Research article Special Issues

A fully discrete local discontinuous Galerkin method for variable-order fourth-order equation with Caputo-Fabrizio derivative based on generalized numerical fluxes

  • Received: 11 November 2022 Revised: 05 January 2023 Accepted: 05 January 2023 Published: 18 January 2023
  • In this paper, an effective numerical method for the variable-order(VO) fourth-order problem with Caputo-Fabrizio derivative will be constructed and analyzed. Based on generalized alternating numerical flux, appropriate spatial and temporal discretization, we get a fully discrete local discontinuous Galerkin(LDG) scheme. The theoretic properties of the fully discrete LDG scheme are proved in detail by mathematical induction, and the method is proved to be unconditionally stable and convergent with $ {\rm O}(\tau+{h^{k+1}}) $, where $ h $ is the spatial step, $ \tau $ is the temporal step and $ k $ is the degree of the piecewise $ P^k $ polynomial. In order to show the efficiency of our method, some numerical examples are carried out by Matlab.

    Citation: Liuchao Xiao, Wenbo Li, Leilei Wei, Xindong Zhang. A fully discrete local discontinuous Galerkin method for variable-order fourth-order equation with Caputo-Fabrizio derivative based on generalized numerical fluxes[J]. Networks and Heterogeneous Media, 2023, 18(2): 532-546. doi: 10.3934/nhm.2023022

    Related Papers:

  • In this paper, an effective numerical method for the variable-order(VO) fourth-order problem with Caputo-Fabrizio derivative will be constructed and analyzed. Based on generalized alternating numerical flux, appropriate spatial and temporal discretization, we get a fully discrete local discontinuous Galerkin(LDG) scheme. The theoretic properties of the fully discrete LDG scheme are proved in detail by mathematical induction, and the method is proved to be unconditionally stable and convergent with $ {\rm O}(\tau+{h^{k+1}}) $, where $ h $ is the spatial step, $ \tau $ is the temporal step and $ k $ is the degree of the piecewise $ P^k $ polynomial. In order to show the efficiency of our method, some numerical examples are carried out by Matlab.



    加载中


    [1] Y. Cheng, X. Meng, Q. Zhang, Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations, Math. Comp., 86 (2017), 1233–1267. https://doi.org/10.1090/mcom/3141 doi: 10.1090/mcom/3141
    [2] M. Fei, C. Huang, Galerkin-Legendre spectral method for the distributed-order time fractional fourth-order partial differential equation, Int. J. Comput. Math., 97 (2020), 1183–1196. https://doi.org/10.1080/00207160.2019.1608968 doi: 10.1080/00207160.2019.1608968
    [3] A. Golbabai, K. Sayevand, Fractional calculus-A new approach to the analysis of generalized fourth-order diffusion-wave equations, Comput. Math. Appl., 61 (2011), 2227–2231. https://doi.org/10.1016/j.camwa.2010.09.022 doi: 10.1016/j.camwa.2010.09.022
    [4] X. M. Gu, H. W. Sun, Y. L. Zhao, X. C. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. https://doi.org/10.1016/j.aml.2021.107270 doi: 10.1016/j.aml.2021.107270
    [5] X. Gu, S. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576
    [6] L. Guo, Z. Wang, S. Vong, Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems, Int. J. Comput. Math., 93 (2016), 1665–1682. https://doi.org/10.1080/00207160.2015.1070840 doi: 10.1080/00207160.2015.1070840
    [7] S. Guo, L. Mei, Z. Zhang, Y. Jiang, Finite difference/spectral-Galerkin method for a two-dimensional distributed-order time-space fractional reaction-diffusion equation, Appl. Math. Lett., 85 (2018), 157–163. https://doi.org/10.1016/j.aml.2018.06.005 doi: 10.1016/j.aml.2018.06.005
    [8] C. Ji, Z. Sun, Z. Hao, Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions, J. Sci. Comput., 66 (2016), 1148–1174. https://doi.org/10.1007/s10915-015-0059-7 doi: 10.1007/s10915-015-0059-7
    [9] N. Khalid, M. Abbas, M. K. Iqbal, Non-polynomial quintic spline for solving fourth-order fractional boundary value problems involving product terms, Appl. Math. Comput., 349 (2019), 393–407. https://doi.org/10.1016/j.amc.2018.12.066 doi: 10.1016/j.amc.2018.12.066
    [10] Y. M. Lin, C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [11] X. Li, C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM. J. Numer. Anal., 47 (2009), 2108–2131. https://doi.org/10.1137/080718942 doi: 10.1137/080718942
    [12] F. Liu, P. Zhuang, I. Turner, K. Burrage, V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38 (2014), 3871–3878. https://doi.org/10.1016/j.apm.2013.10.007 doi: 10.1016/j.apm.2013.10.007
    [13] Y. Liu, Z. Fang, H. Li, S. He, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput., 243 (2014), 703–717. https://doi.org/10.1016/j.amc.2014.06.023 doi: 10.1016/j.amc.2014.06.023
    [14] C. P. Li, F. H. Zeng, Numerical methods for fractional calculus, CRC Press, 2015.
    [15] Y. Liu, Y. Du, H. Li, S. He, W. Gao, Finite difference/finite element method for a nonlinear timefractional fourth-order reaction-diffusion problem, Comput. Math. Appl., 70 (2015), 573–591. https://doi.org/10.1016/j.camwa.2015.05.015 doi: 10.1016/j.camwa.2015.05.015
    [16] F. Liu, P. Zhuang, Q. Liu, Numerical methods of fractional partial differential equations and applications, Science Press, 2015.
    [17] Y. Liu, Y. Du, H. Li, Z, Fang, S. He, Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation, J. Comput. Phys., 344 (2017), 108–126. https://doi.org/10.1016/j.jcp.2017.04.078 doi: 10.1016/j.jcp.2017.04.078
    [18] M. Li, X. Gu, C. Huang, M. Fei, G. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Compu. Phys., 358 (2018), 256–282. https://doi.org/10.1016/j.jcp.2017.12.044 doi: 10.1016/j.jcp.2017.12.044
    [19] X. Meng, C. W. Shu, B. Wu, Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations, Math. Comp., 85 (2016), 1225–1261. https://doi.org/10.1090/mcom/3022 doi: 10.1090/mcom/3022
    [20] Y. Niu, J. Wang, Y. Liu, H. Li, Z. Fang, Local discontinuous Galerkin method based on a family of second-order time approximation schemes for fractional mobile/immobile convection-diffusion equations, Appl. Numer. Math., 179 (2022), 149–169. https://doi.org/10.1016/j.apnum.2022.04.020 doi: 10.1016/j.apnum.2022.04.020
    [21] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [22] M. Ran, C. Zhang, New compact difference scheme for solving the fourth order time fractional sub-diffusion equation of the distributed order, Appl. Numer. Math., 129 (2018), 58–70. https://doi.org/10.1016/j.apnum.2018.03.005 doi: 10.1016/j.apnum.2018.03.005
    [23] S. S. Siddiqi, S. Arshed, Numerical solution of time-fractional fourth-order partial differential equations, Int. J. Comput. Math., 92 (2014), 1496–1518. https://doi.org/10.1080/00207160.2014.948430 doi: 10.1080/00207160.2014.948430
    [24] D. Wang, A. Xiao, W. Yang. A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys., 272 (2014), 644–655. https://doi.org/10.1016/j.jcp.2014.04.047 doi: 10.1016/j.jcp.2014.04.047
    [25] L. Wei, Y. He, Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems, Appl. Math. Model., 38 (2014), 1511–1522. https://doi.org/10.1016/j.apm.2013.07.040 doi: 10.1016/j.apm.2013.07.040
    [26] L. Wei, Y. He, A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation, Discrete Contin. Dyn. Syst. - Ser. B, 26 (2021), 4907–4926. https://doi.org/10.3934/dcdsb.2020319 doi: 10.3934/dcdsb.2020319
    [27] L. Wei, W. Li, Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo-Fabrizio fractional derivative, Math. Comput. Simulat., 188 (2021), 280–290. https://doi.org/10.1016/j.matcom.2021.04.001 doi: 10.1016/j.matcom.2021.04.001
    [28] X. Yang, H. Zhang, D. Xu, WSGD-OSC Scheme for two-dimensional distributed order fractional reaction-diffusion equation, J. Sci. Comput., 76 (2018), 1502–1520. https://doi.org/10.1007/s10915-018-0672-3 doi: 10.1007/s10915-018-0672-3
    [29] Q. Zhang, Third order explicit Runge-Kutta discontinuous Galerkin method for linear conservation law with inflow boundary condition, J. Sci. Comput., 46 (2011), 294–313. https://doi.org/10.1007/s10915-010-9403-0 doi: 10.1007/s10915-010-9403-0
    [30] P. Zhang, H. Pu, A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation, Numer Algor, 76 (2017), 573–598. https://doi.org/10.1007/s11075-017-0271-7 doi: 10.1007/s11075-017-0271-7
    [31] X. Zheng, H. Wang, H. Fu, Well-posedness of fractional differential equations with variable-order Caputo-Fabrizio derivative, Chaos, Solitons Fractals, 138 (2020), 109966. https://doi.org/10.1016/j.chaos.2020.109966 doi: 10.1016/j.chaos.2020.109966
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1119) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog