[1]
|
Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441: 1068-1074. doi: 10.1038/nature04956
|
[2]
|
Ge Y, Fuchs E (2018) Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat Rev Genet 19: 311-325. doi: 10.1038/nrg.2018.9
|
[3]
|
Yousefi M, Li L, Lengner CJ (2017) Hierarchy and Plasticity in the Intestinal Stem Cell Compartment. Trends Cell Biol 27: 753-764. doi: 10.1016/j.tcb.2017.06.006
|
[4]
|
Tetteh PW, Farin HF, Clevers H (2015) Plasticity within stem cell hierarchies in mammalian epithelia. Trends Cell Biol 25: 100-108. doi: 10.1016/j.tcb.2014.09.003
|
[5]
|
Losick VP, Morris LX, Fox DT, et al. (2011) Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell 21: 159-171. doi: 10.1016/j.devcel.2011.06.018
|
[6]
|
Reya T, Morrison SJ, Clarke MF, et al. (2001) Stem cells, cancer, and cancer stem cells. Nature 414: 105-111. doi: 10.1038/35102167
|
[7]
|
Bajaj J, Diaz E, Reya T (2020) Stem cells in cancer initiation and progression. J Cell Biol 219: e201911053. doi: 10.1083/jcb.201911053
|
[8]
|
Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481: 306-313. doi: 10.1038/nature10762
|
[9]
|
Brooks MD, Burness ML, Wicha MS (2015) Therapeutic Implications of Cellular Heterogeneity and Plasticity in Breast Cancer. Cell Stem Cell 17: 260-271. doi: 10.1016/j.stem.2015.08.014
|
[10]
|
Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14: 275-291. doi: 10.1016/j.stem.2014.02.006
|
[11]
|
Ye X, Weinberg RA (2015) Epithelial-Mesenchymal Plasticity: A Central Regulator of Cancer Progression. Trends Cell Biol 25: 675-686. doi: 10.1016/j.tcb.2015.07.012
|
[12]
|
Najafi M, Mortezaee K, Ahadi R (2019) Cancer stem cell (a)symmetry & plasticity: Tumorigenesis and therapy relevance. Life Sci 231: 116520. doi: 10.1016/j.lfs.2019.05.076
|
[13]
|
Lee G, Hall RR, Ahmed AU (2016) Cancer Stem Cells: Cellular Plasticity, Niche, and its Clinical Relevance. J Stem Cell Res Ther 6: 363.
|
[14]
|
Skrypek N, Goossens S, De Smedt E, et al. (2017) Epithelial-to-Mesenchymal Transition: Epigenetic Reprogramming Driving Cellular Plasticity. Trends Genet 33: 943-959. doi: 10.1016/j.tig.2017.08.004
|
[15]
|
Hung KF, Yang T, Kao SY (2019) Cancer stem cell theory: Are we moving past the mist? J Chin Med Assoc 82: 814-818. doi: 10.1097/JCMA.0000000000000186
|
[16]
|
Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23: 1124-1134. doi: 10.1038/nm.4409
|
[17]
|
Horvitz HR, Herskowitz I (1992) Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68: 237-255. doi: 10.1016/0092-8674(92)90468-R
|
[18]
|
Knoblich JA (2001) Asymmetric cell division during animal development. Nat Rev Mol Cell Biol 2: 11-20. doi: 10.1038/35048085
|
[19]
|
Venkei ZG, Yamashita YM (2018) Emerging mechanisms of asymmetric stem cell division. J Cell Biol 217: 3785-3795. doi: 10.1083/jcb.201807037
|
[20]
|
Neumuller RA, Knoblich JA (2009) Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 23: 2675-2699. doi: 10.1101/gad.1850809
|
[21]
|
Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437: 275-280. doi: 10.1038/nature03922
|
[22]
|
Cabernard C, Doe CQ (2009) Apical/Basal Spindle Orientation Is Required for Neuroblast Homeostasis and Neuronal Differentiation in Drosophila. Developmental Cell 17: 134-141. doi: 10.1016/j.devcel.2009.06.009
|
[23]
|
Yamashita YM, Jones DL, Fuller MT (2003) Orientation of Asymmetric Stem Cell Division by the APC Tumor Suppressor and Centrosome. Science 301: 1547. doi: 10.1126/science.1087795
|
[24]
|
Santoro A, Vlachou T, Carminati M, et al. (2016) Molecular mechanisms of asymmetric divisions in mammary stem cells. EMBO Rep 17: 1700-1720. doi: 10.15252/embr.201643021
|
[25]
|
Knoblich JA (2008) Mechanisms of asymmetric stem cell division. Cell 132: 583-597. doi: 10.1016/j.cell.2008.02.007
|
[26]
|
Morin X, Bellaiche Y (2011) Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev Cell 21: 102-119. doi: 10.1016/j.devcel.2011.06.012
|
[27]
|
Rhyu MS, Jan LY, Jan YN (1994) Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76: 477-491. doi: 10.1016/0092-8674(94)90112-0
|
[28]
|
Guo M, Jan LY, Jan YN (1996) Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17: 27-41. doi: 10.1016/S0896-6273(00)80278-0
|
[29]
|
Wirtz-Peitz F, Nishimura T, Knoblich JA (2008) Linking cell cycle to asymmetric division: Aurora-A phosphorylates the Par complex to regulate Numb localization. Cell 135: 161-173. doi: 10.1016/j.cell.2008.07.049
|
[30]
|
Campanale JP, Sun TY, Montell DJ (2017) Development and dynamics of cell polarity at a glance. J Cell Sci 130: 1201-1207. doi: 10.1242/jcs.188599
|
[31]
|
Doe CQ, Bowerman B (2001) Asymmetric cell division: fly neuroblast meets worm zygote. Curr Opin Cell Biol 13: 68-75. doi: 10.1016/S0955-0674(00)00176-9
|
[32]
|
Loyer N, Januschke J (2020) Where does asymmetry come from? Illustrating principles of polarity and asymmetry establishment in Drosophila neuroblasts. Curr Opin Cell Biol 62: 70-77. doi: 10.1016/j.ceb.2019.07.018
|
[33]
|
Johnston CA, Hirono K, Prehoda KE, et al. (2009) Identification of an Aurora-A/PinsLINKER/Dlg spindle orientation pathway using induced cell polarity in S2 cells. Cell 138: 1150-1163. doi: 10.1016/j.cell.2009.07.041
|
[34]
|
Cabernard C, Prehoda KE, Doe CQ (2010) A spindle-independent cleavage furrow positioning pathway. Nature 467: 91-94. doi: 10.1038/nature09334
|
[35]
|
Gateff E (1978) Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200: 1448-1459. doi: 10.1126/science.96525
|
[36]
|
Caussinus E, Gonzalez C (2005) Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 37: 1125-1129. doi: 10.1038/ng1632
|
[37]
|
Wang H, Somers GW, Bashirullah A, et al. (2006) Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev 20: 3453-3463. doi: 10.1101/gad.1487506
|
[38]
|
Betschinger J, Mechtler K, Knoblich JA (2006) Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 124: 1241-1253. doi: 10.1016/j.cell.2006.01.038
|
[39]
|
Seldin L, Macara I (2017) Epithelial spindle orientation diversities and uncertainties: recent developments and lingering questions. F1000Res 6: 984. doi: 10.12688/f1000research.11370.1
|
[40]
|
McCaffrey LM, Montalbano J, Mihai C, et al. (2012) Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis. Cancer Cell 22: 601-614. doi: 10.1016/j.ccr.2012.10.003
|
[41]
|
Zen K, Yasui K, Gen Y, et al. (2009) Defective expression of polarity protein PAR-3 gene (PARD3) in esophageal squamous cell carcinoma. Oncogene 28: 2910-2918. doi: 10.1038/onc.2009.148
|
[42]
|
McCaffrey LM, Macara IG (2009) The Par3/aPKC interaction is essential for end bud remodeling and progenitor differentiation during mammary gland morphogenesis. Genes Dev 23: 1450-1460. doi: 10.1101/gad.1795909
|
[43]
|
Huang L, Muthuswamy SK (2010) Polarity protein alterations in carcinoma: a focus on emerging roles for polarity regulators. Curr Opin Genet Dev 20: 41-50. doi: 10.1016/j.gde.2009.12.001
|
[44]
|
Lee DF, Su J, Ang YS, et al. (2012) Regulation of embryonic and induced pluripotency by aurora kinase-p53 signaling. Cell Stem Cell 11: 179-194. doi: 10.1016/j.stem.2012.05.020
|
[45]
|
Zhou H, Kuang J, Zhong L, et al. (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20: 189-193. doi: 10.1038/2496
|
[46]
|
Willems E, Dedobbeleer M, Digregorio M, et al. (2018) The functional diversity of Aurora kinases: a comprehensive review. Cell Div 13: 7. doi: 10.1186/s13008-018-0040-6
|
[47]
|
Sasai K, Parant JM, Brandt ME, et al. (2008) Targeted disruption of Aurora A causes abnormal mitotic spindle assembly, chromosome misalignment and embryonic lethality. Oncogene 27: 4122-4127. doi: 10.1038/onc.2008.47
|
[48]
|
di Pietro F, Echard A, Morin X (2016) Regulation of mitotic spindle orientation: an integrated view. EMBO Rep 17: 1106-1130. doi: 10.15252/embr.201642292
|
[49]
|
Mukherjee S, Kong J, Brat DJ (2015) Cancer stem cell division: when the rules of asymmetry are broken. Stem Cells Dev 24: 405-416. doi: 10.1089/scd.2014.0442
|
[50]
|
Li HS, Wang D, Shen Q, et al. (2003) Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 40: 1105-1118. doi: 10.1016/S0896-6273(03)00755-4
|
[51]
|
Garcia-Heredia JM, Verdugo Sivianes EM, Lucena-Cacace A, et al. (2016) Numb-like (NumbL) downregulation increases tumorigenicity, cancer stem cell-like properties and resistance to chemotherapy. Oncotarget 7: 63611-63628. doi: 10.18632/oncotarget.11553
|
[52]
|
Tosoni D, Zecchini S, Coazzoli M, et al. (2015) The Numb/p53 circuitry couples replicative self-renewal and tumor suppression in mammary epithelial cells. J Cell Biol 211: 845-862. doi: 10.1083/jcb.201505037
|
[53]
|
Lapidot T, Sirard C, Vormoor J, et al. (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645-648. doi: 10.1038/367645a0
|
[54]
|
Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730-737. doi: 10.1038/nm0797-730
|
[55]
|
Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983-3988. doi: 10.1073/pnas.0530291100
|
[56]
|
Singh SK, Clarke ID, Terasaki M, et al. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821-5828.
|
[57]
|
Dontu G, Abdallah WM, Foley JM, et al. (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17: 1253-1270. doi: 10.1101/gad.1061803
|
[58]
|
Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175: 1-13. doi: 10.1006/dbio.1996.0090
|
[59]
|
Lanzkron SM, Collector MI, Sharkis SJ (1999) Hematopoietic stem cell tracking in vivo: a comparison of short-term and long-term repopulating cells. Blood 93: 1916-1921. doi: 10.1182/blood.V93.6.1916.406k15_1916_1921
|
[60]
|
Pece S, Tosoni D, Confalonieri S, et al. (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140: 62-73. doi: 10.1016/j.cell.2009.12.007
|
[61]
|
Moore N, Lyle S (2011) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol Article ID 396076.
|
[62]
|
Bu P, Chen KY, Lipkin SM, et al. (2013) Asymmetric division: a marker for cancer stem cells in early stage tumors? Oncotarget 4: 950-951. doi: 10.18632/oncotarget.1029
|
[63]
|
Ginestier C, Hur MH, Charafe-Jauffret E, et al. (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1: 555-567. doi: 10.1016/j.stem.2007.08.014
|
[64]
|
Greve B, Kelsch R, Spaniol K, et al. (2012) Flow cytometry in cancer stem cell analysis and separation. Cytometry A 81: 284-293. doi: 10.1002/cyto.a.22022
|
[65]
|
Mani SA, Guo W, Liao MJ, et al. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704-715. doi: 10.1016/j.cell.2008.03.027
|
[66]
|
Bu P, Chen KY, Chen JH, et al. (2013) A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell 12: 602-615. doi: 10.1016/j.stem.2013.03.002
|
[67]
|
Chen G, Kong J, Tucker-Burden C, et al. (2014) Human Brat ortholog TRIM3 is a tumor suppressor that regulates asymmetric cell division in glioblastoma. Cancer Res 74: 4536-4548. doi: 10.1158/0008-5472.CAN-13-3703
|
[68]
|
Clarke MF, Dick JE, Dirks PB, et al. (2006) Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66: 9339-9344. doi: 10.1158/0008-5472.CAN-06-3126
|
[69]
|
Till JE, Mc CE (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14: 213-222. doi: 10.2307/3570892
|
[70]
|
Quintana E, Shackleton M, Sabel MS, et al. (2008) Efficient tumour formation by single human melanoma cells. Nature 456: 593-598. doi: 10.1038/nature07567
|
[71]
|
Post Y, Clevers H (2019) Defining Adult Stem Cell Function at Its Simplest: The Ability to Replace Lost Cells through Mitosis. Cell Stem Cell 25: 174-183. doi: 10.1016/j.stem.2019.07.002
|
[72]
|
Bailey PC, Lee RM, Vitolo MI, et al. (2018) Single-Cell Tracking of Breast Cancer Cells Enables Prediction of Sphere Formation from Early Cell Divisions. iScience 8: 29-39. doi: 10.1016/j.isci.2018.08.015
|
[73]
|
Korkaya H, Liu S, Wicha MS (2011) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 121: 3804-3809. doi: 10.1172/JCI57099
|
[74]
|
Kiel MJ, Yilmaz OH, Iwashita T, et al. (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109-1121. doi: 10.1016/j.cell.2005.05.026
|
[75]
|
Kunisaki Y, Bruns I, Scheiermann C, et al. (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502: 637-643. doi: 10.1038/nature12612
|
[76]
|
Snippert HJ, van der Flier LG, Sato T, et al. (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143: 134-144. doi: 10.1016/j.cell.2010.09.016
|
[77]
|
Lopez-Garcia C, Klein AM, Simons BD, et al. (2010) Intestinal stem cell replacement follows a pattern of neutral drift. Science 330: 822-825. doi: 10.1126/science.1196236
|
[78]
|
Wang R, Chadalavada K, Wilshire J, et al. (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468: 829-833. doi: 10.1038/nature09624
|
[79]
|
Tominaga K, Minato H, Murayama T, et al. (2019) Semaphorin signaling via MICAL3 induces symmetric cell division to expand breast cancer stem-like cells. Proc Natl Acad Sci USA 116: 625-630. doi: 10.1073/pnas.1806851116
|
[80]
|
Huang S, Law P, Francis K, et al. (1999) Symmetry of initial cell divisions among primitive hematopoietic progenitors is independent of ontogenic age and regulatory molecules. Blood 94: 2595-2604. doi: 10.1182/blood.V94.8.2595.420k37_2595_2604
|
[81]
|
Braun KM, Watt FM (2004) Epidermal label-retaining cells: background and recent applications. J Investig Dermatol Symp Proc 9: 196-201. doi: 10.1111/j.1087-0024.2004.09313.x
|
[82]
|
Bickenbach JR, Mackenzie IC (1984) Identification and localization of label-retaining cells in hamster epithelia. J Invest Dermatol 82: 618-622. doi: 10.1111/1523-1747.ep12261460
|
[83]
|
Kusumbe AP, Bapat SA (2009) Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res 69: 9245-9253. doi: 10.1158/0008-5472.CAN-09-2802
|
[84]
|
Dey-Guha I, Wolfer A, Yeh AC, et al. (2011) Asymmetric cancer cell division regulated by AKT. Proc Natl Acad Sci USA 108: 12845-12850. doi: 10.1073/pnas.1109632108
|
[85]
|
Bajaj J, Zimdahl B, Reya T (2015) Fearful symmetry: subversion of asymmetric division in cancer development and progression. Cancer Res 75: 792-797. doi: 10.1158/0008-5472.CAN-14-2750
|
[86]
|
Gattinoni L, Speiser DE, Lichterfeld M, et al. (2017) T memory stem cells in health and disease. Nature Med 23: 18-27. doi: 10.1038/nm.4241
|
[87]
|
Ciocca ML, Barnett BE, Burkhardt JK, et al. (2012) Cutting edge: Asymmetric memory T cell division in response to rechallenge. J Immunol 188: 4145-4148. doi: 10.4049/jimmunol.1200176
|
[88]
|
Schmidt JM, Panzilius E, Bartsch HS, et al. (2015) Stem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activation. Cell Rep 10: 131-139. doi: 10.1016/j.celrep.2014.12.032
|
[89]
|
Kroger C, Afeyan A, Mraz J, et al. (2019) Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci USA 116: 7353-7362. doi: 10.1073/pnas.1812876116
|
[90]
|
Ye X, Tam WL, Shibue T, et al. (2015) Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525: 256-260. doi: 10.1038/nature14897
|
[91]
|
Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20: 69-84. doi: 10.1038/s41580-018-0080-4
|
[92]
|
Kreso A, O'Brien CA, van Galen P, et al. (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339: 543-548. doi: 10.1126/science.1227670
|
[93]
|
Zhu Y, Luo M, Brooks M, et al. (2014) Biological and clinical significance of cancer stem cell plasticity. Clin Transl Med 3: 32.
|
[94]
|
Jasnos L, Aksoy FB, Hersi HM, et al. (2013) Identifying division symmetry of mouse embryonic stem cells: negative impact of DNA methyltransferases on symmetric self-renewal. Stem Cell Rep 1: 360-369. doi: 10.1016/j.stemcr.2013.08.005
|