Research article Special Issues

A transformed $ L1 $ Legendre-Galerkin spectral method for time fractional Fokker-Planck equations

  • Received: 19 December 2022 Revised: 12 February 2023 Accepted: 23 February 2023 Published: 06 March 2023
  • The numerical solutions of time $ \alpha $-order $ (\alpha \in (0, 1)) $ Caputo fractional Fokker-Planck equations is considered. The constructed method is consist of the transformed $ L1 $ ($ TL1 $) scheme in the temporal direction and the Legendre-Galerkin spectral method in the spatial direction. It has been shown that the $ TL1 $ Legendre-Galerkin spectral method in $ L^2 $-norm is exponential order convergent in space and ($ 2-\alpha $)-th order convergent in time. Several numerical examples are given to verify the obtained theoretical results.

    Citation: Diandian Huang, Xin Huang, Tingting Qin, Yongtao Zhou. A transformed $ L1 $ Legendre-Galerkin spectral method for time fractional Fokker-Planck equations[J]. Networks and Heterogeneous Media, 2023, 18(2): 799-812. doi: 10.3934/nhm.2023034

    Related Papers:

  • The numerical solutions of time $ \alpha $-order $ (\alpha \in (0, 1)) $ Caputo fractional Fokker-Planck equations is considered. The constructed method is consist of the transformed $ L1 $ ($ TL1 $) scheme in the temporal direction and the Legendre-Galerkin spectral method in the spatial direction. It has been shown that the $ TL1 $ Legendre-Galerkin spectral method in $ L^2 $-norm is exponential order convergent in space and ($ 2-\alpha $)-th order convergent in time. Several numerical examples are given to verify the obtained theoretical results.



    加载中


    [1] R. Metzler, T. Nonnenmacher, Space-and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation, Chem. Phys., 284 (2002), 67–90. https://doi.org/10.1016/S0301-0104(02)00537-2 doi: 10.1016/S0301-0104(02)00537-2
    [2] E. Barkai, R. Metzler, J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E., 61 (2000), 132–138. https://doi.org/10.1103/PhysRevE.61.132 doi: 10.1103/PhysRevE.61.132
    [3] E. Barkai, Fractional Fokker-Planck equation, solution, and application, Phys. Rev. E., 63 (2001), 046118. https://doi.org/10.1103/PhysRevE.63.046118 doi: 10.1103/PhysRevE.63.046118
    [4] G. Liu, M. Liu, Smoothed Particle Hydrodynamics: a Meshfree Particle Method, World Scientific, 2003.
    [5] H. Fu, G. Wu, G. Yang, L. Huang, Continuous time random walk to a general fractional Fokker-Planck equation on fractal media, Eur. Phys. J. Spec. Top., 230 (2021), 3927–3933. https://doi.org/10.1140/epjs/s11734-021-00323-6 doi: 10.1140/epjs/s11734-021-00323-6
    [6] I. Goychuk, E. Heinsalu, M. Patriarca, G. Schmid, P. Hänggi, Current and universal scaling in anomalous transport, Phys. Rev. E, 73 (2006), 020101. https://doi.org/10.1103/PhysRevE.73.020101 doi: 10.1103/PhysRevE.73.020101
    [7] M. Stynes, Too much regularity may force too much uniqueness, Fract. Calc. Appl. Anal., 19 (2016), 1554–1562. https://doi.org/10.1515/fca-2016-0080 doi: 10.1515/fca-2016-0080
    [8] W. Deng, Numerical algorithm for the time fractional Fokker-Planck equation, J. Comput. Phys., 227 (2007), 1510–1522. https://doi.org/10.1016/j.jcp.2007.09.015 doi: 10.1016/j.jcp.2007.09.015
    [9] S. Vong, Z. Wang, A high order compact finite difference scheme for time fractional Fokker-Planck equations, Appl. Math. Lett., 43 (2015), 38–43. https://doi.org/10.1016/j.aml.2014.11.007 doi: 10.1016/j.aml.2014.11.007
    [10] A. Mahdy, Numerical solutions for solving model time-fractional Fokker-Planck equation, Numer. Methods Partial Differ. Equ., 37 (2021), 1120–1135. https://doi.org/10.1002/num.22570 doi: 10.1002/num.22570
    [11] X. Yang, H. Zhang, Q. Zhang, G. Yuan, Z. Sheng, The finite volume scheme preserving maximum principle for two-dimensional time-fractional Fokker-Planck equations on distorted meshes, Appl. Math. Lett., 97 (2019), 99–106. https://doi.org/10.1016/j.aml.2019.05.030 doi: 10.1016/j.aml.2019.05.030
    [12] F. Zeng, C. Li, F. Liu, I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35 (2013), A2976–A3000. https://doi.org/10.1137/130910865 doi: 10.1137/130910865
    [13] A. Mohebbi, M. Abbaszadeh, M. Dehghan, A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term, J. Comput. Phys., 240 (2013), 36–48. https://doi.org/10.1016/j.jcp.2012.11.052 doi: 10.1016/j.jcp.2012.11.052
    [14] Y. Jiang, A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker-Planck equation, Appl. Math. Model., 39 (2015), 1163–1171. https://doi.org/10.1016/j.apm.2014.07.029 doi: 10.1016/j.apm.2014.07.029
    [15] C. Zhang, Y. Zhou, A preconditioned implicit difference scheme for semilinear two-dimensional time-space fractional Fokker-Planck equations, Numer. Linear Algebra Appl., 28 (2021), e2357. https://doi.org/10.1002/nla.2357 doi: 10.1002/nla.2357
    [16] W. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47 (2008), 204–226. https://doi.org/10.1137/080714130 doi: 10.1137/080714130
    [17] S. Chen, F. Liu, P. Zhuang, V. Anh, Finite difference approximations for the fractional Fokker-Planck equation, Appl. Math. Model., 33 (2009), 256–273. https://doi.org/10.1016/j.apm.2007.11.005 doi: 10.1016/j.apm.2007.11.005
    [18] B. Jin, B. Li, Z. Zhou, Numerical analysis of nonlinear subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1–23. https://doi.org/10.1137/16M1089320 doi: 10.1137/16M1089320
    [19] C. Lubich, Convolution quadrature and discretized operational calculus. I, Numer. Math., 52 (1988), 129–145. https://doi.org/10.1007/BF01398686 doi: 10.1007/BF01398686
    [20] N. Kopteva, Error analysis of the $L1$ method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions, Math. Comput., 88 (2019), 2135–2155. https://doi.org/10.1090/mcom/3410 doi: 10.1090/mcom/3410
    [21] D. Li, C. Zhang, Long time numerical behaviors of fractional pantograph equations, Math. Comput. Simul., 172 (2020), 244–257. https://doi.org/10.1016/j.matcom.2019.12.004 doi: 10.1016/j.matcom.2019.12.004
    [22] A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424–438. https://doi.org/10.1016/j.jcp.2014.09.031 doi: 10.1016/j.jcp.2014.09.031
    [23] Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193–209. https://doi.org/10.1016/j.apnum.2005.03.003 doi: 10.1016/j.apnum.2005.03.003
    [24] H. Liao, W. Mclean, J. Zhang, A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems, SIAM J. Numer. Anal., 57 (2019), 218–237. https://doi.org/10.1137/16M1175742 doi: 10.1137/16M1175742
    [25] B. Zhou, X. Chen, D. Li, Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional parabolic equations, J. Sci. Comput., 85 (2020), 39. https://doi.org/10.1007/s10915-020-01350-6 doi: 10.1007/s10915-020-01350-6
    [26] M. Stynes, E. O'Riordan, J. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. https://doi.org/10.1137/16M1082329 doi: 10.1137/16M1082329
    [27] J. Shen, Z. Sun, R. Du, Fast finite difference schemes for time-fractional diffusion equations with a weak singularity at initial time, East Asian J. Appl. Math., 8 (2018), 834–858. https://doi.org/10.4208/eajam.010418.020718 doi: 10.4208/eajam.010418.020718
    [28] J. Shen, Z. Sun, W. Cao, A finite difference scheme on graded meshes for time-fractional nonlinear Korteweg-de Vries equation, Appl. Math. Comput., 361 (2019), 752–765. https://doi.org/10.1016/j.amc.2019.06.023 doi: 10.1016/j.amc.2019.06.023
    [29] D. Li, C. Wu, Z. Zhang, Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 80 (2019), 403–419. https://doi.org/10.1007/s10915-019-00943-0 doi: 10.1007/s10915-019-00943-0
    [30] Y. Zhou, M. Stynes, Optimal convergence rates in time-fractional discretisations: the ${\rm L}1$, $\overline{{\rm L}1}$ and Alikhanov schemes, East Asian J. Appl. Math., 12 (2022), 503–520. https://doi.org/10.4208/eajam.290621.220921 doi: 10.4208/eajam.290621.220921
    [31] J. Shen, F. Zeng, M. Stynes, Second-order error analysis of the averaged L1 scheme L1 for time-fractional initial-value and subdiffusion problems, Sci. China Math., 2023. https://doi.org/10.1007/s11425-022-2078-4
    [32] B. Ji, H. Liao, Y. Gong, L. Zhang, Adaptive second-order Crank-Nicolson time-stepping schemes for time-fractional molecular beam epitaxial growth models, SIAM J. Sci. Comput., 42 (2020) B738–B760. https://doi.org/10.1137/19M1259675
    [33] S. Jiang, J. Zhang, Q. Zhang, Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commu. Comput. Phys., 21 (2017), 650–678. https://doi.org/10.4208/cicp.OA-2016-0136 doi: 10.4208/cicp.OA-2016-0136
    [34] Y. Yan, Z. Sun, J. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme, Commun. Comput. Phys., 22 (2017) 1028–1048. https://doi.org/10.4208/cicp.OA-2017-0019
    [35] Y. Zhao, X. Gu, A. Ostermann, A preconditioning technique for an all-at-once system from Volterra subdiffusion equations with graded time steps, J. Sci. Comput., 88 (2021), 11. https://doi.org/10.1007/s10915-021-01527-7 doi: 10.1007/s10915-021-01527-7
    [36] X. Gu, S. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576
    [37] D. Li, W. Sun, C. Wu, A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions, Numer. Math. Theory Methods Appl., 14 (2021), 355–376. https://doi.org/10.4208/nmtma.oa-2020-0129 doi: 10.4208/nmtma.oa-2020-0129
    [38] H. Qin, D. Li, Z. Zhang, A novel scheme to capture the initial dramatic evolutions of nonlinear subdiffusion equations, J. Sci. Comput., 89 (2021), 1–20. https://doi.org/10.1007/s10915-021-01672-z doi: 10.1007/s10915-021-01672-z
    [39] K. Mustapha, D. Schotzau, Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations, IMA. J. Numer. Anal., 34 (2014), 1426–1446. https://doi.org/10.1093/imanum/drt048 doi: 10.1093/imanum/drt048
    [40] K. Mustapha, W. Mclean, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM. J. Numer. Anal., 51 (2013), 491–515. https://doi.org/10.1137/120880719 doi: 10.1137/120880719
    [41] D. Li, C. Zhang, Superconvergence of a discontinuous Galerkin method for first-order linear delay differential equations, J. Comput. Math., 29 (2011), 574–588. https://doi.org/10.4208/jcm.1107-m3433 doi: 10.4208/jcm.1107-m3433
    [42] M. Cui, A high-order compact exponential scheme for the fractional convection-diffusion equation, J. Comput. Appl. Math., 255 (2014), 404–416. https://doi.org/10.1016/j.cam.2013.06.001 doi: 10.1016/j.cam.2013.06.001
    [43] A. Mohebbi, M. Abbaszadeh, Compact finite difference scheme for the solution of time fractional advection-dispersion equation, Numer. Algorithms, 63 (2013), 431–452. https://doi.org/10.1007/s11075-012-9631-5 doi: 10.1007/s11075-012-9631-5
    [44] M. She, L. Li, R. Tang, D. Li, A novel numerical scheme for a time fractional Black-Scholes equation, J. Appl. Math. Comput., 66 (2021) 853–870. https://doi.org/10.1007/s12190-020-01467-9
    [45] J. Shen, T. Tang, L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Berlin: Springer, 2011.
    [46] W. Cao, F. Zeng, Z. Zhang, G. E. Karniadakis, Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions, SIAM J. Sci. Comput., 38 (2016), A3070–A3093. https://doi.org/10.1137/16M1070323 doi: 10.1137/16M1070323
    [47] K. Mustapha, FEM for time-fractional diffusion equations, novel optimal error analyses, Math. Comput., 87 (2018), 2259–2272. https://doi.org/10.1090/mcom/3304 doi: 10.1090/mcom/3304
    [48] C. Canuto, M. Hussaini, A. Quarteront, Spectral Methods in Fluid Dynamics, New York: Springer-Verlag, 1987.
    [49] W. Yuan, D. Li, C. Zhang, Linearized transformed $L1$ Galerkin FEMs with unconditional convergence for nonlinear time fractional Schödinger equations, Numer. Math. Theory Methods Appl., 2023. https://doi:10.4208/nmtma.OA-2022-0087 doi: 10.4208/nmtma.OA-2022-0087
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1226) PDF downloads(67) Cited by(3)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog