Recently, the Kuramoto model with transmission delay has been attracting increasing attention, accompanied by the increase in its practical applications. In this paper, we studied the Kuramoto-Sakaguchi-type Fokker-Planck equation of the above model proposed by Lee et al., in 2009. We proved the global-in-time solvability of the equation under some conditions on the initial data and distribution of delay.
Citation: Hirotada Honda. On Kuramoto-Sakaguchi-type Fokker-Planck equation with delay[J]. Networks and Heterogeneous Media, 2024, 19(1): 1-23. doi: 10.3934/nhm.2024001
Recently, the Kuramoto model with transmission delay has been attracting increasing attention, accompanied by the increase in its practical applications. In this paper, we studied the Kuramoto-Sakaguchi-type Fokker-Planck equation of the above model proposed by Lee et al., in 2009. We proved the global-in-time solvability of the equation under some conditions on the initial data and distribution of delay.
[1] | J. T. Beale, Large-time regularity of viscous surface waves, Arch. Ration. Mech. Anal., 84 (1983), 307–352. https://doi.org/10.1007/BF00250586 doi: 10.1007/BF00250586 |
[2] | R. C. Budzinski, T. T. Nguyen, G. B. Benigno, J. Doàn, Ján Mináč, T. J. Sejnowski, et al., Analytical prediction of specific spatiotemporal patterns in nonlinear oscillator networks with distance-dependent time delay, Phys. Rev. Lett., 5 (2023), 013159. https://doi.org/10.1103/PhysRevResearch.5.013159 doi: 10.1103/PhysRevResearch.5.013159 |
[3] | F. Chapeau-Blondeau, G. Chauvet, Stable, oscillatory, and chaotic regimes in the dynamics of small neural networks with delay, Neural Netw., 5 (1992), 735–743. https://doi.org/10.1016/S0893-6080(05)80134-0 doi: 10.1016/S0893-6080(05)80134-0 |
[4] | H. Chiba, A proof of the Kuramoto conjecture for a bifurcation structure of the infinite dimensional Kuramoto model, Ergod. Theory Dyn. Syst., 35 (2015), 762–834. https://doi.org/10.1017/etds.2013.68 doi: 10.1017/etds.2013.68 |
[5] | M. Y. Choi, H. J. Kim, D. Kim, H. Hong, Synchronization in a system of globally coupled oscillators with time delay, Phys. Rev. E, 61 (2000), 371–381. https://doi.org/10.1103/PhysRevE.61.371 doi: 10.1103/PhysRevE.61.371 |
[6] | J. D. Crawford, Amplitude expansions for instabilities in populations of Globally-Coupled oscillators, J. Stat. Phys., 74 (1994), 1047–1082. https://doi.org/10.1007/BF02188217 doi: 10.1007/BF02188217 |
[7] | S. Y. Ha, Q. Xiao, Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Diff. Eq., 259 (2015), 2430–2457. https://doi.org/10.1016/j.jde.2015.03.038 doi: 10.1016/j.jde.2015.03.038 |
[8] | S. Y. Ha, Q. Xiao, Nonlinear instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Plank equation, J. Stat. Phys., 160 (2015), 477–496. https://doi.org/10.1007/s10955-015-1270-5 doi: 10.1007/s10955-015-1270-5 |
[9] | H. Honda, A. Tani, Mathematical analysis of synchronization from the perspective of network science, Mathematical Analysis of Continuum Mechanics and Industrial Applications (Proceedings of the International Conference CoMFoS15), Singapore: Springer, 2017. |
[10] | H. Honda, Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local coupling, Netwo. Heterog. Media, 12 (2017), 25–57. https://doi.org/10.3934/nhm.2017002 doi: 10.3934/nhm.2017002 |
[11] | Y. Kawamura, From the Kuramoto-Sakaguchi model to the Kuramoto-Sivashinsky equation, Phys. Rev. E, 89 (2014), 010901. |
[12] | S. Kim, S. H. Park, C. S. Ryu, Multistability in coupled oscillator systems with time delay, Phys. Rev. Lett., 79 (1997), 2911–2914. https://doi.org/10.1103/PhysRevLett.79.2911 doi: 10.1103/PhysRevLett.79.2911 |
[13] | Y. Kuramoto, D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5 (2002), 380–385. |
[14] | O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Rhode Island: American Mathematical Society, 1968. |
[15] | M. Lavrentiev, R. S. Spigler, Existence and uniqueness of solutions to the Kuramoto-Sakaguchi nonlinear parabolic integrodifferential equation, Differ. Integr. Equ., 13 (2000), 649–667. |
[16] | M. Lavrentiev, R. S. Spigler, A. Tani, Existence, uniqueness, and regularity for the Kuramoto–Sakaguchi equation with unboundedly supported frequency distribution, Differ. Integral Equ., 27 (2014), 879–892. |
[17] | W. S. Lee, E. Ott, T. M. Antonsen, Large Coupled Oscillator systems with heterogeneous interaction delays, Phys. Rev. Lett., 103 (2009), 044101. |
[18] | E. Niebur, H. G. Schuster, D. M. Kammen, Collective frequencies and metastability in networks of limit-cycle oscillators with time delay, Phys. Rev. Lett., 67 (1991), 2753–2756. https://doi.org/10.1103/PhysRevLett.67.2753 doi: 10.1103/PhysRevLett.67.2753 |
[19] | H. Risken, The Fokker-Planck Equation, Berlin: Springer, 1989. |
[20] | N. Tanaka, A. Tani, Surface waves for a compressible viscous fluid, J. Math. Fluid Mech., 5 (2003), 303–363. https://doi.org/10.1007/s00021-003-0078-2 doi: 10.1007/s00021-003-0078-2 |
[21] | S. H. Strogatz, E. Mirollo, Stability of incoherent in a population of coupled oscillators, J. Stat. Phys., 63 (1991), 613–635. https://doi.org/10.1007/BF01029202 doi: 10.1007/BF01029202 |
[22] | J. Wloka, Partielle Differentialgleichungen: sobolevraume und Randwertaufgaben, Stuttgart: Teubner, 1982. |
[23] | M. K. S. Yeung, S. H. Strogatz, Time delay in the Kuramoto model of coupled oscillators, Phys. Rev. Lett., 82 (1999), 648–651. https://doi.org/10.1103/PhysRevLett.82.648 doi: 10.1103/PhysRevLett.82.648 |
[24] | T. Zhu, Synchronization of the generalized Kuramoto model with time delay and frustration, Netw. Heterog. Media, 18 (2023), 1772–1798. https://doi.org/10.3934/nhm.2023077 doi: 10.3934/nhm.2023077 |