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Abstract. We study the Schrödinger-Lohe model. Making use of the principal

fundamental matrix Y of linear ODEs with variable coefficients, the coupled
nonlinear Schrödinger-Lohe system is transformed into the decoupled linear

Schrödinger equations. The boundedness of Y is shown for the case of complete

synchronization. We also study the cases where the principal fundamental
matrices can be derived explicitly.

1. Introduction. We are interested in the quantum Schrödinger-Lohe model

i∂tψi +4ψi = V ψi +
iK

N

N∑
k=1

(ψk − 〈ψi, ψk〉ψi) ,

ψi(x, 0) = ψ0
i (x).

(1)

Here ψi (i = 1, 2, · · · , N) are complex valued functions defined on Rd×R+ satisfying
‖ψ(·, t)‖L2(Rd) = 1 and V = V (x) is the real-valued one-body potential. We refer

to section 2 for more precise assumptions on V . The standard L2 inner product is
defined by 〈f, g〉(t) =

∫
Rd f(x, t) ḡ(x, t) dx and K is positive constant representing

coupling strength. The Schrödinger-Lohe model (1) was first introduced in [10] as
an infinite state generalization of the Lohe matrix model [11].

Quantum synchronization has received much attention from the physics com-
munity because of its possible applications in quantum computing and quantum
information. The synchronous behaviors of (1) were partially treated in [5, 6, 7]
for some restricted class of initial data and a large coupling strength regime. In
particular, dynamical system approach to synchronization of the Schrödinger-Lohe
model has been studied in [1, 7, 8]. Actually, they set

hij(t) = 〈ψi, ψj〉 =

∫
Rd

ψi(x, t) ψ̄j(x, t) dx, (2)
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and showed that hij satisfies the system of ODEs:

dhij
dt

=
K

N
(1− hij)

(
2 +

N∑
k 6=i

hik +

N∑
k 6=j

hkj

)
, 1 ≤ i < j ≤ N, (3)

with the initial data h0ij := hij(0) =
∫
Rd(ψ0

i ψ̄
0
j )(x) dx.

The system (1) admits a unique global solution ψi which was proved in [1, 7].
We refer to section 2 for more precise results on the existence and uniqueness of a
solution. From now on, we consider the solution of the system (1) with regularity

ψi ∈ C([0,∞), Hm(Rd)) ∩ C1([0,∞), Hm−2(Rd)),
where m > 2 + d

2 .
Let us consider equations

i∂tφi +4φi = V φi, i = 1, 2, · · · , N,
φi(x, 0) = ψ0

i (x).
(4)

Note that φi has the same initial data as ψi in (1). Let us denote ψ = (ψ1, ψ2, · · · ,
ψN )t and φ = (φ1, φ2, · · · , φN )t. Our first result is to transform (1) into the decou-
pled linear Schrödinger equations.

Theorem 1.1. The solution ψi of (1) is given by

ψ(x, t) = Y (t)φ(x, t). (5)

Here φ is a solution of (4) and Y is the principal fundamental matrix solution of
the ODE system

dy

dt
= H(t)y,

where

H =
K

N


−
∑
k 6=1 h1k 1 · · · 1

1 −
∑
k 6=2 h2k · · · 1

· · · · · · · · · · · ·
1 · · · 1 −

∑
k 6=N hNk

 , (6)

and hij are solutions to (3). Note that Y (0) is an N ×N identity matrix.

The novelty of this result is that the coupled nonlinear PDEs in (1) are trans-
formed into the decoupled linear Schrödinger equations (4) through the relation (5).
The nonlinearity of (1) is hidden from view and appears in the coupled nonlinear
ODEs (3). This observation can be used to study asymptotic behavior and the
nonlinear stability problem for the Schrödinger Lohe model. We studied in [9] the
stability of standing wave solutions for the Schrödinger Lohe model with a harmonic
potential V = |x|2. We will present another application of Theorem 1.1 in Theorem
1.2.

Taking Theorem 1.1 into account, analysis of the principal fundamental matrix
Y is crucial for understanding the dynamics of the solution to (1). In section 4, we
consider the case of hij(t)→ 1 exponentially as t→∞. Then we have

lim
t→∞

‖ψi(t)− ψj(t)‖L2(Rd) = 0 for all i, j,

which is complete synchronization. To state the next Theorem, we define

ζ =
1

N

N∑
k=1

ψk, r̃j = Re〈ζ, ψj〉, s̃j = Im〈ζ, ψj〉,
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and

H(t) = max1≤i≤NHi(t), where Hi(t) =

N∑
k=1

|1− hik(t)|.

The following result is concerned with the boundedness of Y for the case of complete
synchronization.

Theorem 1.2. Let ψi be the solution of (1) with the initial data satisfying r̃j(0) > 0
or H(0) < N . Then the principal fundamental matrix Y of

dy

dt
= H(t)y,

is bounded. Here H(t) is given by (6).

Remark 1. As an application of Theorem 1.2, we consider the solution ψi to (1)
with V = 0. Then we have, for the initial data satisfying r̃j(0) > 0 or H(0) < N ,

|ψi(x, t)| ≤ Ct−d/2,

which is derived from the boundedness of Y and decay estimate |φi(x, t)| ≤ Ct−d/2.

Consider linear differential equation

dy

dt
= A(t)y(t),

where A(t) is N ×N matrix. In the general case there is no closed form solution y
and an approximation method such as Magnus expansion [3, 4, 12] has been used.
In section 5, we calculate some explicit principal fundamental matrices for special
cases.

The rest of this paper is organized as follows. In section 2, we briefly review the
basic properties of the Schrödinger Lohe model. In section 3, we prove Theorem 1.1
and present basic properties of the principal fundamental matrix Y (t). In section 4,
Theorem 1.2 is proved. In section 5, we study cases where the principal fundamental
matrices can be derived explicitly.

2. Preliminaries. Let V (x) be a given smooth real-valued potential function sat-
isfying

m∑
k=0

‖∇kV ‖L∞(Rd) ≤ Cm <∞ for a positive integer m. (7)

Global existence of classical solution to the equation (1) satisfying the condition (7)
was proved in [1, 7].

Theorem 2.1. Let initial data ψ0
i ∈ Hm(Rd) for m = 1, 2, · · · . Then, for any

T ∈ (0,∞), the Cauchy problem for (1) has a unique global solution ψi such that

ψi ∈ C([0,∞), Hm(Rd)) ∩ C1([0,∞), Hm−2(Rd)).

By Sobolev embedding theorem, it is easy to see that for m > 2 + d
2 , Hm

solution is a classical solution. We consider initial data ψ0
i ∈ Hm(Rd) satisfying

‖ψ0
i ‖L2(Rd) = 1. Then the L2 norm of ψi is constant along the evolution:

‖ψi(t)‖L2(Rd) = ‖ψ0
i ‖L2(Rd) = 1.
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This can be seen as follows. Multiplying (1) by ψ̄i, taking the imaginary part and
integrating by parts, we obtain

d

dt
(‖ψi‖2L2(Rd) − 1) +

K

N

(
N∑
k=1

2Re〈ψi, ψk〉

)(
‖ψi‖2L2(Rd) − 1

)
= 0,

which is an ordinary differential equation for ‖ψi‖2L2−1. Since we have ‖ψ0
i ‖2L2−1 =

0, the uniqueness of solution to ODE says that ‖ψi(t)‖2L2 = 1.
Considering, for two wave functions ψi and ψj with unit L2 norms, that

‖ψi(t)− ψj(t)‖L2 = dij ⇐⇒ Re〈ψi(t), ψj(t)〉 = 1−
d2ij
2
, (8)

it is important to study the evolution of hij for the behaviors of dij . The dynamics
of hij obeys the following ODEs which was proved in [7].

Proposition 1. Let ψi be a solution to (1). Then hij satisfies the coupled system
of ODEs:

dhij
dt

=
K

N
(1− hij)

2 +

N∑
k 6=i

hik +

N∑
k 6=j

hkj

 .

Taking (2) into account, we have

hij = h̄ji, hii = ‖ψi‖2 = 1, |hij | =
∣∣∣ ∫

Rd

ψiψ̄jdx
∣∣∣ ≤ ‖ψi‖L2‖ψj‖L2 = 1.

The initial data should be restricted in the following admissible set

AN = {(hij)1≤i<j≤N | hij =

∫
Rd

ψiψ̄jdx with ‖ψi‖L2 = 1 = ‖ψj‖L2}.

We can check that (1, 1, 1) ∈ A3 and (−1, −1, −1) /∈ A3.

3. Proof of Theorem 1.1. In this section, we prove Theorem 1.1 and present
basic properties of principal fundamental matrix Y.

Proof. The system (1) can be rewritten as

i∂tψ +4ψ − V ψ = iHψ,

where N ×N matrix H is given by (6). Note that H is a matrix of variable t. Let
Y be the principal fundamental matrix solution of the ODE system

dy

dt
= H(t)y. (9)

Denoting ψ(x, t) = Y (t)φ(x, t), we have

0 = i∂tψ +4ψ − V ψ − iHψ

= Y (i∂tφ+4φ− V φ) .

Since the principal fundamental matrix Y is non-singular and Y (0) is an identity
matrix, we have

i∂tφ+4φ− V φ = 0,

φ(x, 0) = Y −1(0)ψ(x, 0) = ψ0(x).

This leads to the proof of Theorem 1.1.
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Remark 2. We can derive the ODEs (9) in another way. Let us consider

i∂tu+4u = V u,

u(x, 0) = u0(x),
(10)

where u is a vector. Multiplying (1) by ū and (10) by ψ̄i, we have

(i∂tψi + ∆ψi)ū = V ψiū+
iK

N

N∑
k=1

(ψkū− 〈ψi, ψk〉ψiū) , (11)

(i∂tu+ ∆u)ψ̄i = V uψ̄i. (12)

Then
∫
Rd((11)− (12))dx leads to∫

Rd

i∂t(ψiū) + ū∆ψi − ψi∆ū dx =
iK

N

N∑
k=1

∫
Rd

(ψkū− 〈ψi, ψk〉ψiū) dx. (13)

Integrating by parts gives us∫
Rd

ū∆ψi − ψi∆ū dx =

∫
Rd

∇ū · ∇ψi −∇ψi · ∇ū dx = 0.

Denoting yj =
∫
Rd ψj ū dx and considering yi − hiiyi = 0, (13) leads us to

d

dt
yi =

K

N

N∑
k=1

(yk − hikyi) =
K

N

∑
k 6=i

(yk − hikyi),

which is (9). Then yi is a column vector of Y .

In the remaining part of the section, we present some properties of the principal
fundamental matrix Y. Let us denote the elements of Y as Y =

(
yij
)
. Then we

have

ψi =

N∑
k=1

yikφk. (14)

• By the definition of hij , we have

hij =

∫
Rd

ψiψ̄j dx =

∫
Rd

N∑
k=1

yikφk ·
N∑
l=1

yjlφl dx

=

N∑
k=1

N∑
l=1

yikȳjlh
0
kl.

(15)

Here we used the following fact∫
Rd

(φkφ̄l)(x, t) dx =

∫
Rd

(φkφ̄l)(x, 0) dx =

∫
Rd

ψ0
kψ̄

0
l dx = h0kl,

which can be derived from the following identity

i
d

dt

∫
Rd

φkφ̄l dx+

∫
Rd

φ̄l4φk − φk4φ̄l dx = 0.

Integrating by parts, we have d
dt

∫
Rd φkφ̄l dx = 0. When i = j in (15), we have

1 = ‖ψi(t)‖2L2(Rd) =

N∑
k=1

N∑
j=1

yikȳijh
0
kj ,
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where we considered the conservation of L2 norm of ψ. Higher order norm of
ψ can be determined by the similar process. In fact, considering (14), we have

∇ψi =
∑N
k=1 yik∇φk which implies

‖∇αψi(t)‖2L2(Rd) =

N∑
k=1

N∑
j=1

yik(t)ȳij(t)

∫
Rd

∇αψ0
k(x)∇αψ̄0

j (x) dx,

where α = (α1, ..., αd) is a multi-index.

• By Liouville’s Theorem, we have

det(Y )(t) = exp

(∫ t

0

tr(H(s)) ds

)
.

4. Proof of Theorem 1.2. Here we show a boundedness of principal fundamental
matrix Y for the case of complete synchronization. We first summarize the recent
results in [1, 8] which show the emergence of the complete synchronization.

Theorem 4.1. [1] Suppose that the initial data satisfy r̃0j > 0 for j = 1, · · · , N .
Then, for any solution ψi to (1), we have

|1− r̃j(t)|2 + |s̃j(t)|2 ≤ Ce−Kt as t→∞.

Theorem 4.2. [8] Suppose that initial data satisfy H(0) < N . Then the solution
hij to (3) converges to 1 exponentially fast for all i and j.

Next we introduce Theorem 1 in Chapter 2 in [2] which concerns the boundedness
of solutions of equations with almost constant coefficients.

Theorem 4.3. Let A be a constant n × n matrix. If all solutions of dy
dt = Ay are

bounded as t→∞, then the same is true for the solution of

dz

dt
= (A+B(t))z,

provided that
∫∞
0
‖B(t)‖ dt < ∞. Here B(t) is n× n matrix with elements bij and

the matrix norm is defined by ‖B‖ =
∑n
i,j=1 |bij |.

Now we are ready to prove Theorem 1.2. With the notations

y1j := Re(yj), y2j := Im(yj), rij := 1− Re(hij), sij := Im(hij),

we can rewrite dy
dt = H(t)y as

dỹ

dt
=
K

N
(A+B(t)) ỹ.

Here we denote ỹ = (y11 , y
2
1 , · · · , y1N , y2N )t and 2N × 2N matrices

A =


(1−N)E E · · · E

E (1−N)E · · · E
...

...
...

...
E · · · (1−N)E E
E · · · E (1−N)E


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and

B(t) =


B1 O · · · O
O B2 · · · O
...

...
...

...
O · · · BN−1 O
O · · · O BN

 ,

with 2× 2 blocks

E =

(
1 0
0 1

)
, O =

(
0 0
0 0

)
and Bi =

( ∑
k 6=i rik

∑
k 6=i sik

−
∑
k 6=i sik

∑
k 6=i rik

)
.

When the initial data satisfy r̃j(0) > 0 or H(0) < N , Theorem 4.1 or 4.2 tells us
that rij and sij decay exponentially to zero which implies that

∫∞
0
‖B(t)‖ dt <∞.

To show the boundedness of solution to dỹ
dt = K

NAỹ, we check that the characteristic

polynomial of A is λ2(λ+N)2N−2. In fact, we have

1
0
1
0
·
1
0


and



0
1
0
1
·
0
1


are eigenvectors corresponding to eigenvalue 0,

and 2N − 2 eigenvectors

1
0
0
0
·
·
−1
0


,



0
0
1
0
·
·
−1
0


, · · · ,



0
0
·
·
1
0
−1
0


and



0
1
0
0
·
·
0
−1


,



0
0
0
1
·
·
0
−1


, · · · ,



0
0
·
·
0
1
0
−1


correspond to eigenvalues −N . Since we have non-positive eigenvalues and two
independent eigenvectors corresponding to eigenvalue 0, all solutions of dỹ

dt = K
NAỹ

are bounded for t ≥ 0. Note that if we have only one independent eigenvector
corresponding to eigenvalue 0, then t factor appears from which boundedness of the
solution cannot be induced. Applying Theorem 4.3, we can prove Theorem 1.2.

5. Explicit solutions. In this section, we study the case where the principal fun-
damental matrix can be solved explicitly. Consider linear differential equation

y′(t) = A(t)y(t). (16)

If A(t) commutes with
∫ t
0
A(s)ds, then the solution to (16) is given by

y(t) = e
∫ t
0
A(s)dsy0,

where y0 is the initial value. But in the general case there is no closed form solution,
and an approximation method such as Magnus expansion [3, 4, 12] may have to be
used.
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For the system (9) we can check, with the notation Sj =
∑
k 6=j hjk,

H(t)

∫ t

0

H(s)ds

=
K2

N2

 S1

∫ t
0
S1ds+ (N − 1)t · · · −tS1 −

∫ t
0
SNds+ (N − 2)t

...
...

−tSN −
∫ t
0
S1ds+ (N − 2)t · · · SN

∫ t
0
SNds+ (N − 1)t

 ,

and ∫ t

0

H(s)dsH(t)

=
K2

N2

 S1

∫ t
0
S1ds+ (N − 1)t · · · −

∫ t
0
S1ds− tSN + (N − 2)t

...
...

−
∫ t
0
SNds− tS1 + (N − 2)t · · · SN

∫ t
0
SNds+ (N − 1)t

 .

Therefore we have the principal fundamental matrix

Y (t) = e
∫ t
0
H(s)ds,

provided that

H(t)

∫ t

0

H(s)ds =

∫ t

0

H(s)dsH(t). (17)

From the matrices presented above, we have

H(t)

∫ t

0

H(s)ds =

(∫ t

0

H(s)dsH(t)

)T
,

where AT stands for the transpose of a matrix A. To achieve the relation (17), the
equality

tSi +

∫ t

0

Sjds = tSj +

∫ t

0

Sids

has to be justified for all pairs (i, j).
Recall that the solution φj to (4) with V = 0 is given by

φj(x, t) =
1

(4πit)d/2

∫
Rd

e
i|x−y|2

4t ψ0
j (y) dy.

Then Theorem 1.1 leads us to

ψ(x, t) =
1

(4πit)d/2
exp

(∫ t

0

H(s)ds

)∫
Rd

e
i|x−y|2

4t ψ0(y) dy,

where ψ0 = (ψ0
1 , ..., ψ

0
N )t. It would be interesting problem to study (4) with some

other potentials like V = |x|2.

5.1. A two-oscillator system. Here we consider a two-oscillator system. In this
case, system (3) can be reduced to a single equation for h := h12:

dh

dt
= K(1− h2),

with the initial data h(0) = h0 . Then we have

h(t) =
(1 + h0)e2Kt − (1− h0)

(1 + h0)e2Kt + (1− h0)
.
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Hence, all solutions with initial data h0 6= −1 will converge to 1 exponentially fast
as t→∞. Considering

H =
K

2

(
−h 1
1 −h̄

)
,

we can check that (17) holds if

t h(t) +

∫ t

0

h̄(s)ds = t h̄(t) +

∫ t

0

h(s)ds. (18)

For h0 ∈ R, we have h(t) ∈ R for which the equality (18) holds. Then we have∫ t

0

H(s)ds = A + B

:=

(
−K2

∫ t
0
h(s)ds 0

0 −K2
∫ t
0
h(s)ds

)
+

(
0 K

2 t
K
2 t 0

)
.

We can check AB = BA which implies eA+B = eAeB. Then the principal funda-
mental matrix reads as

Y (t) = e
∫ t
0
H(s)ds = eAeB .

The direct calculation shows

eA = e−
K
2

∫ t
0
h(s)ds

(
1 0
0 1

)
,

where −
∫ t
0
h(s)ds = t+ 1

K log 2
(1−h0)+(1+h0)e2Kt and

eB =
e

K
2 t + e−

K
2 t

2

(
1 0
0 1

)
+
e

K
2 t − e−K

2 t

2

(
0 1
1 0

)
.

Therefore we arrive at

Y (t) =
1

2
e

1
2 log 2

(1−h0)+(1+h0)e2Kt

[
(eKt + 1)

(
1 0
0 1

)
+ (eKt − 1)

(
0 1
1 0

)]
.

Note that e
1
2 log 2

(1−h0)+(1+h0)e2Kt · eKt →
√
2√

1+h0
as t→∞ for h0 6= −1.

5.2. A three-oscillator system. Here we consider a three-oscillator system. Con-
sidering hij = hji, system (3) becomes the following 3× 3 system:

dh12
dt

=
K

3

(
2 + 2h12 + h23 + h31

)
(1− h12),

dh23
dt

=
K

3

(
2 + 2h23 + h31 + h12

)
(1− h23),

dh31
dt

=
K

3

(
2 + 2h31 + h12 + h23

)
(1− h31).

(19)

Let us consider the case of h12 = h23 = h31. Actually, if h12(0) = h23(0) = h31(0)
holds initially, the relation is preserved in time, i.e., h12(t) = h23(t) = h31(t) for
t > 0. Then the system (19) reduces to a single equation:

dh12
dt

=
K

3

(
2 + 2h12 + 2h12

)
(1− h12). (20)
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We can check that (17) is satisfied for this case. Actually we have, with the
notation of h = h12,

H(t)

∫ t

0

H(s)ds =

A B B
B A B
B B A

 =

∫ t

0

H(s)dsH(t),

where A = (K3 )2
(

(h+ h̄)
∫ t
0
(h+ h̄) ds+ 2t

)
, B = (K3 )2

(
−t(h+ h̄)−

∫ t
0
(h+ h̄)

ds+ t).
Let us write ∫ t

0

H(s)ds = G(t)I +
K

3
tD

= G(t)

1 0 0
0 1 0
0 0 1

+
K

3
t

0 1 1
1 0 1
1 1 0

 ,

where G(t) = −K3
∫ t
0
(h+ h̄)(s)ds. Then the principal fundamental matrix reads as

eG(t)Ie
Kt
3 D. First of all, we have

eG(t)I =

eG(t) 0 0
0 eG(t) 0
0 0 eG(t)

 .

Taking into account

D = C

−1 0 0
0 −1 0
0 0 2

C−1,

where

C =

 1 1 1
−1 0 1
0 −1 1

 and C−1 =
1

3

1 −2 1
1 1 −2
1 1 1

 ,

we have

exp

(
K

3
tD

)
= C

e−
K
3 t 0 0

0 e−
K
3 t 0

0 0 e
2K
3 t

C−1.

Let us find more precise form of h + h̄ in G. With the notation h12 = f + ig,
(20) is equivalent to the following two-dimensional system:

df

dt
=

2K

3
(1 + 2f)(1− f),

dg

dt
= −2K

3
(1 + 2f)g. (21)

Then the solution to the first equation in (21) is given by

f(t) =
(1 + 2f0)e2Kt + f0 − 1

(1 + 2f0)e2Kt − 2(f0 − 1)
,
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where f0 = f(0). Considering h + h̄ = 2f , the principal fundamental matrix is
given by

e
∫ t
0
H(s)ds =

eG(t) 0 0
0 eG(t) 0
0 0 eG(t)

C

e−
K
3 t 0 0

0 e−
K
3 t 0

0 0 e
2K
3 t

C−1,

where G(t) = −K3
∫ t
0

2f(s)ds.
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