based on Lemma 3.1 and the skew symmetry of the matrix B. Thus, from Eq (3.9),
when ϵ → 0, zn

ϵ → zn,wn
ϵ → wn, we obtain En+1 = En.

IfD is a nonsingular matrix, the proof is similar to above process, for brevity, we omit it. The proof
is completed.
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4. Numerical example

Two examples are given to confirm the efficiency, conservation and stability of the proposed scheme.
We use the formula

Rate =
ln (error1/error2)

ln (τ1/τ2)
(4.1)

to evaluate the convergence rate, where τi, errori, (i = 1, 2) are step sizes and L∞-norm errors with the
step size τi, respectively. The relative energy error is defined as

REn = |
En − E0

E0 |, RHn = |
Hn − H0

H0 |, (4.2)

where En and En denote the conservation laws at tn = nτ.

Example 4.1. Considering the equation with

u(x, 0) = exp(−x2) exp(−ix), x ∈ Ω = [−40, 40]. (4.3)

The exact solution is not given, we use

∥e∥∞ = ∥u(h, τ) − u(h,
τ

2
)∥∞,

to obtain numerical errors.
In the follow-up of the article, the E-IEQ is the developed scheme in our work, CN-IEQ is a

linearly implicit Crank-Nicolson IEQ scheme [1], E-AVF scheme is a fully-implicit exponential AVF
scheme, and the E-SAV scheme [14] represents a linearly implicit exponential scheme based on the
SAV approach. Yet the general, we first take α = 1.8 to demonstrate the accuracy, efficiency and
conservation properties of E-IEQ scheme. In Table 1, numerical errors and convergence orders implies
that four schemes have second-order accuracy in the time. Noting that ‘NaN’ implies the CN-IEQ
scheme cannot be implemented with a large time step, but the E-IEQ scheme can. Figure 1 shows that
linearly implicit schemes are more efficient than the E-AVF scheme, and the E-IEQ scheme is most
efficient of the four schemes.

Table 1. Temporal accuracy of different schemes with, h = 80/512.

Scheme τ = 1
40 τ = 1

80 τ = 1
160 τ = 1

320
CN-IEQ ∥e∥∞ NaN NaN 9.81e-03 2.54e-03

Rate * * * 1.95
E-IEQ ∥e∥∞ 3.32e-02 7.64e-03 1.82e-04 4.46e-04

Rate * 2.12 2.07 2.03
E-SAV [14] ∥e∥∞ 2.91e-02 7.26e-03 1.81e-03 4.53e-04

Rate * 2.00 2.00 2.00
EAVF [17] ∥e∥∞ 1.68e-02 4.19e-03 1.04e-03 2.62e-04

Rate * 1.99 2.00 2.00
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Figure 1. The numerical error versus the CPU time using the four numerical schemes.

In Figure 2, the relative errors of the modified energy and original energy of the equation are
presented. From the results, we can see three linearly implicit schemes only can conserve the
modified energy, the E-AVF scheme can preserve the inherent energy of the equation. Finally, we
focus on the correlation between the fractional order α and the soliton’s shape. Figure 3 displays
numerical outcomes for various α values. It is evident that α has a significant impact on the soliton’s
form. As α shifts from 1.3 to 2, the soliton’s appearance changes dramatically. The findings reveal
that the solitary wave can endure stable propagation under finite initial circumstances, even after long
periods of propagation.
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(b) E-IEQ
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(c) E-SAV
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Figure 2. Relative errors of conservation laws for different schemes with h = 80/512, τ =
0.01.
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(a) α = 1.3 (b) α = 1.6

(c) α = 1.8 (d) α = 2

Figure 3. Evolution of the solitons with N = 512, τ = 0.01 for different order α.

Example 4.2. We consider the equation on (x, y) = (−π, π) × (−π, π) and has the form

u(x, y, t) = Aexp
(
i(λ1x + λ2y − ωt)

)
, (4.4)

with

ω = (λ1
2 + λ2

2)
α
2 − β|A|2. (4.5)

where the amplitude A = 1, the wave numbers λ1 = λ2 = 2 and β = 2.
This example takes α = 1.4, 1.7, 2. Figure 4 shows that the proposed scheme has second-order in

time. We then run a long-time simulation till T = 50 and plot the relative energy deviation in Figure 5
which indicates that the new scheme can preserve the modified energy exactly in discrete scene.
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Figure 4. Convergence orders in time for different order α with h = 2π/16.
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Figure 5. Convergence orders in time for different order α with h = 2π/16.

5. Conclusions

In this paper, we introduce a unique technique to solve the fractional nonlinear Schrödinger
equation while conserving energy. We achieve this through a combination of the invariant energy
quadratization method and the exponential time differencing method. Our proposed scheme is highly
efficient and performs well even with large time steps during long-time computations. In discrete
settings, the modified energy is precisely preserved. To demonstrate our approach, we present a
numerical example. Furthermore, this technique can be applied to other fractional Hamiltonian PDEs,
including the fractional nonlinear wave equation and the fractional Klein-Gordon-Schrödinger
equation, by following a similar process.
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