Remarks on the Schrödinger-Lohe model

  • Received: 01 October 2018 Revised: 01 July 2019
  • 82C10, 34E10, 35C05

  • We study the Schrödinger-Lohe model. Making use of the principal fundamental matrix $ Y $ of linear ODEs with variable coefficients, the coupled nonlinear Schrödinger-Lohe system is transformed into the decoupled linear Schrödinger equations. The boundedness of $ Y $ is shown for the case of complete synchronization. We also study the cases where the principal fundamental matrices can be derived explicitly.

    Citation: Hyungjin Huh. Remarks on the Schrödinger-Lohe model[J]. Networks and Heterogeneous Media, 2019, 14(4): 759-769. doi: 10.3934/nhm.2019030

    Related Papers:

  • We study the Schrödinger-Lohe model. Making use of the principal fundamental matrix $ Y $ of linear ODEs with variable coefficients, the coupled nonlinear Schrödinger-Lohe system is transformed into the decoupled linear Schrödinger equations. The boundedness of $ Y $ is shown for the case of complete synchronization. We also study the cases where the principal fundamental matrices can be derived explicitly.



    加载中


    [1]

    P. Antonelli and P. Marcati, A model of synchronization over quantum networks, J. Phys. A, 50 (2017), 315101, 19 pp.

    [2]

    R. Bellman, Stability Theory of Differential Equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.

    [3] Magnus and Fer expansions for matrix differential equations: The convergence problem. J. Phys. A (1998) 31: 259-268.
    [4] The Magnus expansion and some of its applications. Phys. Rep. (2009) 470: 151-238.
    [5]

    S.-H. Choi, J. Cho and S.-Y. Ha, Practical quantum synchronization for the Schrödinger-Lohe system, J. Phys. A, 49 (2016), 205203, 17 pp.

    [6]

    S.-H. Choi and S.-Y. Ha, Quantum synchronization of the Schrödinger-Lohe model, J. Phys. A, 47 (2014), 355104, 16 pp.

    [7] Dynamical system approach to synchronization of the coupled Schrödinger-Lohe system. Quart. Appl. Math. (2017) 75: 555-579.
    [8]

    H. Huh, S.-Y. Ha and D. Kim, Emergent behaviors of the Schrödinger-Lohe model on cooperative-competitive networks, J. Differential Equations, 263 (2017), 8295–8321.

    [9]

    H. Huh, S.-Y. Ha and D. Kim, Asymptotic behavior and stability for the Schrödinger-Lohe model, J. Math. Phys., 59 (2018), 102701, 21 pp.

    [10]

    M. A. Lohe, Quantum synchronization over quantum networks, J. Phys. A, 43 (2010), 465301, 20 pp.

    [11]

    M. A. Lohe, Non-Abelian Kuramoto model and synchronization, J. Phys. A, 42 (2009), 395101, 25 pp.

    [12] On the exponential solution of differential equations for a linear operator. Comm. Pure Appl. Math. (1954) 7: 649-673.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2131) PDF downloads(392) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog