Review

Shigella pathogenesis: molecular and computational insights

  • Received: 02 April 2020 Accepted: 11 May 2020 Published: 13 May 2020
  • Shigellosis, characterized by inflammation and ulceration of the large intestine, is caused by infection with Shigella species. It is a major public health problem in developing countries where filthy sanitation practices and restricted access to clean water encourage the spread of the disease. Shigellosis is spread by means of fecal-oral route. It is one of the most common disorders specially affecting children in West Bengal, India. Disease from Shigella species accounts for 165 million cases of diarrhoea culminating in one million deaths annually worldwide. Severe dysentery is treated still with antibiotics, with limited success because of the continuous development of multi drug resistance by the bacteria. WHO has identified Shigella as a potential target pathogen against which new drugs need to be formulated and in silico approach has the potential to identify drug targets. Molecular modeling of Shigella invasion proteins using computational tools may divulge novel therapeutic targets that can be used for future pharmacological intervention. Detailed annotation of previously unknown Hypothetical Proteins using an in-silico pipeline can identify crucial proteins in pathogenesis cascade, which can be explored further as effective drug targets, which may eventually enable us to combat the menace of shigellosis.

    Citation: Sarmishta Mukhopadhyay, Sayak Ganguli, Santanu Chakrabarti. Shigella pathogenesis: molecular and computational insights[J]. AIMS Molecular Science, 2020, 7(2): 99-121. doi: 10.3934/molsci.2020007

    Related Papers:

  • Shigellosis, characterized by inflammation and ulceration of the large intestine, is caused by infection with Shigella species. It is a major public health problem in developing countries where filthy sanitation practices and restricted access to clean water encourage the spread of the disease. Shigellosis is spread by means of fecal-oral route. It is one of the most common disorders specially affecting children in West Bengal, India. Disease from Shigella species accounts for 165 million cases of diarrhoea culminating in one million deaths annually worldwide. Severe dysentery is treated still with antibiotics, with limited success because of the continuous development of multi drug resistance by the bacteria. WHO has identified Shigella as a potential target pathogen against which new drugs need to be formulated and in silico approach has the potential to identify drug targets. Molecular modeling of Shigella invasion proteins using computational tools may divulge novel therapeutic targets that can be used for future pharmacological intervention. Detailed annotation of previously unknown Hypothetical Proteins using an in-silico pipeline can identify crucial proteins in pathogenesis cascade, which can be explored further as effective drug targets, which may eventually enable us to combat the menace of shigellosis.


    加载中

    Acknowledgments



    The authors would like to acknowledge the financial assistance provided by the Department of Science and Technology, Govt. of West Bengal, India (Sanction No. 210 (Sanc.)-ST/P/S&T/5G-11/2018). Sarmishta Mukhopadhyay (Junior Research Fellow) is thankful to the WBDST for the research fellowship.

    Conflict of interest



    The authors declare that they have no conflict of interest.

    [1] Kotloff KL, Nataro JP, Blackwelder WC, et al. (2013) Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 382: 209-222. doi: 10.1016/S0140-6736(13)60844-2
    [2] Khalil IA, Troeger C, Blacker BF, et al. (2018) Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: The Global Burden of Disease Study 1990–2016. Lancet Infect Dis 18: 1229-1240. doi: 10.1016/S1473-3099(18)30475-4
    [3] Rogawski ET, Liu J, Platts-Mills JA, et al. (2018) Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob Health 6: e1319-e1328. doi: 10.1016/S2214-109X(18)30351-6
    [4] Trofa AF, Ueno-Olsen H, Oiwa R, et al. (1999) Dr. Kiyoshi Shiga: discoverer of the dysentery bacillus. Clin Infect Dis 29: 1303-1306. doi: 10.1086/313437
    [5] van der Ploeg CA, Vinas MR, Terragno R, et al. (2010) Laboratory protocol: “Serotyping of Shigella spp”.1-24.
    [6] Kotloff KL, Riddle MS, Platts-Mills JA, et al. (2018) Shigellosis. Lancet 391: 801-812. doi: 10.1016/S0140-6736(17)33296-8
    [7] Muthuirulandi Sethuvel DP, Devanga Ragupathi NK, Anandan S, et al. (2017) Update on: Shigella new serogroups/serotypes and their antimicrobial resistance. Lett Appl Microbiol 64: 8-18. doi: 10.1111/lam.12690
    [8] Schroeder GN, Hilbi H (2008) Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 21: 134-156. doi: 10.1128/CMR.00032-07
    [9] Pacheco AR, Sperandio V (2012) Shiga toxin in enterohemorrhagic E. coli: regulation and novel anti-virulence strategies. Front Cell Infect Microbiol 2: 81. doi: 10.3389/fcimb.2012.00081
    [10] Jacewicz M, Jacewicz M, Clausen H, et al. (1986) Pathogenesis of Shigella Diarrhea. XI. Isolation of a Shigella Toxin-Binding Glycolipid from Rabbit Jejunum and HeLa Cells and Its Identification as Globotriaosylceramide. J Exp Med 163: 1391-1404. doi: 10.1084/jem.163.6.1391
    [11] Lee MS, Cherla RP, Tesh VL (2010) Shiga toxins: intracellular trafficking to the ER leading to activation of host cell stress responses. Toxins 2: 1515-1535. doi: 10.3390/toxins2061515
    [12] Cotran RS, Pober JS (1989) Effects of Cytokines on Vascular Endothelium: Their Role in Vascular and Immune Injury. Kidney Int 35: 969-975. doi: 10.1038/ki.1989.80
    [13] Parsot C (2009) Shigella type III secretion effectors: how, where, when, for what purposes? Curr Opin Microbiol 12: 110-116. doi: 10.1016/j.mib.2008.12.002
    [14] Mattock E, Blocker AJ (2017) How do the virulence factors of Shigella work together to cause disease? Front Cell Infect Microbiol 7: 64. doi: 10.3389/fcimb.2017.00064
    [15] Schnupf P, Sansonetti PJ (2019) Shigella Pathogenesis: New Insights through Advanced Methodologies. Microbiol Spectr 7.
    [16] Demers J-P, Habenstein B, Loquet A, et al. (2014) High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy. Nat Commun 5: 4976. doi: 10.1038/ncomms5976
    [17] Dohlich K, Zumsteg AB, Goosmann C, et al. (2014) A substrate fusion protein is trapped inside the type III secretion system channel in Shigella flexneriPLoS Pathog 10: e1003881. doi: 10.1371/journal.ppat.1003881
    [18] Epler CR, Dickenson NE, Bullitt E, et al. (2012) Ultrastructural analysis of IpaD at the tip of the nascent MxiH typeIII secretion apparatus of Shigella flexneriJ Mol Biol 420: 29-39. doi: 10.1016/j.jmb.2012.03.025
    [19] Barta ML, Guragain M, Adam P, et al. (2012) Identification of the bile salt binding site on IpaD from Shigella flexneri and the influence of ligand binding on IpaD structure. Proteins 80: 935-945. doi: 10.1002/prot.23251
    [20] van der Goot FG, Tran Van Nhieu G, Allaoui A, et al. (2004) Rafts can trigger contact-mediated secretion of bacterial effectors via a lipid-based mechanism. J Biol Chem 279: 47792-47798. doi: 10.1074/jbc.M406824200
    [21] Hayward RD, Cain RJ, McGhie EJ, et al. (2005) Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol Microbiol 56: 590-603. doi: 10.1111/j.1365-2958.2005.04568.x
    [22] Roehrich AD, Bordignon E, Mode S, et al. (2017) Steps for Shigella gatekeeper protein MxiC function in hierarchical type III secretion regulation. J Biol Chem 292: 1705-1723. doi: 10.1074/jbc.M116.746826
    [23] Parsot C, Ageron E, Penno C, et al. (2005) A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneriMol Microbiol 56: 1627-1635. doi: 10.1111/j.1365-2958.2005.04645.x
    [24] Rohde JR, Breitkreutz A, Chenal A, et al. (2007) TypeIII secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1: 77-83. doi: 10.1016/j.chom.2007.02.002
    [25] Ashida H, Sasakawa C (2017) Bacterial E3 ligase effectors exploit host ubiquitin systems. Curr Opin Microbiol 35: 16-22. doi: 10.1016/j.mib.2016.11.001
    [26] Yang G, Wang L, Wang Y, et al. (2015) hfq regulates acid tolerance and virulence by responding to acid stress in Shigella flexneriRes Microbiol 166: 476-485. doi: 10.1016/j.resmic.2015.06.007
    [27] Haider K, Hossain A, Wanke C, et al. (1993) Production of Mucinase and Neuraminidase and Binding of Shigella to Intestinal Mucin. J Diarrheal Dis Res 11: 88-92.
    [28] Sansonetti PJ, Arondel J, Fontaine A, et al. (1991) OmpB (osmo-regulation) and icsA (cell-to-cell spread) mutants of Shigella flexneri: vaccine candidates and probes to study the pathogenesis of shigellosis. Vaccine 9: 416-422. doi: 10.1016/0264-410X(91)90128-S
    [29] Miller H, Zhang J, Kuolee R, et al. (2007) Intestinal M cells: the fallible sentinels? World J Gastroenterol 13: 1477-1486. doi: 10.3748/wjg.v13.i10.1477
    [30] Sansonetti PJ, Arondel J, Cantey JR, et al. (1996) Infection of rabbit Peyer's patches by Shigella flexneri: effect of adhesive or invasive bacterial phenotypes on follicle-associated epithelium. Infect Immun 64: 2752-2764. doi: 10.1128/IAI.64.7.2752-2764.1996
    [31] Shim DH, Suzuki T, Chang SY, et al. (2007) Newanimal model of shigellosis in the guinea pig: its usefulness for protective efficacy studies. J Immunol 178: 2476-2482. doi: 10.4049/jimmunol.178.4.2476
    [32] Ashida H, Kim M, Sasakawa C (2014) Manipulation of the host cell death pathway by ShigellaCell Microbiol 16: 1757-1766. doi: 10.1111/cmi.12367
    [33] Jorgensen I, Miao EA (2015) Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 265: 130-142. doi: 10.1111/imr.12287
    [34] Storek KM, Monack DM (2015) Bacterial recognition pathways that lead to inflammasome activation. Immunol Rev 265: 112-129. doi: 10.1111/imr.12289
    [35] Suzuki S, Franchi L, He Y, et al. (2014) Shigella type III secretion protein MxiI is recognized by Naip2 to induce Nlrc4 inflammasome activation independently of Pkcδ. PLoS Pathog 10: e1003926. doi: 10.1371/journal.ppat.1003926
    [36] Miao EA, Mao DP, Yudkovsky N, et al. (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 107: 3076-3080. doi: 10.1073/pnas.0913087107
    [37] Yang J, Zhao Y, Shi J, et al. (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci USA 110: 14408-14413. doi: 10.1073/pnas.1306376110
    [38] Rayamajhi M, Zak DE, Chavarria-Smith J, et al. (2013) Cutting edge: mouse NAIP1 detects the type III secretion system needle protein. J Immunol 191: 3986-3989. doi: 10.4049/jimmunol.1301549
    [39] Jorgensen I, Miao EA (2015) Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 265: 130-142. doi: 10.1111/imr.12287
    [40] Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42: 245-254. doi: 10.1016/j.tibs.2016.10.004
    [41] Skoudy A, Mounier J, Aruffo A, et al. (2000) CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells. Cell Microbiol 2: 19-33. doi: 10.1046/j.1462-5822.2000.00028.x
    [42] Watarai M, Funato S, Sasakawa C (1996) Interaction of Ipa proteins of Shigella flexneri with α5β1 integrin promotes entry of the bacteria into mammalian cells. J Exp Med 183: 991-999. doi: 10.1084/jem.183.3.991
    [43] Helms JB, Zurzolo C (2004) Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5: 247-254. doi: 10.1111/j.1600-0854.2004.0181.x
    [44] Tran Van Nhieu G, Isberg RR (1993) Bacterial internalization mediated by beta 1 chain integrins is determined by ligand affinity and receptor density. EMBO J 12: 1887-1895. doi: 10.1002/j.1460-2075.1993.tb05837.x
    [45] Sansonetti PJ, Tran Van Nhieu G, Egile C (1999) Rupture of the intestinal epithelial barrier and mucosal invasion by Shigella flexneriClin Infect Dis 28: 466-475. doi: 10.1086/515150
    [46] Francis CL, Ryan TA, Jones BD, et al. (1993) Ruffles Induced by Salmonella and Other Stimuli Direct Macropinocytosis of Bacteria. Nature 364: 639-642. doi: 10.1038/364639a0
    [47] Tran Van Nhieu G, Ben-Ze'ev A, Sansonetti PJ (1997) Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. EMBO J 16: 2717-2729. doi: 10.1093/emboj/16.10.2717
    [48] Izard T, Tran Van Nhieu G, Bois PRJ (2006) Shigella applies molecular mimicry to subvert vinculin and invade host cells. J Cell Biol 175: 465-475. doi: 10.1083/jcb.200605091
    [49] Bourdet-Sicard R, Rudiger M, Jockusch BM, et al. (1999) Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. EMBO J 18: 5853-5862. doi: 10.1093/emboj/18.21.5853
    [50] Terry CM, Picking WL, Birket SE, et al. (2008) The C-terminus of IpaC is required for effector activities related to Shigella invasion of host cells. Microb Pathog 45: 282-289. doi: 10.1016/j.micpath.2008.06.003
    [51] Russo BC, Stamm LM, Raaben M, et al. (2016) Intermediate filaments enable pathogen docking to trigger type 3 effector translocation. Nat Microbiol 7: 1-24.
    [52] Tran Van Nhieu G, Caron E, Hall A, et al. (1999) IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J 18: 3249-3262. doi: 10.1093/emboj/18.12.3249
    [53] Mounier J, Popoff MR, Enninga J, et al. (2009) The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS Pathog 5: e1000271. doi: 10.1371/journal.ppat.1000271
    [54] Shaikh NM, Terajima J, Watanabe H (2003) IpaC of Shigella binds to the C-terminal domain of β-catenin. Microb Pathog 35: 107-117. doi: 10.1016/S0882-4010(03)00093-7
    [55] Niebuhr K, Giuriato S, Pedron T, et al. (2002) Conversion of PtdIns(4,5)P2 into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J 21: 5069-5078. doi: 10.1093/emboj/cdf522
    [56] Weiner A, Mellouk N, Lopez-Montero N, et al. (2016) Macropinosomes are key players in early Shigella invasion and vacuolar escape in epithelial cells. PLoS Pathog 5: e1005602. doi: 10.1371/journal.ppat.1005602
    [57] Huang Z, Sutton SE, Wallenfang AJ, et al. (2009) Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nat Struct Mol Biol 16: 853-860. doi: 10.1038/nsmb.1647
    [58] Klink BU, Barden S, Heidler TV, et al. (2010) Structure of Shigella IpgB2 in complex with human RhoA. J Biol Chem 285: 17197-17208. doi: 10.1074/jbc.M110.107953
    [59] Bonnet M, Tran Van Nhieu G (2016) How Shigella utilizes Ca (2+) jagged edge signals during invasion of epithelial cells. Front Cell Infect Microbiol 6: 16. doi: 10.3389/fcimb.2016.00016
    [60] Tran Van Nhieu G, Kai Liu B, Zhang J, et al. (2013) Actin based confinement of calcium responses during Shigella invasion. Nat Commun 4: 1567. doi: 10.1038/ncomms2561
    [61] Romero S, Grompone G, Carayol N, et al. (2011) ATP-mediated Erk1/2activation stimulates bacterial capture by filopodia, which precedes Shigella invasion of epithelial cells. Cell Host Microbe 9: 508-519. doi: 10.1016/j.chom.2011.05.005
    [62] Mellouk N, Weiner A, Aulner N, et al. (2014) Shigella subverts the host recycling compartment to rupture its vacuole. Cell Host Microbe 16: 517-530. doi: 10.1016/j.chom.2014.09.005
    [63] Sorbara MT, Foerster EG, Tsalikis J, et al. (2018) Complement C3 drives autophagy dependent restriction of cyto-invasive bacteria. Cell Host Microbe 23: 644-652. doi: 10.1016/j.chom.2018.04.008
    [64] Baxt LA, Goldberg MB (2014) Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection. PLoS One 9: e94653. doi: 10.1371/journal.pone.0094653
    [65] Huang J, Brumell JH (2014) Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol 12: 101-114. doi: 10.1038/nrmicro3160
    [66] Dong N, Zhu Y, Lu Q, et al. (2012) Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell 150: 1029-1041. doi: 10.1016/j.cell.2012.06.050
    [67] Liu W, Zhou Y, Peng T, et al. (2018) Nε-fatty acylation of multiple membrane associated proteins by Shigella IcsB effector to modulate host function. Nat Microbiol 3: 996-1009. doi: 10.1038/s41564-018-0215-6
    [68] Dobbs N, Burnaevskiy N, Chen D, et al. (2015) STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18: 157-168. doi: 10.1016/j.chom.2015.07.001
    [69] Paciello I, Silipo A, Lembo-Fazio L, et al. (2013) Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proc Natl Acad Sci USA 110: E4345-E4354. doi: 10.1073/pnas.1303641110
    [70] Kobayashi T, Ogawa M, Sanada T, et al. (2013) The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe 13: 570-583. doi: 10.1016/j.chom.2013.04.012
    [71] Torraca V, Mostowy S (2016) Septins and bacterial infection. Front Cell Dev Biol 4: 127. doi: 10.3389/fcell.2016.00127
    [72] Ogawa M, Yoshimori T, Suzuki T, et al. (2005) Escape of intracellular Shigella from autophagy. Science 307: 727-731. doi: 10.1126/science.1106036
    [73] Campbell-Valois F-X, Sachse M, Sansonetti PJ, et al. (2015) Escape of actively secreting Shigella flexneri from ATG8/LC3-positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA. mBio 6: e02567-14.
    [74] Bergounioux J, Elisee R, Prunier A-L, et al. (2012) Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium's epithelial niche. Cell Host Microbe 11: 240-252. doi: 10.1016/j.chom.2012.01.013
    [75] Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 98: 11598-11603. doi: 10.1073/pnas.181181198
    [76] Ramel D, Lagarrigue F, Pons V, et al. (2011) Shigella flexneri infection generates the lipid PI5P to alter endocytosis and prevent termination of EGFR signaling. Sci Signal 4: ra61. doi: 10.1126/scisignal.2001619
    [77] Piro A S, Hernandez D, Luoma S, et al. (2017) Detection of cytosolic Shigella flexneri via a C-terminal triple-arginine motif of GBP1inhibits actin-based motility. mBio 8: e01979-17.
    [78] Bhola PD, Letai A (2016) Mitochondria—judges and executioners of cell death sentences. Mol Cell 61: 695-704. doi: 10.1016/j.molcel.2016.02.019
    [79] Sukumaran SK, Fu NY, Tin CB, et al. (2010) A soluble form of the pilus protein FimA targets the VDAC-hexokinase complex at mitochondria to suppress host cell apoptosis. Mol Cell 37: 768-783. doi: 10.1016/j.molcel.2010.02.015
    [80] Pendaries C, Tronchère H, Arbibe L, et al. (2006) PtdIns5P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J 25: 1024-1034. doi: 10.1038/sj.emboj.7601001
    [81] Carneiro LAM, Travassos LH, Soares F, et al. (2009) Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells. Cell Host Microbe 5: 123-136. doi: 10.1016/j.chom.2008.12.011
    [82] Pieper R, Fisher CR, Suh MJ, et al. (2013) Analysis of the proteome of intracellular Shigella flexneri reveals pathways important for intracellular growth. Infect Immun 81: 4635-4648. doi: 10.1128/IAI.00975-13
    [83] Kentner D, Martano G, Callon M, et al. (2014) Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth. Proc Natl Acad Sci USA 111: 9929-9934. doi: 10.1073/pnas.1406694111
    [84] Vonaesch P, Campbell-Valois F-X, Dufour A, et al. (2016) Shigella flexneri modulates stress granule composition and inhibits stress granule aggregation. Cell Microbiol 18: 982-997. doi: 10.1111/cmi.12561
    [85] Tattoli I, Sorbara MT, Vuckovic D, et al. (2012) Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11: 563-575. doi: 10.1016/j.chom.2012.04.012
    [86] Lu R, Herrera BB, Eshleman HD, et al. (2015) Shigella effector OspB activates mTORC1 in a manner that depends on IQGAP1 and promotes cell proliferation. PLoS Pathog 11: e1005200. doi: 10.1371/journal.ppat.1005200
    [87] Kim M, Ogawa M, Fujita Y, et al. (2009) Bacteria hijack integrin linked kinase to stabilize focal adhesions and block cell detachment. Nature 459: 578-582. doi: 10.1038/nature07952
    [88] Miura M, Terajima J, Izumiya H, et al. (2006) OspE2 of Shigella sonnei is required for the maintenance of cell architecture of bacterium-infected cells. Infect Immun 74: 2587-2595. doi: 10.1128/IAI.74.5.2587-2595.2006
    [89] Iwai H, Kim M, Yoshikawa Y, et al. (2007) A bacterial effector targets Mad2L2, an APC inhibitor, to modulate host cell cycling. Cell 130: 611-623. doi: 10.1016/j.cell.2007.06.043
    [90] Boal F, Puhar A, Xuereb J-M, et al. (2016) PI5P triggers ICAM-1 degradation in Shigella infected cells, thus dampening immune cell recruitment. Cell Rep 14: 750-759. doi: 10.1016/j.celrep.2015.12.079
    [91] Yu S, Gao N (2015) Compartmentalizing intestinal epithelial cell toll like receptors for immune surveillance. Cell Mol Life Sci 72: 3343-3353. doi: 10.1007/s00018-015-1931-1
    [92] Girardin SE, Tournebize R, Mavris M, et al. (2001) CARD4/NOD1 mediates NF-κB and JNK activation by invasive Shigella flexneriEMBO Rep 2: 736-742. doi: 10.1093/embo-reports/kve155
    [93] Killackey SA, Sorbara MT, Girardin SE (2016) Cellular aspects of Shigella pathogenesis: focus on the manipulation of host cell processes. Front Cell Infect Microbiol 6: 38. doi: 10.3389/fcimb.2016.00038
    [94] Gaudet RG, Guo CX, Molinaro R, et al. (2017) Innate recognition of intracellular bacterial growth is driven by the TIFA-dependent cytosolic surveillance pathway. Cell Rep 19: 1418-1430. doi: 10.1016/j.celrep.2017.04.063
    [95] Sanada T, Kim M, Mimuro H, et al. (2012) The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature 483: 623-626. doi: 10.1038/nature10894
    [96] Nishide A, Kim M, Takagi K, et al. (2013) Structural basis for the recognition of Ubc13 by the Shigella flexneri effector OspI. J Mol Biol 425: 2623-2631. doi: 10.1016/j.jmb.2013.02.037
    [97] Ashida H, Nakano H, Sasakawa C (2013) Shigella IpaH0722 E3 ubiquitin ligase effector targets TRAF2 to inhibit PKC-NF-κB activity in invaded epithelial cells. PLoS Pathog 9: e1003409. doi: 10.1371/journal.ppat.1003409
    [98] Harouz H, Rachez C, Meijer BM, et al. (2014) Shigella flexneri targets the HP1γ subcode through the phosphothreonine lyase OspF. EMBO J 33: 2606-2622. doi: 10.15252/embj.201489244
    [99] Li H, Xu H, Zhou Y, et al. (2007) The phosphothreonine lyase activity of a bacterial type III effector family. Science 315: 1000-1003. doi: 10.1126/science.1138960
    [100] Arbibe L, Kim DW, Batsche E, et al. (2007) An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat Immunol 8: 47-56. doi: 10.1038/ni1423
    [101] Puhar A, Tronchère H, Payrastre B, et al. (2013) A Shigella effector dampens inflammation by regulating epithelial release of danger signal ATP through production of the lipid mediator PtdIns5P. Immunity 39: 1121-1131. doi: 10.1016/j.immuni.2013.11.013
    [102] Hadizadeh M, Tabatabaiepour SN, Tabatabaiepour SZ, et al. (2018) Genome-Wide Identification of Potential Drug Target in Enterobacteriaceae Family: A Homology-Based Method. Microb Drug Resist 24: 8-17. doi: 10.1089/mdr.2016.0259
    [103] Chakrabarti S, Ganguli S (2013) Structural Analyses of Shigella Invasion Proteins Reveals Non-Conserved; Intrinsically Unstructured Regions. Intl Lett Nat Sci 5: 52-58.
    [104] Gazi MA, Mahmud S, Fahim SM, et al. (2018) Functional Prediction of Hypothetical Proteins from Shigella flexneri and Validation of the Predicted Models by Using ROC Curve Analysis. Genomics Inform 16: e26. doi: 10.5808/GI.2018.16.4.e26
    [105] Martino MC, Rossi G, Martini I, et al. (2005) Mucosal lymphoid infiltrate dominates colonic pathological changes in murine experimental shigellosis. J Infect Dis 192: 136-148. doi: 10.1086/430740
    [106] Q S Medeiros PH, Ledwaba SE, Bolick DT, et al. (2019) A murine model of diarrhea, growth impairment and metabolic disturbances with Shigella flexneri infection and the role of zinc deficiency. Gut Microbes 10: 615-630. doi: 10.1080/19490976.2018.1564430
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7361) PDF downloads(572) Cited by(3)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog