Homogenization of variational functionals with nonstandard growth in perforated domains

  • Received: 01 November 2009 Revised: 01 February 2010
  • Primary: 35B40; 35J60; 46E35; Secondary: 74Q05; 76M50.

  • The aim of the paper is to study the asymptotic behavior of solutions to a Neumann boundary value problem for a nonlinear elliptic equation with nonstandard growth condition of the form

    -div(| uε | pε (x)-2 uε )+ (| uε | pε (x)-2 uε = f(x)

    in a perforated domain Ωε , ε being a small parameter that characterizes the microscopic length scale of the microstructure. Under the assumption that the functions pε(x) converge uniformly to a limit function p0(x) and that p0 satisfy certain logarithmic uniform continuity condition, it is shown that uε converges, as ε0, to a solution of homogenized equation whose coefficients are calculated in terms of local energy characteristics of the domain Ωε . This result is then illustrated with periodic and locally periodic examples.

    Citation: Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. Homogenization of variational functionals with nonstandard growth in perforated domains[J]. Networks and Heterogeneous Media, 2010, 5(2): 189-215. doi: 10.3934/nhm.2010.5.189

    Related Papers:

    [1] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski . Homogenization of variational functionals with nonstandard growth in perforated domains. Networks and Heterogeneous Media, 2010, 5(2): 189-215. doi: 10.3934/nhm.2010.5.189
    [2] Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010
    [3] Laura Sigalotti . Homogenization of pinning conditions on periodic networks. Networks and Heterogeneous Media, 2012, 7(3): 543-582. doi: 10.3934/nhm.2012.7.543
    [4] Martin Heida . Stochastic homogenization on perforated domains Ⅰ – Extension Operators. Networks and Heterogeneous Media, 2023, 18(4): 1820-1897. doi: 10.3934/nhm.2023079
    [5] Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343
    [6] Martin Heida . Stochastic homogenization on perforated domains III–General estimates for stationary ergodic random connected Lipschitz domains. Networks and Heterogeneous Media, 2023, 18(4): 1410-1433. doi: 10.3934/nhm.2023062
    [7] T. A. Shaposhnikova, M. N. Zubova . Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks and Heterogeneous Media, 2008, 3(3): 675-689. doi: 10.3934/nhm.2008.3.675
    [8] Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski . Steklov problems in perforated domains with a coefficient of indefinite sign. Networks and Heterogeneous Media, 2012, 7(1): 151-178. doi: 10.3934/nhm.2012.7.151
    [9] Arianna Giunti . Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Networks and Heterogeneous Media, 2021, 16(3): 341-375. doi: 10.3934/nhm.2021009
    [10] Leonid Berlyand, Petru Mironescu . Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks and Heterogeneous Media, 2008, 3(3): 461-487. doi: 10.3934/nhm.2008.3.461
  • The aim of the paper is to study the asymptotic behavior of solutions to a Neumann boundary value problem for a nonlinear elliptic equation with nonstandard growth condition of the form

    -div(| uε | pε (x)-2 uε )+ (| uε | pε (x)-2 uε = f(x)

    in a perforated domain Ωε , ε being a small parameter that characterizes the microscopic length scale of the microstructure. Under the assumption that the functions pε(x) converge uniformly to a limit function p0(x) and that p0 satisfy certain logarithmic uniform continuity condition, it is shown that uε converges, as ε0, to a solution of homogenized equation whose coefficients are calculated in terms of local energy characteristics of the domain Ωε . This result is then illustrated with periodic and locally periodic examples.



  • This article has been cited by:

    1. Julián Fernández Bonder, Nicolas Saintier, Analia Silva, A Gamma convergence approach to the critical Sobolev embedding in variable exponent spaces, 2016, 442, 0022247X, 189, 10.1016/j.jmaa.2016.04.021
    2. Brahim Amaziane, Leonid Pankratov, Homogenization in Sobolev Spaces with Nonstandard Growth: Brief Review of Methods and Applications, 2013, 2013, 1687-9643, 1, 10.1155/2013/693529
    3. Jean Carlos Nakasato, Igor Pažanin, Asymptotic modeling of the current flow system described by the p(x)p(x)‐Laplacian, 2024, 0044-2267, 10.1002/zamm.202400253
    4. Alexander A. Kovalevsky, Approximation in
    W1,p
    -norms of solutions of minimum problems with bilateral constraints in variable domains, 2025, 1972-6724, 10.1007/s40574-025-00467-6
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3462) PDF downloads(63) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog