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Abstract: In this paper, we focus on studying a specific type of equations called backward stochastic Volterra integral equations
(BSVIEs). Our approach to approximating an unknown function involved using collocation approximation. We used Newton’s technique
to solve a particular BSVIE by employing block pulse functions (BPFs) and the related stochastic operational matrix of integration.
Additionally, we developed considerations for Lipschitz and linear growth, along with linearity conditions, to illustrate error and
convergence analysis. We compared the solutions we obtain the values of exact and approximate solutions at selected points with a
defined absolute error. The computations were performed using MATLAB R2018a.
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1. Introduction

Stochastic differential equations with terminal conditions
are referred to as backward stochastic differential equations
(BSDEs). These equations have been extensively researched
for applications in finance, stochastic games, and optimal
control of BSDEs. In 1990, Pardoux and Peng expanded
BSDEs to a general nonlinear form [1–3]. Subsequently,
the concept of BSDEs was extended to backward stochastic
Volterra integral equations (BSVIEs), where both the drift
and diffusion coefficients depend on two time moments. The
following are general BSDEs with nonlinearities:

Y(t) = ψ +
∫ T

t
g(s,Y(s),Z(s))ds −

∫ T

t
Z(s)dB(s). (1.1)

In contrast, {B(t)}t∈[0,T] defines the Wiener process. The
terminal condition ψ is an FT -measurable random variable,
and the driver g is a progressively measurable function. The
adapted solution of BSDE (1.1) is the pair (Y(·),Z(·)) of the

adapted processes satisfying (1.1). The second component
of the adapted solution Z(·), is known as the martingale
integrand.

The study we are conducting takes inspiration from the
approach used to estimate the adapted solutions of BSDEs
in [4]. We propose to explore the study of backward
stochastic Volterra integral equations, building on the latest
research [5–9]. BSDEs have been extensively researched
and found applications in finance, stochastic games, and
optimal control, with the initial research dating back over a
dozen years to the work of Pardoux and Peng [10]. Adapted
solutions have been studied as existence and uniqueness
problems under global Lipschitz conditions, as discussed by
Lin [11]. Aman et al. relaxed the global Lipschitz condition
on drift [12, 13]. For a comprehensive overview of the
theory and applications of BSDE (1.1), including stochastic
controls and mathematical finance, readers are referred to
the survey work of Karoui et al. [14]. Although there has
been relatively limited numerical interest, BSVIEs can be
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effectively solved using block pulse functions (BPFs) and
their stochastic operational matrix of integration. These
equations can then be reduced to a linear lower triangular
system, which can then be solved by forward substitution,
as discussed in [15–22]. The emergence of BSVIEs has
resulted in significant development in the area of BSDEs,
serving as a natural progression from this field. Let us
consider BSVIEs of the form

Y(t) =ψ(t) +
∫ T

t
g(t, s,Y(s),Z(t, s),Z(s, t))ds

−

∫ T

t
Z(t, s)dB(s). (1.2)

This equation was originally introduced by Yong [8]. One
of the key features of BSVIEs is that they incorporate
memories, making them more reflective of real-life
situations. The goal is to find the unknown pair (Y(·),Z(·, ·)),
with Y(·) and Z(t, ·) being adapted for each t ∈ [0,T ]. In
the above equation, the free term ψ(·), also referred to as the
terminal condition, is permitted to be only a B([0,T]) ⊗ FT-
measurable stochastic process and may not necessarily be
F -adapted. Here, B([0,T]) represents the Borel σ field
of [0,T ]. The generator or the driver of the BSVIE is a
specified map g(·), which can be deterministic or random.
The coefficient g(·) depends on both t and s, and g(·) depends
not only on Z(t, s) but also on Z(s, t). The drift generally
relies on Z(t, s) and Z(s, t). When the driver g is independent
of the term Z(s, t), the BSVIE simplifies to:

Y(t) =ψ(t) +
∫ T

t
g(t, s,Y(s),Z(t, s))ds

−

∫ T

t
Z(t, s)dB(s), (1.3)

We have the following simple BSVIE (1.4), inspired by the
approach used to estimate the adapted solutions of BSDEs
in [4]:

Y(t) = f (t) +
∫ T

t
Z(t, s)ds −

∫ T

t
Z(t, s)dB(s), (1.4)

where t ∈ [0,T ]. It should be noted that f (t) may not be
necessarily adapted. The structure of this work is as follows:
In Section 2, we will cover the basic characteristics of BPFs
and an approximation of integration operational matrix.
In Section 3, we will present the stochastic integration

operational matrix. In Section 4, we will solve backward
stochastic Volterra integral equations using the stochastic
integration operational matrix. Section 5 presents an
analysis of the numerical method’s errors. In Section 6, we
offer numerical results and examples to show the accuracy
of the suggested approach.

2. BPFs

This section covers the notations, definitions, known
results, and formulas related to BPFs, which are relevant to
this paper. These details have been extensively discussed
in [23, 24].

An m-set of BPFs is defined over the unit interval [0,T )
as: for 0 ≤ 1 < m, and m ∈ {1, 2, . . .},

ϕi(t) =

1, f or (i − 1)h ≤ t < ih,

0, otherwise,
(2.1)

with t ∈ [0,T ), i = 1, 2, . . . ,m, and h = T
m .

The BPFs have the following properties:
(1) Disjointness: The BPFs are disjointed with each other

in the interval t ∈ [0,T ),

Φi(t)Φ j(t) = δi jΦi(t), (2.2)

where i, j = 1, 2, . . . ,m, and δi j denotes the Kronecker delta.
(2) Orthogonality: The BPFs are disjointed with each

other in the interval t ∈ [0,T ),∫ T

0
Φi(t)Φ j(t)dt = hδi j, i, j = 1, 2, . . . ,m. (2.3)

(3) Completeness: If m → ∞, then the BPFs set is
complete, i.e., for every f ∈ L2([0,T )), Parseval’s identity
holds, ∫ T

0
f 2(t)dt =

∞∑
i=1

f 2
i ||ϕi(t)||2,

where

fi =
1
h

∫ T

0
f (t)ϕi(t)dt.

The set of functions can be described by an m vector,

Φm(t) = (ϕ0(t), ϕ1(t), · · · , ϕm(t))T , t ∈ [0,T ).

As a result, the following matrix form can be used to
represent the connection between BPFs and their integrals.
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The above representation and disjointness property
follows

Φ(t)ΦT (t) =


ϕ1(t) 0 · · · 0

0 ϕ2(t) · · · 0
...

...
. . .

...

0 0 · · · ϕm(t)


m×m

, (2.4)

additionally, we have

Φ(t)TΦ(t) = 1

and
Φ(t)ΦT (t)V = ṼΦ(t), (2.5)

where V is the m-vector, Ṽ is the m × m matrix,

Ṽ = diag(V).

It can be clearly seen that

ΦT (t)FΦ(t) = F̃TΦ(t), (2.6)

F̃ is the m-vector whose elements are equivalent to the
diagonal entries of matrix F, and F is the m × m matrix.

2.1. Functions approximation

The expansion of a real bounded function f (t), where
f (t) ∈ L2[0,T ), into a block pulse series is as follows

f (t) ≃ f̂m(t) =
m∑

i=1

fiΦi(t), (2.7)

where fi is the block pulse coefficient relative to the ith BPF
Φi(t). In the form of a vector we have

f (t) ≃ f̂m(t) = FTΦ(t) = ΦT (t)F, (2.8)

where
F = ( f1, f2, . . . , fm)T .

2.2. Integration operational matrix

Computing
∫ T

0 ϕi(s)ds follows

∫ t

0
ϕi(s)ds =


0, 0 ≤ t < (i − 1)h,

t − (i − 1)h, (i − 1)h ≤ t < ih,

h, ih ≤ t < T.

(2.9)

Note that t− (i−1)h equals to h
2 at mid-point of [(i−1)h, ih),

thus we can approximate t − (i − 1)h, for (i − 1)h ≤ t < ih,
by h

2 .

From [23], we will have:

∫ t

T
Φ(t)dt =

∫ 0

T
Φ(t)dt +

∫ t

0
Φ(t)dt, (2.10)

where the operational integration matrix is provided by

P = −
h
2



1 0 0 · · · 0
2 1 0 · · · 0
2 2 1 · · · 0
...

...
...

. . .
...

2 2 2 · · · 1


m×m

Φ(t), (2.11)

the backward integral of a function’s block pulse series can
be written as: ∫ t

T
f (t)dt ≃

∫ t

T
FTΦ(τ)dτ

= −FT PTΦ(t).
(2.12)

3. Stochastic integration operational matrix

The Itô integral of each single BPFs ϕi(t) can be computed
as follows:

∫ t

0
ϕi(s)dB(s) =


0, 0 ≤ t < (i − 1)h,

B(t) − B((i − 1)h), (i − 1)h ≤ t < ih,

B(ih) − B((i − 1)h), ih ≤ t < T.

(3.1)

Now, expressing
∫ T

0 ϕi(s)dB(s), in terms of the BPFs
follows∫ T

0
ϕi(s)dB(s) ≃(B(ih/2) − B((i − 1)h/2)ϕi(t)

+ (B(ih) − B((i − 1)h))
m∑

j=i+1

ϕ j(t).

(3.2)

Therefore,

∫ 0

T
Φ(s)dB(s) +

∫ t

0
Φ(s)dB(s) ≃ −PSΦ(t), (3.3)
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where the stochastic operational integration matrix is
provided by

PS =



γ1 0 0 · · · 0
ρ2 γ2 0 · · · 0
ρ3 ρ3 γ3 · · · 0
...

...
...

. . .
...

ρ4 ρ4 ρ4 · · · γm


m×m

, (3.4)

where

ρi = B(ih) − B((i − 1)h), i = 1, 2, . . . ,m − 1

and

γ j = B(ih/2) − B((i − 1)h/2), j = 1, 2, . . . ,m.

Therefore, the Itô integral of every function f (t) can be
modified as: ∫ t

T
f (s)dBs ≃

∫ t

T
FTΦ(τ)dτ

= −FT PT
SΦ(t).

(3.5)

4. Implementation in stochastic integral equation

Using the block pulse operational matrices, first, we find
the collocation approximation to the functions z1(t, s) and
z2(t, s) for drift and diffusion, respectively, defined by

z1(t, s) = Z(t, s), z2(t, s) = Z(t, s). (4.1)

Plugging Eqs (1.4) and (4.1) as inputs yields

Y(t) = f (t) +
∫ T

t
z1(t, s)ds −

∫ T

t
z2(t, s)dB(s) (4.2)

and
z1(t, s) := Z

(
t, s, f (t) +

∫ T
t z1(t, s)ds −

∫ T
t z2(t, s)dB(s)

)
,

z2(t, s) := Z
(
t, s, f (t) +

∫ T
t z1(t, s)ds −

∫ T
t z2(t, s)dB(s)

)
.

(4.3)
Based on block pulse series, we can approximate the

functions Y(t), f (t), z1(t, s), and z2(t, s), and we have

Y(t) ≃ YTΦ(t) = ΦT (t)Y,

f (t) ≃ FTΦ(t) = ΦT (t)F,

z1(t, s) ≃ z̃1(t, s) = ΦT (t)ZT
1 Φ(s) = ΦT (t)Z1Φ(s),

z2(t, s) ≃ z̃2(t, s) = ΦT (t)ZT
2 Φ(s) = ΦT (t)Z2Φ(s),

(4.4)

thus, m × m-vectors Z1,Z2, and m × m correspond to the
block pulse coefficients of z1(t, s) and z2(t, s). When (4.4)
is substituted in (4.2), we obtain∫ T

t
z1(t, s)ds ≃

∫ T

t
ΦT (t)Z1Φ(s)ds

=

∫ T

t
Φ(t)Z1Φ

T (s)ds

= −ΦT (t)Z̃1PΦ(s)ds;

(4.5)

in addition, we can express the Itô’s integral of (4.2) as
follows ∫ T

t
z2(t, s)ds ≃

∫ T

t
ΦT (t)Z2Φ(s)dB(s)

=

∫ T

t
Φ(t)ΦT (s)Z2dB(s)

= −ΦT (t)Z̃2PsΦ(s)dB(s),

(4.6)

in this case,

Z̃1 = diag(Z1), Z̃2 = diag(Z2).

Taking (4.5) and (4.6) and substituting into (4.3) and
replacing “≃” with “=”, as a result

Φ(t)ZT
1 Φ(s)

= Z
(
t, s, f (t) − ΦT (t)Z̃1PΦ(s) + ΦT (t)Z̃2PsΦ(s)

)
,

Φ(t)ZT
2 Φ(s)

= Z
(
t, s, f (t) − ΦT (t)Z̃1PΦ(s) + ΦT (t)Z̃2PsΦ(s)

)
.

(4.7)

A collocation method based on (4.7), using m nodes

t j, s j =
j

m + 1
, j = 1, . . . ,m

is used for determining the correlation as

Φ(t j)ZT
1 Φ(s j)

= z
(
t j, s j, f (t j) − ΦT (t j)Z̃1PΦ(s j) + ΦT (t j)Z̃2PsΦ(t j)

)
,

Φ(t j)ZT
2 Φ(s j)

= Z
(
t j, s j, f (t j) − ΦT (t j)Z̃1PΦ(s j) + ΦT (t j)Z̃2PsΦ(t j)

)
.

(4.8)

We obtain Z1 and Z2 by solving the nonlinear system (4.8).
Then, the result Y(t) of (4.2) is approximated as:

Y(t) ≃ ym(t) = f (t)−ΦT (t)Z̃1PΦ(s)+ΦT (t)Z̃2PsΦ(s). (4.9)
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5. Error analysis

This section will provide the general estimate for the error
and convergence analysis.

Theorem 5.1. Suppose that

f (t, s) ∈ [0, 1) × [0, 1)

and

e(t, s) = f (t, s) − f̂m(t, s), (t, s) ∈ J = [0, 1) × [0, 1),

where

f̂m(t, s) =
m∑

i=1

m∑
j=1

fi jψi(t)ϕ j(s)

is the block pulse series of f (t, s). Then,

||e(s, t)|| ≤
h

2
√

3
(|| f ′t ||

2
∞ + || f

′
s ||

2
∞)

1
2 . (5.1)

Proof. The proof is the same as done in [17], so we omit it
here. □

Theorem 5.2. Let

Z : ∆ × R ×Ω→ Rn

be measurable and for some constant L > 0,

|Z(t, s)| ≤ L, (t, s) ∈ ∆ (5.2)

and

E
∫ T

0

(∫ T

t
|Z(t, s)|ds

)
dt < ∞. (5.3)

Then, for any f (·) ∈ LFT (Ω;Rn), (1.4) admits a unique

adapted solution (Y(·),Z(·, ·)) ∈ H2
∆

[0,T ].

Proof. For a given pair (y(·), z(·, ·)) ∈ H2
∆

[0,T ], consider the
following simple BSVIE:

Y(t) = f (t) +
∫ T

t
Z̄(t, s)ds −

∫ T

t
Z(t, s)dB(s), t ∈ [0,T ],

(5.4)
where

Z̄(t, s) = Z(t, s), (t, s) ∈ ∆.

To solve (5.4), we introduce the following family of
BSDEs (parameterized by t ∈ [0,T ]):

η(r; t) = f (t) +
∫ T

r
Z̄(t, s)ds −

∫ T

r
ζ(s; t)dB(s), r ∈ [0,T ].

(5.5)

It is well-known that the above BSDE admits a unique
adapted solution (η(·; t), ζ(·; t)) and the following estimate
holds:

E

 sup
r∈[t,T ]

|η(r; t)|p +
(∫ T

t
|ζ(s; t)|2ds

) p
2


≤ KpE
[
| f (t)|p +

(∫ T

t
|Z̄(t, s)|ds

)p]
.

(5.6)

Now, let

Y(t) = η(t; t), Z(t, s) = ζ(s; t), ∀(t, s) ∈ ∆. (5.7)

Then, (Y(·),Z(·, ·)) is an adapted solution to BSVIE (5.4),
and

E

|Y(t)|p +
(∫ T

t
|Z(t, s)|2ds

) p
2


≤ KpE
[
| f (t)|2 +

(∫ T

t
|Z̄(t, s)|ds

)p]
.

(5.8)

From this estimate, together with the linearity of (5.4), we
see that (Y(·),Z(·, ·)) is the unique adapted solution to (5.4).
Also, we have the following:

E
[
|Y(t)|2 +

∫ T

t
|Z(t, s)|2ds

]
= E

∣∣∣∣∣∣ f (t) +
∫ T

t
Z̄(t, s)ds

∣∣∣∣∣∣2
≤ 2E

| f (t)|2 +
(∫ T

t
|Z̄(t, s)|ds

)2 .
(5.9)

Then,

E
∫ T

0

[
|Y(t)|2 +

∫ T

t
|Z(t, s)|2ds

]
dt

≤ 2E
∫ T

0

| f (t)|2 +
(∫ T

t
|Z̄(t, s)|ds

)2 dt

≤ KE
∫ T

0

[
| f (t)|2

]
dt + KE

∫ T

0

[
|y(t)|2 +

∫ T

t
|z(t, s)|2ds

]
dt.

Thus,

(y(·), z(·, ·))→ Y(·),Z(·, ·))

defines a map from H2
∆

[0,T ] to itself. We can show that for
any

(yi(·), zi(·, ·)) ∈ H2,β
∆

[0,T ],
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if Yi(·),Zi(·, ·)) is the corresponding adapted solution to
BSVIE (1.4), then

E
∫ T

0

[
eβt |Y1(t) − Y2(t)|2 +

∫ T

t
eβs|Z1(t, s) − Z2(t, s)|2ds

]
dt

≤
K
β

E
∫ T

0

[
eβt |y1(t) − y2(t)|2 +

∫ T

t
eβs|z1(t, s) − z2(t, s)|2ds

]
dt,

with K > 0 being an absolute constant. Hence, the map

(y(·), z(·, ·))→ Y(·),Z(·, ·))

is a contraction on H2,β
∆

[0,T ] for large enough β >0.
We can also obtain an estimate for (Y,Z) that is
marginally sharper than the above expression under identical
circumstances. □

Theorem 5.3. Assume that (C[Γ], || · ||) is the Banach space

of all continuous functions on

Γ = [0, 1) × [0, 1)

with norm

||Z(t, s)|| = max
(t,s)∈Γ

|Z(t, s)|. (5.10)

Proof. In order to estimate the error of the approximate
solution of Eq (1.4), we assume that Zmn(t, s) and Z(t, s)
are the approximate and exact solutions of the integral
equations, respectively. Let

M1 ≡ sup
0≤t,s<1

|(t, s)| < ∞

and

M2 ≡ sup
0≤t,s<1

|(t, s)| < ∞.

Assume the nonlinear terms Z1 and Z2 are satisfied in the
Lipschitz condition such that

|Z1(Zmn(t, s)) − Z1(Z(t, s))| ≤ L1|Zmn − Z|,

|Z2(Zmn(t, s)) − Z2(Z(t, s))| ≤ L2|Zmn − Z|.
(5.11)

Assuming that the error function of the approximation
solution Zmn(t, s) to the exact solution Z(t, s) is

emn(t, s) = Z(t, s) − Zmn(t, s),

we therefore consider

||emn(t, s)|| =||Zmn(t, s) − Z(t, s)||

= max
(t,s)∈Γ

|Zmn(t, s) − Z(t, s)|

≤ max
(t,s)∈Γ

∫ T

t
|Zmn(t, s) − Z(t, s)|ds

−

∫ T

t
|Zmn(t, s) − Z(t, s))|dB(s)

≤(L1 − L2) max
(t,s)∈Γ

|Zmn − Z|

≤β max
(t,s)∈Γ

|Zmn − Z|,

(5.12)

where
β = |L1| − |L2|,

therefore
(1 − β)||emn(t, s)|| ≤ 0.

This concludes the proof because if 0 < β < 1, we have
||emn(t, s)|| → 0 as m, n→ ∞. □

6. Numerical examples

This section will provide four numerical examples to
illustrate the results obtained in Sections 3 and 4. All
computations are carried out in MATLAB R2018a, with a
precision of 2.22×10−16. By using the definition of absolute
error, which is defined as follows, we can compare the values
of approximate and exact solutions at some chosen points:

||E||∞ = max
1≤i≤m

|Xi − X̄i|, (6.1)

where Xi and X̄i are exact and approximate solutions,
respectively.

Example 6.1. (The basic Black-Scholes model) The

Black-Scholes model represents a financial market with

specific derivative investment instruments, a stochastic

mathematical model. Black and Scholes first presented this

concept in 1973. A two-dimensional continuous time process

{(X0(t), X(t)) : 0 ≤ t ≤ T }

with the risk-free asset X0(t) and the risky asset X(t)
describes the characteristics of prices in the Black-Scholes

model. Assume that the differential equation

dX0(t) = rX0(t)dt,

Mathematical Modelling and Control Volume 4, Issue 4, 390–399.



396

where r ≥ 0 is a constant, determines the behavior of X0(t).
As we know, r is an instantaneous interest rate and should

not be confused with the one-period rate in discrete-time

models. In order for

X0(t) = ert,

we put

X0(0) = 1.

We believe that the stock price’s behavior is predetermined

by

dX(t) = λX(t)dt + µX(t)dB(t), (6.2)

where {B(t) : 0 ≤ t ≤ T } is a standard Brownian motion with

B(0) = 0,

λ is a constant and µ(t) as a function. The model is accurate

for the range [0,T ], where T is the option’s maturity.

X(t) = exp
((
λ −

1
2
µ2

)
t + µB(t)

)

provides the exact solution. In Table 1, the results obtained

for

t = 0.8, λ = −8, µ = −3 and n = 100

are presented and are shown in Figure 1.

Table 1. Mean, standard deviation, and mean
confidence interval for error.

ti χ̄E S E 95% confidence interval for mean of E

Lower Upper

0.1 1.0024e-03 0.0032e-04 1.0012e-03 1.0028e-03
0.2 1.0045e-03 0.0065e-04 1.0038e-03 1.0082e-03
0.3 1.0134e-03 0.0153e-04 1.0101e-03 1.0167e-03
0.4 1.0218e-02 0.0247e-03 1.0174e-02 1.0282e-02
0.5 1.0354e-02 0.0381e-03 1.0302e-02 1.0455-e02
0.6 1.0487e-02 0.0476e-03 1.0389e-02 1.0646e-02
0.7 1.0594e-01 0.0623e-02 1.0483e-01 1.0708e-01
0.8 1.0854e-01 0.1207e-02 1.0694e-01 1.0956e-01
0.9 1.1053e-01 0.1332e-02 1.0978e-01 1.3121e-01
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Figure 1. The graph of absolute error function for
Example 6.1.

Example 6.2. Consider the linear stochastic Volterra

integral equation

X(t) =X0 +

∫ t

0
a2 cos(X(s)) sin3(X(s))ds

− a
∫ t

0
sin2(X(s))dB(s), s, t ∈ [0, 1). (6.3)

The exact solution is

X(t) = arccot (aB(s) + cot (X0)) .

By taking

n = 100, a = 1/4 and X0 = 0.1.

The numerical results are given in Table 2, and computed

errors for

n = 100, a = 1/6, X0 = 0.3 and t = 0.2

are summarized in Figure 2.

Table 2. Mean, standard deviation, and mean
confidence interval for error.

ti χ̄E S E 95% confidence interval for mean of E

Lower Upper

0.1 2.6254e-02 2.5432e-03 1.3526e-02 3.4392e-02
0.2 5.5321e-02 3.9533e-03 3.3449e-02 6.8521e-02
0.3 7.8654e-02 4.8640e-03 6.4678e-02 8.2606e-02
0.4 8.0332e-02 6.2575e-03 7.9340e-02 9.7103e-02
0.5 3.7655e-03 6.0411e-04 2.0574e-03 4.7511e-03
0.6 6.1602e-03 7.3702e-04 5.7631e-03 7.4702e-03
0.7 6.9543e-03 7.5893e-04 6.0422e-03 8.3467e-03
0.8 7.0134e-03 8.3466e-04 6.7640e-03 8.9205e-03
0.9 9.3680e-03 8.6076e-04 7.5013e-03 9.8600e-03
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Figure 2. The graph of absolute error function for
Example 6.2.

Example 6.3. Consider the following linear stochastic

Volterra integral equation

Y(t) = ψ(t)+
∫ t

0
u(s)z1(t, s)ds+

∫ t

0
β(s)z2(t, s)dB(s), (6.4)

where t, s ∈ [0,T ], and {B(t) : 0 ≤ t ≤ T } is a standard

Brownian motion with

B(0) = 0,

and u(t) and β(t) are two functions. The model is accurate

between [0,T ], where T is finite time horizon. ψ(t)
represents the initial condition of time 0 (or t). A linear

stochastic Volterra integral equation equivalent to (1.4), the

aforementioned relationship has

z(t, s) = u(s)z1(t, s),

z(t, s) = β(s)z2(t, s),

the exact solution is

Y(t) = ψ(t) exp
(∫ t

0
(u(s) −

1
2
β2(s))ds +

∫ t

0
β(s)dB(s)

)
.

The results obtained for

s = 0.3, n = 100, ψ = 0.6, u(s) = sin(s2), β(s) = sin(s)

and t ∈ [0, 1] are summarized in Table 3 and shown in

Figure 3.

Table 3. Mean, standard deviation, and mean
confidence interval for error.

ti, si χ̄E S E 95% confidence interval for mean of E

Lower Upper

(0.1,0.1) 5.3831e-01 7.9573e-02 4.8755e-01 5.9607e-01
(0.2,0.2) 2.6743e-01 3.0432e-02 2.1932e-01 3.4303e-01
(0.3,0.3) 7.0415e-02 1.9654e-03 6.4387e-02 8.5674e-02
(0.4,0.4) 3.0964e-02 6.4076e-03 2.5374e-02 4.9501e-02
(0.5,0.5) 1.8703e-02 4.8532e-03 1.3951e-02 2.6433e-02
(0.6,0.6) 4.9411e-03 1.0201e-03 3.2017e-03 6.0178e-03
(0.7,0.7) 1.9332e-03 5.3467e-04 1.4076e-03 2.6944e-03
(0.8,0.8) 6.5401e-04 3.0894e-04 5.1803e-04 7.8503e-04
(0.9,0.9) 2.8063e-04 1.0071e-04 1.9942e-04 3.9710e-04
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Figure 3. The graph of absolute error function for
Example 6.3.

Example 6.4. Consider the stochastic Itô-Volterra integral

equation:

Y(t) =
1
8
+

1
64

∫ t

0
y(s)(1 − y2(s))ds

+
1
8

∫ t

0
(1 − y2(s))dB(s),

(6.5)

with the exact solution,

Y(t) =
9e0.25B(t) − 7
9e0.125B(t) + 7

,

where {B(t) : 0 ≤ t ≤ T } is a normal Brownian motion with

B(0) = 0.

The comparison of the absolute error is presented in Table 4.
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Table 4. Comparison of the absolute error for
Example 6.4.

ti n = 50 n = 100 n = 150 n = 200

0.1 0.00043 0.00082 0.00102 0.00178
0.3 0.00136 0.00184 0.00263 0.00307
0.5 0.00372 0.00617 0.00928 0.01062
0.7 0.00665 0.00988 0.03021 0.04515
0.8 0.04817 0.05676 0.07389 0.09346
0.9 0.07943 0.09203 0.10535 0.13081

7. Conclusions

This paper concentrates on the simple BSVIEs, where
the coefficients only rely on z(t, s). Newton’s method
solves BSVIEs with BPFs and corresponding stochastic
operational matrix. Examples demonstrate estimate analysis
and separate convergence of approximating sequences. The
concerns identified in the research can be applied to BSVIEs
of type II with discretization based on the adapted M-
solutions. However, this approach requires a wholly novel
methodology and may be the subject of some subsequent
studies.
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