In this paper, we focus on studying a specific type of equations called backward stochastic Volterra integral equations (BSVIEs). Our approach to approximating an unknown function involved using collocation approximation. We used Newton's technique to solve a particular BSVIE by employing block pulse functions (BPFs) and the related stochastic operational matrix of integration. Additionally, we developed considerations for Lipschitz and linear growth, along with linearity conditions, to illustrate error and convergence analysis. We compared the solutions we obtain the values of exact and approximate solutions at selected points with a defined absolute error. The computations were performed using MATLAB R2018a.
Citation: Kutorzi Edwin Yao, Mahvish Samar, Yufeng Shi. Approximation approach for backward stochastic Volterra integral equations[J]. Mathematical Modelling and Control, 2024, 4(4): 390-399. doi: 10.3934/mmc.2024031
In this paper, we focus on studying a specific type of equations called backward stochastic Volterra integral equations (BSVIEs). Our approach to approximating an unknown function involved using collocation approximation. We used Newton's technique to solve a particular BSVIE by employing block pulse functions (BPFs) and the related stochastic operational matrix of integration. Additionally, we developed considerations for Lipschitz and linear growth, along with linearity conditions, to illustrate error and convergence analysis. We compared the solutions we obtain the values of exact and approximate solutions at selected points with a defined absolute error. The computations were performed using MATLAB R2018a.
[1] |
E. Pardoux, S. G. Peng, Adapted solution of a backward stochastic differential equation, Syst. Control Lett., 14 (1990), 55–61. https://doi.org/10.1016/0167-6911(90)90082-6 doi: 10.1016/0167-6911(90)90082-6
![]() |
[2] | E. Pardoux, S. G. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, In: B. L. Rozovskii, R. B. Sowers, Stochastic partial differential equations and their applications, Springer, 1992,200–217. https://doi.org/10.1007/BFb0007334 |
[3] |
N. Agram, Dynamic risk measure for BSVIE with jumps and semimartingale issue, Stochastic Anal. Appl., 37 (2019), 361–376. https://doi.org/10.1080/07362994.2019.1569531 doi: 10.1080/07362994.2019.1569531
![]() |
[4] | Y. Hamaguchi, D. Taguchi, Approximations for adapted $M$-solution of type-Ⅱ backward stochastic Volterra integral equations, arXiv, 2023. https://doi.org/10.48550/arXiv.2102.08536 |
[5] |
Y. Shi, T. Wang, Solvability of general backward stochastic volterra integral equations, J. Korean Math. Soc., 49 (2012), 1301–1321. https://doi.org/10.4134/JKMS.2012.49.6.1301 doi: 10.4134/JKMS.2012.49.6.1301
![]() |
[6] |
J. Yong, Well-posedness and regularity of backward stochastic Volterra integral equations, Probab. Theory Related Fields, 142 (2008), 21–77. https://doi.org/10.1007/s00440-007-0098-6 doi: 10.1007/s00440-007-0098-6
![]() |
[7] |
H. Wang, Extended backward stochastic Volterra integral equations, quasilinear parabolic equations, and Feynman-Kac formula, Stochastic Dyn., 21 (2021), 2150004. https://doi.org/10.1142/S0219493721500040 doi: 10.1142/S0219493721500040
![]() |
[8] |
J. Yong, Backward stochastic Volterra integral equations and some related problems, Stochastic Process. Appl., 116 (2006), 779–795. https://doi.org/10.1016/j.spa.2006.01.005 doi: 10.1016/j.spa.2006.01.005
![]() |
[9] |
Y. Shi, T. Wang, J. Yong, Optimal control problems of forward-backward stochastic Volterra integral equations, Math. Control Relat. Fields, 5 (2015), 613–649. https://doi.org/10.3934/mcrf.2015.5.613 doi: 10.3934/mcrf.2015.5.613
![]() |
[10] |
Y. Shi, J. Wen, J. Xiong, Backward doubly stochastic Volterra integral equations and their applications, J. Differ. Equations, 269 (2020), 6492–6528. https://doi.org/10.1016/j.jde.2020.05.006 doi: 10.1016/j.jde.2020.05.006
![]() |
[11] |
J. Lin, Adapted solution of a backward stochastic nonlinear Volterra integral equation, Stochastic Process. Appl., 20 (2007), 165–183. https://doi.org/10.1081/SAP-120002426 doi: 10.1081/SAP-120002426
![]() |
[12] | A. Aman, M. N'zi, Backward stochastic nonlinear Volterra integral equations with local Lipschitz drift, Prob. Math. Stat., 25 (2005), 105–127. |
[13] |
Y. Shi, T. Wang, J. Yong, Mean-field backward stochastic Volterra integral equations, Discrete Contin. Dyn. Syst., 18 (2017), 1929–1967. https://doi.org/10.3934/dcdsb.2013.18.1929 doi: 10.3934/dcdsb.2013.18.1929
![]() |
[14] |
N. E. Karoui, S. Peng, M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1–71. https://doi.org/10.1111/1467-9965.00022 doi: 10.1111/1467-9965.00022
![]() |
[15] |
K. Maleknejad, M. Khodabin, M. Rostami, Numerical solution of stochastic Volterra integral equations by a stochastic operational matrix based on block pulse functions, Math. Comput. Modell., 55 (2012), 791–800. https://doi.org/10.1016/j.mcm.2011.08.053 doi: 10.1016/j.mcm.2011.08.053
![]() |
[16] |
M. Saffarzadeh, G. B. Loghmani, M. Heydari, An iterative technique for the numerical solution of nonlinear stochastic Itô-Volterra integral equations, J. Comput. Appl. Math., 333 (2018), 74–86. https://doi.org/10.1016/j.cam.2017.09.035 doi: 10.1016/j.cam.2017.09.035
![]() |
[17] |
M. Khodabina, K. Maleknejada, M. Rostami, M. Nouri, Numerical approach for solving stochastic Volterra-Fredholm integral equations by stochastic operational matrix, Comput. Math. Appl., 64 (2012), 1903–1913. https://doi.org/10.1016/j.camwa.2012.03.042 doi: 10.1016/j.camwa.2012.03.042
![]() |
[18] |
S. U. Khan, M. Ali, I. Ali, A spectral collocation method for stochastic Volterra integro-differential equations and its error analysis, Adv. Differ. Equations, 2019 (2019), 161. https://doi.org/10.1186/s13662-019-2096-2 doi: 10.1186/s13662-019-2096-2
![]() |
[19] |
J. Xie, Q. Huang, F. Zhao, Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations in two-dimensional spaces based on block pulse functions, J. Comput. Appl. Math., 317 (2017), 565–572. https://doi.org/10.1016/j.cam.2016.12.028 doi: 10.1016/j.cam.2016.12.028
![]() |
[20] |
F. Z. Geng, Piecewise reproducing kernel-based symmetric collocation approach for linear stationary singularly perturbed problems, AIMS Math., 5 (2020), 6020–6029. https://doi.org/10.3934/math.2020385 doi: 10.3934/math.2020385
![]() |
[21] |
M. Samar, K. E. Kutorzi, X. Zhu, Numerical solution of nonlinear backward stochastic Volterra integral equations, Axioms, 12 (2023), 888. https://doi.org/10.3390/axioms12090888 doi: 10.3390/axioms12090888
![]() |
[22] |
K. E. Yao, Y. Zhang, Y. Shi, Numerical solution for stochastic Volterra-Fredholm integral equations with delay arguments, Acta Polytech., 64 (2024), 128–141. https://doi.org/10.14311/AP.2024.64.0128 doi: 10.14311/AP.2024.64.0128
![]() |
[23] | Z. H. Jiang, W. Schaufelberger, Block pulse functions and their applications in control systems, Springer-Verlag, 1992. https://doi.org/10.1007/BFb0009162 |
[24] | G. Prasada Rao, Piecewise constant orthogonal functions and their application to systems and control, Springer, 1983. https://doi.org/10.1007/BFb0041228 |