
We established positivity of ∇f obtained from a systematic computation of a composition of sequential fractional differences of the function f that satisfy certain conditions in a negative lower bound setup. First, we considered the different order sequential fractional differences in which we need a complicated condition. Next, we equalled the order of fractional differences and we saw that a simpler condition will be needed. We illustrated our positivity results for an increasing function of the rising type.
Citation: Pshtiwan Othman Mohammed. Some positive results for exponential-kernel difference operators of Riemann-Liouville type[J]. Mathematical Modelling and Control, 2024, 4(1): 133-140. doi: 10.3934/mmc.2024012
[1] | Ahmet S. Cevik, Eylem G. Karpuz, Hamed H. Alsulami, Esra K. Cetinalp . A Gröbner-Shirshov basis over a special type of braid monoids. AIMS Mathematics, 2020, 5(5): 4357-4370. doi: 10.3934/math.2020278 |
[2] | Ze Gu, Xiang-Yun Xie, Jian Tang . On C-ideals and the basis of an ordered semigroup. AIMS Mathematics, 2020, 5(4): 3783-3790. doi: 10.3934/math.2020245 |
[3] | Ali Yahya Hummdi, Amr Elrawy . On neutrosophic ideals and prime ideals in rings. AIMS Mathematics, 2024, 9(9): 24762-24775. doi: 10.3934/math.20241205 |
[4] | Jie Qiong Shi, Xiao Long Xin . Ideal theory on EQ-algebras. AIMS Mathematics, 2021, 6(11): 11686-11707. doi: 10.3934/math.2021679 |
[5] | Seok-Zun Song, Hee Sik Kim, Young Bae Jun . Commutative ideals of BCK-algebras and BCI-algebras based on soju structures. AIMS Mathematics, 2021, 6(8): 8567-8584. doi: 10.3934/math.2021497 |
[6] | G. Muhiuddin, Ahsan Mahboob . Int-soft ideals over the soft sets in ordered semigroups. AIMS Mathematics, 2020, 5(3): 2412-2423. doi: 10.3934/math.2020159 |
[7] | Chun Ge Hu, Xiao Guang Li, Xiao Long Xin . Dual ideal theory on L-algebras. AIMS Mathematics, 2024, 9(1): 122-139. doi: 10.3934/math.2024008 |
[8] | M. Mohseni Takallo, Rajab Ali Borzooei, Seok-Zun Song, Young Bae Jun . Implicative ideals of BCK-algebras based on MBJ-neutrosophic sets. AIMS Mathematics, 2021, 6(10): 11029-11045. doi: 10.3934/math.2021640 |
[9] | Nour Abed Alhaleem, Abd Ghafur Ahmad . Intuitionistic fuzzy normed prime and maximal ideals. AIMS Mathematics, 2021, 6(10): 10565-10580. doi: 10.3934/math.2021613 |
[10] | Bander Almutairi, Rukhshanda Anjum, Qin Xin, Muhammad Hassan . Intuitionistic fuzzy k-ideals of right k-weakly regular hemirings. AIMS Mathematics, 2023, 8(5): 10758-10787. doi: 10.3934/math.2023546 |
We established positivity of ∇f obtained from a systematic computation of a composition of sequential fractional differences of the function f that satisfy certain conditions in a negative lower bound setup. First, we considered the different order sequential fractional differences in which we need a complicated condition. Next, we equalled the order of fractional differences and we saw that a simpler condition will be needed. We illustrated our positivity results for an increasing function of the rising type.
In this paper, we consider the time-dependent fractional convection-diffusion (TFCD) equation
{Cαsϕ(t,s)−△ϕ(t,s)+∇ϕ(t,s)=f(t,s)(t,s)∈Ω×[0,T],ϕ(t,0)=φ0(t),∂ϕ(t,0)∂s=φ1(t),t∈Ω,ϕ(t,s)|Γ=g(t,s),s∈[0,T], | (1.1) |
where 1 <α<2 and Ω are bounded domains in Rn with n=1,2 and Ω=[a,b] or Ω=[a,b]×[c,d], Γ is the boundary of Ω. f(t,s),φ0(t),φ1(t),g(t,s) are given functions and
△ϕ(t,s)=∂2ϕ(t,s)∂t21+⋯+∂2ϕ(t,s)∂t2n,∇ϕ(t,s)=∂ϕ(t,s)∂t1+⋯+∂ϕ(t,s)∂tn | (1.2) |
The fractional derivative Cαs=∂αϕ(t,s)∂tα denotes the Caputo fractional derivative.
The Caputo fractional derivative of time is defined as
Cαsϕ(t,s)={1Γ(ξ−α)∫s0∂ξϕ(t,τ)∂τξdτ(s−τ)α+1−ξ,m−1<ξ<m,∂ξϕ(t,τ)∂τξ,ξ=m, | (1.3) |
and Γ(α) is the Γ function. The time fractional convection-diffusion equation has been widely applied in the modeling of the anomalous diffusive processes and in the description of viscoelastic damping materials.
In [1], a class of time fractional reaction diffusion equations with variable coefficients and the nonhomogeneous Neumann problem was solved by a compact finite difference method. It was proven that the method was unconditionally stable for the general case of variable coefficients, and the optimal error estimate for the numerical solution under the discrete L2 norm was also given. In [2], by using Legendre spectral squares to discretize spatial variables, a high order numerical scheme for solving nonlinear time fractional reaction diffusion equations was proposed. Then, a priori estimate, existence, and uniqueness of the numerical solution were given, and the unconditional stability and convergence was proven. In [3] a fast and accurate numerical method for fractional reaction diffusion equations in unbounded domains using Fourier spectral method was constructed. In [4], an immersed finite element (IFE) method for solving time fractional diffusion equations with discontinuous coefficients was proposed. The singularity of the Caputo fractional derivative is approximated by the non-uniform L1 scheme. In [5], a numerical method for diffusion problems with fractional derivatives in a bilateral Riemannian Liouville space was proposed. Under appropriate constraints, the monotonicity, positive retention, and linear stability of the method were proven. In [6], a locally discontinuous Galerkin and finite difference method for solving multiple variable order time fractional diffusion equations with variable order fractional derivatives was proposed, which proven that the scheme was unconditionally stable. In [7], a finite difference method for solving time fractional wave equations (TFWE) was proposed. For α∈(1,2), the proposed difference scheme was of a second order accuracy in space and time, and the stability of the H-1-norm of the method was given. In [8], an hp discontinuous Galerkin method for solving nonlinear fractional differential equations with Caputo type fractional derivatives was proposed. This method converts fractional differential equations into either nonlinear Volterra or Fredholm integral equations, and then uses the hp discontinuous Galerkin method to solve the equivalent integral equations. Time-fractional diffusion equation [9] and nonlinear Caputo fractional differential equation [10] were studied by the finite difference scheme and optimal adaptive grid method.
The above methods such as the finite difference method, the Legendre spectral method, the Fourier spectral method, the finite element, and the discontinuous Galerkin method had been used to solve fractional partial equation with the time direction and space direction solved separatively in different directions. Different from the above methods, we construct the barycentric rational interpolation method (BRIM) to solve the time-dependent fractional convection-diffusion (TFCD) equation with time direction and space direction at the same time. For the barycentric interpolation method (BIM), there are BRIM and the barycentric Lagrange interpolation method (BLIM) which can be used to avoid the Runge phenomenon. In the recent years, linear rational interpolation (LRI) was proposed by Floater [14,15,16] and the error of linear rational interpolation [11,12,13] was also proven. BIM has been developed by Wang et al.[17] and the algorithm of BIM has been used to linear/non-linear problems [18,19]. In recent research, the Volterra integro-differential equation (VIDE) [20], heat equation (HE) [21], biharmonic equation (BE) [22,23], telegraph equation (TE) [24], generalized Poisson equations [25], semi-infinite domain problems[27], fractional reaction-diffusion equation [28], and KPP equation [29] have been studied by linear BRIM and their convergence rate are also proven.
In this paper, BRIM has been used to solve the TFCD equation. As the fractional derivative is the nonlocal operator, spectral methods are developed to solve the TFCD equation and the coefficient matrix is a full matrix. The fractional derivative of the TFCD equation is changed to nonsingular integral by integral with order of density function plus one. The new Gauss formula is constructed to compute it simply and the matrix equation of discrete the TFCD equation is obtained by the unknown function replaced by the barycentric rational interpolation basis function. Then, the convergence rate of BRIM is proven.
By the definition of (1.3), there are certain kinds of singularities in (1.1). Solving the TDFC equation is needed to efficiently calculate the Caputo fractional derivative. There are some methods to overcome the difficulty of singularity, we adopt the fractional integration as follow:
Cαsϕ(t,s)=1Γ(ξ−α)∫s0∂ξϕ(t,τ)∂τξdτ(s−τ)α+1−ξ=1(ξ−α)Γ(ξ−α)[∂ξϕ(t,0)∂sξsξ−α+∫s0∂ξ+1ϕ(t,τ)∂τξ+1dτ(s−τ)α−ξ]=Γξα[∂ξϕ(t,0)∂sξsξ−α+∫s0∂ξ+1ϕ(t,τ)∂τξ+1dτ(s−τ)α−ξ], | (2.1) |
where Γξα=1(ξ−α)Γ(ξ−α).
Combining Eqs (2.1) and (1.1), we have
Γξα[∂ξϕ(t,0)∂sξsξ−α+∫s0∂ξ+1ϕ(t,τ)∂τξ+1dτ(s−τ)α−ξ]−△ϕ(t,s)+∇ϕ(t,s)=f(t,s) | (2.2) |
The discrete formula of TFCD equation is obtained as
ϕ(t,s)=m∑j=1Rj(t)ϕj(s) | (2.3) |
where
ϕ(ti,s)=ϕi(s),i=1,2,⋯,m |
and
Rj(t)=λjt−tjn∑k=1λkt−tk | (2.4) |
is the basis function, see [20]. Taking (2.3) into (2.2), we get
Γξα[∂ξϕ(t,0)∂sξsξ−α+∫s0∂ξ+1ϕ(t,τ)∂τξ+1dτ(s−τ)α−ξ]−[∂2ϕ(t,s)∂t2+∂2ϕ(t,s)∂s2]+[∂ϕ(t,s)∂t+∂ϕ(t,s)∂s]=f(t,s) | (2.5) |
Then we get
Γξαm∑j=1[Rj(t)ϕ(ξ)j(0)sξ−α+Rj(t)∫s0ϕ(ξ+1)(τ)dτ(s−τ)α−ξ]−m∑j=1[R″j(t)ϕj(s)+Rj(t)ϕ″j(s)]+m∑j=1[R′j(t)ϕj(s)+Rj(t)ϕ′j(s)]=f(t,s), | (2.6) |
As for the discrete of t and s, we get
ϕj(s)=n∑k=1Rk(s)ϕik | (2.7) |
where ϕi(sj)=ϕ(ti,sj)=ϕij,i=1,⋯,m;j=1,⋯,n and
Ri(s)=wis−sim∑k=1wks−sk | (2.8) |
is the basis function.
Combining (2.6) and (2.7),
Γξαm∑j=1n∑k=1[Rj(t)R(ξ)k(0)sξ−α+Rj(t)∫s0R(ξ+1)k(τ)dτ(s−τ)α−ξ]ϕik−m∑j=1n∑k=1[R″j(t)Rk(s)+Rj(t)R″i(s)]ϕik+m∑j=1n∑k=1[R′j(t)Rk(s)+Rj(t)R′k(s)]ϕik=f(t,s) | (2.9) |
where
Rk(τ)=λkτ−τkn∑k=0λkτ−τk |
and
{R′i(τ)=Ri(τ)[−1τ−τk+l∑s=0λk(τ−τk)2l∑s=0λkτ−τk],⋮R(ξ+1)i(τ)=[R(ξ)i(τ)]′,ξ∈N+. |
The term of (2.9) can be written as
∫s0R(ξ+1)j(τ)dτ(s−τ)α−ξ=Qαj(s), | (2.10) |
The integral (2.9) is calculated by
Qαj(s)=∫s0R(ξ+1)j(τ)dτ(s−τ)α−ξ:=g∑i=1R(ξ+1)i(τθ,αi)Gθ,αi, | (2.11) |
where Gθ,αi is Gauss weight and τθ,αi is Gauss points with weights (s−τ)ξ−α, see reference [25].
For the (1+1) dimensional TFCD equation with Ω1=[a,b], (2.9) can be written as
Γξαm1∑j1=1n∑k=1[Rj1(t1)R(ξ)k(0)sξ−α+Rj1(t1)∫s0R(ξ+1)k(τ)dτ(s−τ)α−ξ]ϕik−m1∑j1=1n∑k=1[R″j1(t1)Rk(s)+Rj1(t1)R″i(s)]ϕik+m1∑j1=1n∑k=1[R′j1(t1)Rk(s)+Rj1(t1)R′k(s)]ϕik=f(t1,s) | (3.1) |
Taking a=t11<t12<⋯<t1m1=b,0=s1<s2<⋯<sn=T with ht=(b−a)/m1,hs=T/n as either a uniform partition or uninform as a Chebychev point, (t1i,sl),1i=1,2,⋯,m1,l=1,2,⋯,n, we get
Γξαm1∑j1=1n∑k=1[Rj1(t1i)R(ξ)k(0)sξ−αl+Rj1(t1i)∫sl0R(ξ+1)k(τ)dτ(sl−τ)α−ξ]ϕik−m1∑j1=1n∑k=1[R″j1(t1i)Rk(sl)+Rj1(t1i)R″i(sl)]ϕik+m1∑j1=1n∑k=1[R′j1(t1i)Rk(sl)+Rj1(t1i)R′k(sl)]ϕik=f(t1i,sl) | (3.2) |
By introducing the notation, Rj1(t1i)=δj1i,Rk(sl)=δkl,R′j1(t1i)=R(1,0)ij1,R′k(sl)=R(0,1)ij,R″j1(t1i)=R(2,0)ij1,R″k(sl)=R(0,2)kl where R(0,2)il is the second order of the barycentric matrix.
Γξαm1∑j1=1n∑k=1[δjiR(ξ)k(0)sξ−αl+δj1i∫sl0R(ξ+1)k(τ)dτ(sl−τ)α−ξ]ϕik−m1∑j1=1n∑k=1[R(2,0)ijδkl+δj1iR(0,2)kl]ϕik+m1∑j1=1n∑k=1[R(1,0)ij1δkl+δj1iR(0,1)kl]ϕik=f(t1i,sl) | (3.3) |
by taking (2.11),
Qαj1l=Qαj(sl)=∫sl0R(ξ+1)j1(τ)dτ(sl−τ)α−ξ | (3.4) |
then we get
Γξαm1∑j1=1n∑k=1[δj1iR(ξ)k(0)sξ−αl+δj1iQαkl]ϕik−m1∑j1=1n∑k=1[R(2,0)ij1δkl+δj1iR(0,2)kl−R(1,0)ij1δkl−δj1iR(0,1)kl]ϕik=f(t1i,sl). | (3.5) |
Systems of (3.5) can be written as
Γξα[diag(sξ−α)M(ξ0)1⊗In+Im1⊗Qα2][ϕ11⋮ϕ1nϕm11⋮ϕm1n]−[M(2,0)⊗In+Im1⊗M(0,2)−M(1,0)⊗In−Im1⊗M(0,1)][ϕ11⋮ϕ1nϕm11⋮ϕm1n]=[f11⋮f1nfm11⋮fm1n], | (3.6) |
where Im1 and In are identity matrices, and ⊗ is Kronecker product.
Then, we get Eq (3.6) as
[Γξα(diag(sξ−α)M(ξ0)1⊗In+Im1⊗Qα2)−(M(2,0)⊗In+Im1⊗M(0,2)−M(1,0)⊗In−Im1⊗M(0,1))]Φ=F | (3.7) |
and
MΦ=F, | (3.8) |
with M=Γξα(diag(sξ−α)M(ξ0)1⊗In+Im1⊗Qα2)−(M(2,0)⊗In+Im1⊗M(0,2)−M(1,0)⊗In−Im1⊗M(0,1)) and Φ=[ϕ11…ϕ1n…ϕm11…ϕm1n]T,F=[f11…f1n…fm11…fm1n]T.
For the (2+1) dimensional TFCD equation with Ω2=[a,b]×[c,d], then we have
Γξαm1∑j1=1m2∑j2=1n∑k=1[Rj1(t1)Rj2(t2)R(ξ)k(0)sξ−α+Rj1(t1)Rj2(t2)∫s0R(ξ+1)k(τ)dτ(s−τ)α−ξ]ϕijk−m1∑j1=1m2∑j2=1n∑k=1[R″j1(t1)Rj2(t2)Rk(s)+Rj1(t1)R″j2(t2)Ri(s)+Rj1(t1)Rj2(t2)R″i(s)]ϕijk+m1∑j1=1m2∑j2=1n∑k=1[R′j1(t1)Rj2(t2)Rk(s)+Rj1(t1)R′j2(t2)Ri(s)+Rj1(t1)Rj2(t2)R′i(s)]ϕijk=f(t1,t2,s) | (3.9) |
By a=t11<t12<⋯<t1m1=b,c=t21<t22<⋯<t2m1=d,0=s1<s2<⋯<sn=T with ht1=(b−a)/m1,ht2=(d−c)/m2,hs=T/n or uninform as a Chebychev point, (t1i,t2i,sl),1i=1,2,⋯,m1,2i=1,2,⋯,m2,l=1,2,⋯,n, we get
Γξαm1∑j1=1m2∑j2=1n∑k=1[Rj1(t1i)Rj2(t2j)R(ξ)k(0)sξ−α+Rj1(t1i)Rj2(t2j)∫s0R(ξ+1)k(τ)dτ(s−τ)α−ξ]ϕijk−m1∑j1=1m2∑j2=1n∑k=1[R″j1(t1i)Rj2(t2j)Rk(sl)+Rj1(t1i)R″j2(t2j)Ri(sl)+Rj1(t1i)Rj2(t2j)R″i(sl)]ϕijk+m1∑j1=1m2∑j2=1n∑k=1[R′j1(t1i)Rj2(t2j)Rk(s)+Rj1(t1i)R′j2(t2j)Ri(sl)+Rj1(t1i)Rj2(t2j)R′i(sl)]ϕijk=f(t1i,t2j,sl) | (3.10) |
By introducing the notation, Rj1(t1i)=δj1i,Rj2(t1j)=δj2j,Rk(sl)=δkl,R′j1(t1i)=R(1,0,0)ij1,R′j2(t1j)=R(0,1,0)ij1,R′k(sl)=R(0,0,1)ij,R″j1(t1i)=R(2,0,0)ij1,R″j2(t1j)=R(0,2,0)ij1,R″k(sl)=R(0,0,2)ij, we get
Γξαm1∑j1=1m2∑j2=1n∑k=1[δj1iδj2jR(ξ)k(0)sξ−α+δj1iδj2j∫s0R(ξ+1)k(τ)dτ(s−τ)α−ξ]ϕijk−m1∑j1=1m2∑j2=1n∑k=1[R(2,0,0)ij1δj2jδkl+δj1iR(0,2,0)ij1δkl+δj1iδj2jR(0,0,2)ij]ϕijk+m1∑j1=1m2∑j2=1n∑k=1[R(1,0,0)ij1δj2jδkl+δj1iR(0,1,0)ij1δkl+δj1iδj2jR(0,0,1)ij]ϕijk=f(t1i,t2j,sl) | (3.11) |
Then, Eq (3.6) can be written as
Γξα(diag(sξ−α)M(ξ0)1⊗Im1⊗Im2+Im1⊗Im2⊗Qα2)Φ−(M(2,0,0)⊗Im2⊗In+Im1⊗M(0,2,0)⊗In+Im1⊗Im2⊗M(0,0,2))Φ+(M(1,0,0)⊗Im2⊗In+Im1⊗M(0,1,0)⊗In+Im1⊗Im2⊗M(0,0,1))Φ=F | (3.12) |
and
MΦ=F, | (3.13) |
with M=Γξα(diag(sξ−α)M(ξ0)1⊗Im1⊗Im2+Im1⊗Im2⊗Qα2)−(M(2,0,0)⊗Im2⊗In+Im1⊗M(0,2,0)⊗In+Im1⊗Im2⊗M(0,0,2))+ (M(1,0,0)⊗Im2⊗In+Im1⊗M(0,1,0)⊗In+Im1⊗Im2⊗M(0,0,1)) and Φ=[ϕ111ϕ112…ϕ11n,ϕ121ϕ122…ϕ12n,…,ϕm1m21ϕm1m22…ϕm1m2n]T, F=[f111f112…f11n,f121f122…f12n,…, fm1m21fm1m22…fm1m2n]T.
The boundary condition can be solved by the substitution method, the additional method or the elimination method, see [17]. In the following, we adopt the substitution method and the additional method to add the boundary condition.
In this part, the error estimate of the TFCD equation is given with rn(s)=n∑i=1ri(s)ϕi to replace ϕ(s), where ri(s) is defined as (2.8) and ϕi=ϕ(si). We also define
e(s):=ϕ(s)−rn(s)=(s−si)⋯(s−si+d)ϕ[si,si+1,…,si+d,s], | (4.1) |
see reference [20].
Then, we have
Lemma 1. For e(s) be defined by (4.1) and ϕ(s)∈Cd+2[a,b],d=1,2,⋯, there
|e(k)(s)|≤Chd−k+1,k=0,1,⋯. | (4.2) |
For the TFCD equation, the rational interpolation function of ϕ(t,s) is defined as rmn(t,s)
rmn(t,s)=m+ds∑i=1n+dt∑j=1wi,j(s−si)(t−tj)ϕi,jm+ds∑i=1n+dt∑j=1wi,j(s−si)(t−tj) | (4.3) |
where
wi,j=(−1)i−ds+j−dt∑k1∈Jik1+ds∏h1=k1,h1≠j1|si−sh1|∑k2∈Jik2+dt∏h2=k2,h2≠j1|tj−th2|. | (4.4) |
We define e(t,s) be the error of ϕ(t,s) as
e(t,s):=ϕ(t,s)−rmn(t,s)=(s−si)⋯(s−si+ds)ϕ[si,si+1,…,si+d1,s;t]+(t−tj)⋯(t−tj+dt)ϕ[s;tj,tj+1,…,tj+d2,t]−(s−si)⋯(s−si+ds)(t−tj)⋯(t−tj+dt)ϕ[si,si+1,…,si+d1,s;tj,tj+1,…,tj+d2,t]. | (4.5) |
With a similar analysis of Lemma 1, we have
Theorem 1. For e(t,s) defined as (4.5) and ϕ(t,s)∈Cds+2[a,b]×Cdt+2[0,T], then we have
|e(k1,k2)(s,t)|≤C(hds−k1+1s+hdt−k2+1t),k1,k2=0,1,⋯. | (4.6) |
Let ϕ(sm,tn) be the approximate function of ϕ(t,s) and L to be bounded operator, there holds
Lϕ(tm,sn)=f(tm,sn) | (4.7) |
and
limm,n→∞Lϕ(tm,sn)=ϕ(t,s). | (4.8) |
Then, we get
Theorem 2. For ϕ(tm,sn):Lϕ(tm,sn)=ϕ(t,s) and L defined as (4.7), there
|ϕ(t,s)−ϕ(tm,sn)|≤C(hds−1+τdt−1). |
Proof. By the definition of (4.7), we have
Lϕ(t,s)−Lϕ(tm,sn)=Cαsϕ(t,s)−△ϕ(t,s)+∇ϕ(t,s)−f(t,s)−[Cαsϕ(tm,sn)−△ϕ(tm,sn)+∇ϕ(tm,sn)−f(tm,sn)]=Cαsϕ(t,s)−Cαsϕ(tm,sn)−[△ϕ(t,s)−△ϕ(sm,tn)]+[∇ϕ(t,s)−∇ϕ(tm,sn))]−[f(t,s)−f(tm,sn)]:=E1(t,s)+E2(t,s)+E3(t,s)+E4(t,s) | (4.9) |
here
E1(t,s)=Cαsϕ(t,s)−Cαsϕ(tm,sn), |
E2(t,s)=△ϕ(t,s)−△ϕ(sm,tn), |
E3(t,s)=∇ϕ(t,s)−∇ϕ(tm,sn)), |
E4(t,s)=f(t,s)−f(tm,sn). |
As for E1(t,s), we get
E1(t,s)=Cαsϕ(t,s)−Cαsϕ(tm,sn)=Γξα[∂ξϕ(0,s)∂tξsξ−α+∫t0∂ξ+1ϕ(τ,s)∂τξ+1dτ(t−τ)α−ξ]−Γξα[∂ξϕ(0,sn)∂tξsξ−αn+∫tm0∂ξ+1ϕ(τ,sn)∂τξ+1dτ(tm−τ)α−ξ]=Γξα[∂ξϕ(0,s)∂tξsξ−α−∂ξϕ(0,sn)∂tξsξ−αn]+Γξα[∫t0∂ξ+1ϕ(τ,s)∂τξ+1dτ(t−τ)α−ξ−∫tm0∂ξ+1ϕ(τ,sn)∂τξ+1dτ(tm−τ)α−ξ] | (4.10) |
and
|E1(t,s)|≤|Γξα[∂ξϕ(0,s)∂tξsξ−α−∂ξϕ(0,sn)∂tξsξ−αn]|+|Γξα[∫t0∂ξ+1ϕ(τ,s)∂τξ+1dτ(t−τ)α−ξ−∫tm0∂ξ+1ϕ(τ,sn)∂τξ+1dτ(tm−τ)α−ξ]|≤|Γξα||∂ξϕ∂tξ(0,s)−∂ξϕ∂tξ(0,sn)|+|Γξα||∂ξ+1ϕ∂tξ+1(t,s)−∂ξ+1ϕ∂tξ+1(tm,sn)|:=E11(t,s)+E12(t,s) | (4.11) |
where
E11(t,s)=|Γξα||∂ξϕ∂tξ(0,s)−∂ξϕ∂tξ(0,sn)|E12(t,s)=|Γξα||∂ξ+1ϕ∂tξ+1(t,s)−∂ξ+1ϕ∂tξ+1(tm,sn)| | (4.12) |
Now we estimate E11(t,s) and E12(t,s) part by part, for the second part we have
E12(t,s)=|Γξα||∂ξ+1ϕ∂tξ+1(t,s)−∂ξ+1ϕ∂tξ+1(tm,sn)|=|Γξα||∂ξ+1ϕ∂tξ+1(t,s)−∂ξ+1ϕ∂tξ+1(tm,s)+∂ξ+1ϕ∂tξ+1(tm,s)−∂ξ+1ϕ∂tξ+1(tm,sn)|≤|Γξα||∂ξ+1ϕ∂tξ+1(t,s)−∂ξ+1ϕ∂tξ+1(tm,s)|+|Γξα||∂ξ+1ϕ∂tξ+1(tm,s)−∂ξ+1ϕ∂tξ+1(tm,sn)|=|Γξα||m−ds∑i=1(−1)i∂ξ+1ϕ∂tξ+1[si,si+1,…,si+d1,sn,t]m−ds∑i=1λi(s)|+|Γξα||n−dt∑j=1(−1)j∂ξ+1ϕ∂tξ+1[tj,tj+1,…,tj+d2,sn,tm]n−dt∑j=1λj(t)|=|Γξα||∂ξ+1e∂tξ+1(tm,s)|+|Γξα||∂ξ+1e∂tξ+1(tm,sn)|. |
then we have
|E12(t,s)|≤|∂ξ+1e∂tξ+1(tm,s)|+|∂ξ+1e∂tξ+1(tm,sn)|≤C(hds−1+τdt−1). | (4.13) |
For E11(t,s), we get
|E11(t,s)|≤C(hds+1−ξ+τdt−1). | (4.14) |
Similarly as E2(t,s), for E3(t,s) we have
|E3(t,s)|≤C(hds+τdt). | (4.15) |
Combining (4.9), (4.13), and (4.15) together, the proof of theorem 4.2 is completed.
In this part, two examples are presented to test the theorem.
Example 1. Consider the time-dependent fractional convection-diffusion equation
{∂αϕ(t,s)∂sα−∂2ϕ(t,s)∂t2+∂ϕ(t,s)∂t=f(t,s)(t,s)∈[0,1]×[0,1],ϕ(t,0)=0,∂ϕ(t,0)∂t=sinπt,t∈[0,1],ϕ(t,s)|Γ=g(t,s),s∈[0,1], | (5.1) |
with the analysis solution is
ϕ(t,s)=(s+s3)sin(πt) |
with the initial condition
ϕ(t,0)=0 |
and boundary condition
ϕ(0,s)=ϕ(1,s)=0 |
and
f(t,s)=6t3−αΓ(4−α)sin(πt)+π2(s+s3)sin(πt)+(s+s3)cos(πt) |
In Figures 1 and 2, errors of m=n=12, Ω1=[0,1],α=1.2 and m=n=12,dt=ds=8, Ω1=[0,1],α=1.2 in Example 1 with uniform and nonuniform partition for the TFCD equation by BRIM are presented, respectively. From the Figure, we know that the precision can reach to 10−8 for both the uniform and nonuniform partition.
In Figures 3 and 4, errors of m=n=12, Ω1=[0,1],α=1.8 and m=n=12,dt=ds=8,α=1.8, Ω1=[0,1] in Example 1 with uniform and nonuniform partition for the TFCD equation by BRIM are presented, respectively. From the Figure, we know that the precision can reach to 10−8 for both uniform and nonuniform partition. For different value of α, BRIM can be used to solve the TFCD equation efficiently.
In Table 1, errors of the TFCD equation for α1=1.8,dt=ds=5 with t=0.1,0.9,1,5,10,15 are presented under the uniform and nonuniform partition with BRIM and BLIM. As the time variable increases from 0.5 to 15, there is still high accuracy. For BRIM, we can choose the parameters dt,ds and m,n approximately to get high accuracy. Under the same partition of m,n, the accuracy of BLIM is higher than BRIM.
uniform | nonuniform | uniform | nonuniform | |
t | (12,12)dt=ds=5 | (12,12)dt=ds=5 | (12,12) | (12,12) |
0.5 | 1.6077e-05 | 3.4641e-06 | 9.4012e-09 | 5.4710e-11 |
0.9 | 7.6161e-06 | 1.2065e-06 | 1.1950e-08 | 1.0220e-11 |
1 | 3.3826e-05 | 3.2595e-06 | 6.1614e-08 | 4.5688e-11 |
5 | 2.7710e-04 | 2.3571e-05 | 8.8436e-07 | 9.3036e-10 |
10 | 4.0780e-03 | 3.8953e-04 | 2.8067e-05 | 1.4820e-08 |
15 | 3.3288e-03 | 2.8728e-04 | 2.1309e-04 | 2.2781e-07 |
In Table 2, for BRIM, the errors of different α1=1.05,1.1,1.3,1.5,1.6,1.8,1.9,1.99 under uniform with m=n=10,dt=5,ds=5 are presented under the uniform and nonuniform partition. From the table, we know that for different α, BRIM has a high accuracy with decreased values for m and n.
uniform | nonuniform | |
1.05 | 1.3605e-05 | 5.0592e-05 |
1.1 | 1.5511e-06 | 1.0653e-05 |
1.3 | 3.7907e-06 | 2.0445e-05 |
1.5 | 2.9437e-07 | 3.9908e-06 |
1.6 | 1.5585e-06 | 7.4171e-06 |
1.8 | 1.7836e-07 | 1.7089e-06 |
1.9 | 2.5754e-07 | 3.4347e-06 |
1.99 | 6.0471e-08 | 9.9797e-07 |
In the following table, numerical results are presented to test our theorem.
From Tables 3 and 4, the error of BRIM under uniform for α=1.8,ds=5 with different dt are given, and the convergence rate is O(hdt). From Table 4, with space variable uniform for α=1.8,dt=5, the convergence rate is O(h7), which we will investigate in future paper.
m,n | dt=2 | dt=3 | dt=4 | dt=5 | ||||
8 | 1.0091e-03 | 1.0123e-03 | 1.0227e-03 | 1.0394e-03 | ||||
10 | 2.0466e-04 | 7.1497 | 2.0526e-04 | 7.1511 | 2.0654e-04 | 7.1692 | 2.0796e-04 | 7.2107 |
12 | 5.5556e-05 | 7.1521 | 5.7191e-05 | 7.0089 | 5.7426e-05 | 7.0204 | 5.7744e-05 | 7.0278 |
14 | 1.9062e-05 | 6.9393 | 2.1790e-05 | 6.2599 | 2.8246e-05 | 4.6029 | 3.3826e-05 | 3.4693 |
m,n | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 1.4494e-02 | 4.3112e-03 | 2.0427e-03 | 1.0394e-03 | ||||
10 | 7.1283e-03 | 3.1802 | 1.4415e-03 | 4.9096 | 6.7844e-04 | 4.9395 | 2.0796e-04 | 7.2107 |
12 | 3.9852e-03 | 3.1894 | 6.0013e-04 | 4.8062 | 2.7092e-04 | 5.0349 | 5.7744e-05 | 7.0278 |
14 | 2.9746e-03 | 1.8973 | 1.4504e-03 | - | 6.3278e-04 | - | 3.3826e-05 | 3.4693 |
For Tables 5 and 6, the errors of Chebyshev partition for s and t are presented. For α=1.8,dt=5, the convergence rate is O(hds) in Table 5, while in Table 6, the convergence rate is O(hdt), which agrees with our theorem.
m,n | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 1.9490e-02 | 4.4626e-03 | 7.1364e-04 | 1.0394e-03 | ||||
10 | 8.1224e-03 | 3.9224 | 5.4856e-04 | 9.3939 | 4.5776e-04 | 1.9899 | 2.0796e-04 | 7.2107 |
12 | 3.9100e-03 | 4.0098 | 2.0389e-04 | 5.4284 | 1.0292e-04 | 8.1858 | 5.7744e-05 | 7.0278 |
14 | 2.1533e-03 | 3.8697 | 6.4616e-05 | 7.4546 | 2.0776e-05 | 10.380 | 3.3826e-05 | 3.4693 |
m,n | dt=2 | dt=3 | dt=4 | dt=5 | ||||
8 | 7.4953e-05 | 7.4985e-05 | 7.4823e-05 | 7.4663e-05 | ||||
10 | 4.4669e-05 | 2.3195 | 4.4515e-05 | 2.3369 | 4.4571e-05 | 2.3216 | 4.4558e-05 | 2.3133 |
12 | 1.3867e-05 | 6.4158 | 1.4149e-05 | 6.2868 | 1.4072e-05 | 6.3235 | 1.4030e-05 | 6.3383 |
14 | 4.0908e-06 | 7.9196 | 3.3018e-06 | 9.4397 | 3.4105e-06 | 9.1944 | 3.2595e-06 | 9.4687 |
In the following table, α=1.2 is chosen to present numerical results. From Tables 7 and 8, the error of BRIM under uniform for dt=5 with different ds is given, and the convergence rate is O(h7). From Table 7, with space variable s,ds=5, the convergence rate is O(hdt), which agrees with our theorem.
m,n | ds=2 | ds=3 | ds=4 | |||
8 | 9.3201e-04 | 9.4352e-04 | 9.4689e-04 | |||
10 | 1.9149e-04 | 7.0919 | 1.8804e-04 | 7.2283 | 1.8804e-04 | 7.2443 |
12 | 4.9055e-05 | 7.4696 | 5.2968e-05 | 6.9491 | 5.1073e-05 | 7.1490 |
14 | 2.2723e-05 | 4.9923 | 2.0827e-05 | 6.0553 | 2.1242e-05 | 5.6910 |
m,n | dt=1 | dt=2 | dt=3 | dt=4 | ||||
8 | 1.3533e-02 | 3.9763e-03 | 1.8858e-03 | 9.5103e-04 | ||||
10 | 6.6743e-03 | 3.1676 | 1.3072e-03 | 4.9852 | 6.1744e-04 | 5.0035 | 1.8959e-04 | 7.2270 |
12 | 3.7253e-03 | 3.1983 | 5.3934e-04 | 4.8559 | 2.4381e-04 | 5.0965 | 5.1750e-05 | 7.1218 |
14 | 2.5987e-03 | 2.3364 | 3.0681e-04 | 3.6595 | 1.3060e-04 | 4.0495 | 2.0609e-05 | 5.9726 |
For Tables 9 and 10, the errors of BRIM under the Chebyshev partition for with α=1.2 are presented. For dt=5, the convergence rate is O(h7) in Table 9, while in Table 10, the convergence rate is O(hdt), which agrees with our theorem.
m,n | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 7.3421e-05 | 7.3288e-05 | 7.3555e-05 | 7.3699e-05 | ||||
10 | 4.5834e-05 | 2.1115 | 4.5522e-05 | 2.1341 | 4.6189e-05 | 2.0852 | 4.6041e-05 | 2.1083 |
12 | 1.4338e-05 | 6.3739 | 1.4995e-05 | 6.0906 | 1.4208e-05 | 6.4662 | 1.4082e-05 | 6.4975 |
14 | 2.8314e-06 | 10.523 | 3.3197e-06 | 9.7819 | 4.2225e-06 | 7.8714 | 4.4239e-06 | 7.5113 |
m,n | dt=1 | dt=2 | dt=3 | |||
8 | 1.9844e-02 | 4.6715e-03 | 7.3397e-04 | |||
10 | 8.1292e-03 | 3.9994 | 5.3572e-04 | 9.7050 | 4.7628e-04 | 1.9380 |
12 | 3.9786e-03 | 3.9191 | 1.8927e-04 | 5.7066 | 9.7191e-05 | 8.7172 |
14 | 2.4670e-03 | 3.1002 | 9.6933e-05 | 4.3409 | 3.4887e-05 | 6.6466 |
Example 2. Consider the time-dependent fractional convection-diffusion equation
{∂αϕ(t1,t2,s)∂sα−∂2ϕ(t1,t2,,s)∂t21−∂2ϕ(t1,t2,,s)∂t22+∂ϕ(t1,t2,s)∂t1+∂ϕ(t1,t2,s)∂t2=f(t1,t2,s)(t1,t2,s)∈Ω2×[0,1]ϕ(t1,t2,0)=0,∂ϕ(t1,t2,0)∂s=0,t1,t2∈Ω2ϕ(t1,t2,s)|Γ=0,s∈[0,1], | (5.2) |
with the analysis solution is
ϕ(t1,t2,s)=s3+αsin(πt1)sin(πt2) |
with the initial condition
ϕ(t1,t2,0)=0 |
and
f(t1,t2,s)=(Γ(4+α)s36+2π2s3+α)sin(πt1)sin(πt2)+πs3+α[cos(πt1)sin(πt2)+sin(πt1)cos(πt2)]. |
In Figures 5 and 6, errors of m=n=13, Ω2=[0,1]×[0,1],α=1.2 and m=n=13,dt=ds=7, Ω2=[0,1]×[0,1],α=1.2 in Example 2(a) uniform and 2(b) nonuniform for the TFCD equation by the rational interpolation collocation methods are presented, respectively. From the Figure, we know that the precision can reach to 10−6 for both the uniform and nonuniform partition.
In Figures 7 and 8, the errors of m=n=13, Ω2=[0,1]×[0,1],α=1.9 and m=n=13,dt=ds=6,α=1.9, Ω2=[0,1]×[0,1] in Example 2(a) uniform and 2(b) nonuniform for the TFCD equation by rational interpolation collocation methods are presented, respectively. From the figure, we know that the precision can reach to 10−6 for both the uniform and nonuniform partition.
In Table 11, the errors of the TFCD equation with dt1=dt2=ds=5,α=1.9 for substitution methods and additional methods are presented, and there are nearly no differences for the two methods. Compared with two methods, the additional method is more simple than the substitution methods. In the following, we chose the substitution method to deal with the boundary condition.
method of substitution | method of additional | |||
uniform | nonuniform | uniform | nonuniform | |
8 | 7.0419e-04 | 3.3178e-04 | 3.1465e-03 | 3.3304e-03 |
10 | 3.3310e-04 | 1.0079e-04 | 9.2704e-04 | 3.2072e-04 |
12 | 1.8129e-04 | 3.1367e-05 | 5.3770e-04 | 1.0461e-04 |
14 | 1.0696e-04 | 1.3069e-05 | 3.2444e-04 | 2.7111e-05 |
From Tables 12 and 13, the error of BRIM under non-uniform for α=1.2,ds=5 with different dt1,dt2 are given, and the convergence rate is O(hd1). From Table 13, with space variable uniform for α=1.2,dt1=dt2=5, the convergence rate is O(hds), which we will investigate in future paper.
m,n,l | dt1=dt2=1 | dt1=dt2=2 | dt1=dt2=3 | dt1=dt2=4 | ||||
8 | 2.7562e-02 | 1.2846e-02 | 2.8232e-03 | 2.1145e-04 | ||||
10 | 2.4880e-02 | 0.4586 | 4.2585e-03 | 4.9481 | 4.1631e-04 | 8.5782 | 4.1373e-04 | - |
12 | 1.3801e-02 | 3.2323 | 2.2876e-03 | 3.4084 | 9.6620e-05 | 8.0115 | 1.0619e-04 | 7.4594 |
14 | 1.0876e-02 | 1.5456 | 1.2425e-03 | 3.9594 | 4.6241e-05 | 4.7805 | 3.9039e-05 | 6.4913 |
m,n,l | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 1.3243e+00 | 7.8057e-02 | 1.5961e-02 | 6.2422e-04 | ||||
10 | 7.3310e-01 | 2.6500 | 3.5876e-02 | 3.4837 | 4.9632e-03 | 5.2349 | 3.0553e-04 | 3.2017 |
12 | 6.2810e-01 | 0.8479 | 2.2361e-02 | 2.5930 | 2.1901e-03 | 4.4870 | 1.1816e-04 | 5.2105 |
14 | 5.5624e-01 | 0.7881 | 1.5276e-02 | 2.4719 | 1.1022e-03 | 4.4542 | 6.8114e-05 | 3.5737 |
For Tables 14 and 15, the errors of the uniform partition for s and t are presented. For α=1.2,ds=5, the convergence rate is O(hds) in Table 14, while in Table 15, the convergence rate is O(hdt1), which agrees with our theorem.
m,n,l | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 1.4288e+00 | 7.6992e-01 | 7.8669e-02 | 2.0025e-03 | ||||
10 | 3.3357e-01 | 6.5191 | 1.2495e+00 | 3.3837e-02 | 3.7810 | 1.0038e-03 | 3.0947 | |
12 | 1.4418e-01 | 4.6005 | 2.8110e+00 | 1.6731e-02 | 3.8627 | 5.9571e-04 | 2.8621 | |
14 | 1.0264e-01 | 2.2045 | 4.1671e+01 | 1.0120e-02 | 3.2616 | 5.0537e-04 | 1.0670 |
m,n,l | dt1=dt2=1 | dt1=dt2=2 | dt1=dt2=3 | dt1=dt2=4 | ||||
8 | 1.2826e-02 | 5.7354e-03 | 1.5229e-03 | 1.2495e-03 | ||||
10 | 9.0437e-03 | 1.5660 | 2.9311e-03 | 3.0082 | 4.9942e-04 | 4.9966 | 5.6185e-04 | 3.5819 |
12 | 6.2085e-03 | 2.0631 | 1.6990e-03 | 2.9911 | 2.0744e-04 | 4.8189 | 2.9431e-04 | 3.5465 |
14 | 4.8193e-03 | 1.6431 | 1.0705e-03 | 2.9963 | 1.1045e-04 | 4.0887 | 1.9707e-04 | 2.6017 |
In the following table, α=1.9 is chosen to present numerical results. From Tables 16 and 17, the error of BRIM under uniform for ds=5 with different dt1,dt2 are given, and the convergence rate is O(hdt1). From Table 17, with space variable dt1=dt2=5, the convergence rate is O(hds−1), which agrees with our theorem.
m,n,l | dt1=dt2=2 | dt1=dt2=3 | dt1=dt2=4 | dt1=dt2=5 | ||||
8 | 7.2024e-03 | 4.2245e-03 | 1.1282e-03 | 7.7258e-04 | ||||
10 | 4.6350e-03 | 1.9754 | 2.3361e-03 | 2.6550 | 4.1889e-04 | 4.4402 | 3.3536e-04 | 3.7399 |
12 | 3.2040e-03 | 2.0251 | 1.4242e-03 | 2.7142 | 1.8938e-04 | 4.3540 | 1.8214e-04 | 3.3481 |
14 | 2.3575e-03 | 1.9902 | 9.3114e-04 | 2.7567 | 1.0609e-04 | 3.7595 | 1.0722e-04 | 3.4378 |
m,n,l | ds=1 | ds=2 | ds=3 | ds=4 | |||
8 | 7.1413e-01 | 1.9907e-01 | 6.9366e-02 | 1.2212e-03 | |||
10 | 7.5039e-01 | 1.7041e-01 | 0.6966 | 4.4086e-02 | 2.0312 | 8.0096e-04 | 1.8900 |
12 | 7.7490e-01 | 1.4576e-01 | 0.8571 | 3.0184e-02 | 2.0778 | 5.3284e-04 | 2.2356 |
14 | 7.8155e-01 | 1.2601e-01 | 0.9444 | 2.1918e-02 | 2.0758 | 3.6584e-04 | 2.4392 |
For Tables 18 and 19, the errors of BRIM under thev Chebyshev partition for with α=1.9 are presented. For ds=5, the convergence rate is O(ht1) in Table 18, while in Table 19, the convergence rate is O(hds), which agrees with our theorem.
m,n,l | dt1=dt2=2 | dt1=dt2=3 | dt1=dt2=4 | dt1=dt2=5 | ||||
8 | 1.8544e-02 | 9.4605e-03 | 1.8420e-03 | 3.1671e-04 | ||||
10 | 1.4747e-02 | 1.0267 | 3.2891e-03 | 4.7346 | 3.5472e-04 | 7.3821 | 2.6826e-04 | 0.7440 |
12 | 8.6541e-03 | 2.9234 | 1.4864e-03 | 4.3563 | 1.0556e-04 | 6.6478 | 7.3391e-05 | 7.1092 |
14 | 5.9605e-03 | 2.4189 | 8.7234e-04 | 3.4574 | 3.7193e-05 | 6.7671 | 1.8804e-05 | 8.8340 |
m,n,l | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 5.8112e-01 | 1.1023e-01 | 2.9033e-02 | 6.2495e-04 | ||||
10 | 6.2713e-01 | - | 7.3871e-02 | 1.7937 | 1.2478e-02 | 3.7842 | 2.6071e-04 | 3.9179 |
12 | 6.4611e-01 | - | 5.1865e-02 | 1.9399 | 6.0291e-03 | 3.9897 | 1.0664e-04 | 4.9032 |
14 | 6.5178e-01 | - | 3.7744e-02 | 2.0616 | 3.1919e-03 | 4.1257 | 4.9371e-05 | 4.9957 |
In this paper, BRIM is used to solve the TFCD equation. The singularity of fractional derivative is overcome by thre integral to the density function from the singular kernel. For arbitrary fractional derivative new Gauss formula is constructed to simply calculate it. For the Diriclet boundary condition, the TFCD equation is changed to discrete the TFCD equation and the matrix equation. In the future, the TFCD equation with the Nuemann condition can be solved by BRIM, and a high dimensional TFCD equation can be studied by our methods.
The work of Jin Li was supported by Natural Science Foundation of Shandong Province (Grant No. ZR2022MA003).
The authors declare that they have no conflicts of interest.
[1] | C. S. Goodrich, A. C. Peterson, Discrete fractional calculus, Springer, 2015. https://doi.org/10.1007/978-3-319-25562-0 |
[2] |
C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022
![]() |
[3] |
M. Y. Almusawa, P. O. Mohammed, Approximation of sequential fractional systems of Liouville-Caputo type by discrete delta difference operators, Chaos Solitons Fract., 176 (2023), 114098. https://doi.org/10.1016/j.chaos.2023.114098 doi: 10.1016/j.chaos.2023.114098
![]() |
[4] |
P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using h-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Methods Appl. Sci., 46 (2020), 7688–7713. https://doi.org/10.1002/mma.7083 doi: 10.1002/mma.7083
![]() |
[5] |
F. M. Atici, N. Nguyen, K. Dadashova, S. Pedersen, G. Koch, Pharmacokinetics and pharmacodynamics models of tumor growth and anticancer effects in discrete time, Comput. Math. Biophys., 8 (2020), 114–125. https://doi.org/10.1515/cmb-2020-0105 doi: 10.1515/cmb-2020-0105
![]() |
[6] |
Z. Wang, B. Shiri, D. Baleanu, Discrete fractional watermark technique, Front. Inf. Technol. Electron. Eng., 21 (2020), 880–883. https://doi.org/10.1631/FITEE.2000133 doi: 10.1631/FITEE.2000133
![]() |
[7] |
B. Shiri, D. Baleanu, C. Y. Ma, Pathological study on uncertain numbers and proposed solutions for discrete fuzzy fractional order calculus, Open Phys., 21 (2023), 20230135. https://doi.org/10.1515/phys-2023-0135 doi: 10.1515/phys-2023-0135
![]() |
[8] |
G. C. Wu, J. L. Wei, M. Luo, Right fractional calculus to inverse-time chaotic maps and asymptotic stability analysis., J. Differ. Equations Appl., 29 (2023), 1140–1155. https://doi.org/10.1080/10236198.2023.2198043 doi: 10.1080/10236198.2023.2198043
![]() |
[9] |
G. C. Wu, D. Baleanu, S. Zeng, Several fractional differences and their applications to discrete maps, J. Appl. Nonlinear Dyn., 4 (2015), 339–348. https://doi.org/10.5890/JAND.2015.11.001 doi: 10.5890/JAND.2015.11.001
![]() |
[10] |
T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. https://doi.org/10.1016/S0034-4877(17)30059-9 doi: 10.1016/S0034-4877(17)30059-9
![]() |
[11] |
P. O. Mohammed, R. Dahal, C. S. Goodrich, Y. S. Hamed, D. Baleanu, Analytical and numerical negative boundedness of fractional differences with Mittag-Leffler kernel, AIMS Math., 8 (2023), 5540–5550. https://doi.org/10.3934/math.2023279 doi: 10.3934/math.2023279
![]() |
[12] |
F. Atici, M. Uyanik, Analysis of discrete fractional operators, Appl. Anal. Discrete Math., 9 (2015), 139–149. https://doi.org/10.2298/AADM150218007A doi: 10.2298/AADM150218007A
![]() |
[13] |
I. Suwan, S. Owies, T. Abdeljawad, Monotonicity results for h-discrete fractional operators and application, Adv. Differ. Equations, 2018 (2018), 207. https://doi.org/10.1186/s13662-018-1660-5 doi: 10.1186/s13662-018-1660-5
![]() |
[14] |
P. O. Mohammed, H. M. Srivastava, D. Baleanu, E. E. Elattar, Y. S. Hamed, Positivity analysis for the discrete delta fractional differences of the Riemann-Liouville and Liouville-Caputo types, Electron. Res. Arch., 2022, 30, 3058–3070. https://doi.org/10.3934/era.2022155 doi: 10.3934/era.2022155
![]() |
[15] |
H. M. Srivastava, P. O. Mohammed, J. L. G. Guirao, D. Baleanu, E. Al-Sarairah, R. Jan, A study of positivity analysis for difference operators in the Liouville-Caputo setting, Symmetry, 15 (2023), 391. https://doi.org/10.3390/sym15020391 doi: 10.3390/sym15020391
![]() |
[16] |
T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equations, 2017 (2017), 78. https://doi.org/10.1186/s13662-017-1126-1 doi: 10.1186/s13662-017-1126-1
![]() |
[17] |
C. S. Goodrich, J. M. Jonnalagadda, Monotonicity results for CFC nabla fractional differences with negative lower bound, Analysis, 41 (2021), 221–229. https://doi.org/10.1515/anly-2021-0011 doi: 10.1515/anly-2021-0011
![]() |
[18] |
P. O. Mohammed, H. M. Srivastava, D. Baleanu, E. Al-Sarairah, S. K. Sahoo, N. Chorfi, Monotonicity and positivity analyses for two discrete fractional-order operator types with exponential and Mittag-Leffler kernels, J. King Saud Univ. Sci., 35 (2023), 102794. https://doi.org/10.1016/j.jksus.2023.102794 doi: 10.1016/j.jksus.2023.102794
![]() |
[19] |
T. Abdeljawad, D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chaos Solitons Fract., 116 (2017), 106–110. https://doi.org/10.1016/j.chaos.2017.04.006 doi: 10.1016/j.chaos.2017.04.006
![]() |
[20] |
P. O. Mohammed, D. Baleanu, T. Abdeljawad, S. K. Sahoo, K. M. Abualnaja, Positivity analysis for mixed order sequential fractional difference operators, AIMS Math., 8 (2023), 2673–2685. https://doi.org/10.3934/math.2023140 doi: 10.3934/math.2023140
![]() |
[21] |
C. S. Goodrich, J. M. Jonnalagadda, B. Lyons, Convexity, monotonicity and positivity results for sequential fractional nabla difference operators with discrete exponential kernels, Math. Methods Appl. Sci., 44 (2021), 7099–7120. https://doi.org/10.1002/mma.7247 doi: 10.1002/mma.7247
![]() |
[22] |
P. O. Mohammed, M. Y. Almusawa, On analysing discrete sequential operators of fractional order and their monotonicity results, AIMS Math., 8 (2023), 12872–12888. https://doi.org/10.3934/math.2023649 doi: 10.3934/math.2023649
![]() |
[23] |
R. Dahal, C. S. Goodrich, An almost sharp monotonicity result for discrete sequential fractional delta differences, J. Differ. Equations Appl., 23 (2017), 1190–1203. https://doi.org/10.1080/10236198.2017.1307351 doi: 10.1080/10236198.2017.1307351
![]() |
[24] |
C. S. Goodrich, B. Lyons, M. T. Velcsov, Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound, Commun. Pure Appl. Anal., 20 (2021), 339–358. https://doi.org/10.3934/cpaa.2020269 doi: 10.3934/cpaa.2020269
![]() |
1. | Yan Chen, Xindong Zhang, Xian-Ming Gu, A High Accuracy Numerical Method Based on Interpolation Technique for Time-Fractional Advection-Diffusion Equations, 2024, 2024, 2314-4785, 1, 10.1155/2024/2740720 | |
2. | Yones Esmaeelzade Aghdam, Hamid Mesgarani, Zeinab Asadi, Van Thinh Nguyen, Investigation and analysis of the numerical approach to solve the multi-term time-fractional advection-diffusion model, 2023, 8, 2473-6988, 29474, 10.3934/math.20231509 | |
3. | Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation, 2024, 304, 00219045, 106106, 10.1016/j.jat.2024.106106 | |
4. | Xindong Zhang, Yan Chen, Leilei Wei, Sunil Kumar, Numerical Simulation Based on Interpolation Technique for Multi-Term Time-Fractional Convection–Diffusion Equations, 2024, 8, 2504-3110, 687, 10.3390/fractalfract8120687 | |
5. | Shuang Wang, FanFan Chen, Chunlian Liu, The existence of periodic solutions for nonconservative superlinear second order ODEs: a rotation number and spiral analysis approach, 2025, 33, 2688-1594, 50, 10.3934/era.2025003 |
uniform | nonuniform | uniform | nonuniform | |
t | (12,12)dt=ds=5 | (12,12)dt=ds=5 | (12,12) | (12,12) |
0.5 | 1.6077e-05 | 3.4641e-06 | 9.4012e-09 | 5.4710e-11 |
0.9 | 7.6161e-06 | 1.2065e-06 | 1.1950e-08 | 1.0220e-11 |
1 | 3.3826e-05 | 3.2595e-06 | 6.1614e-08 | 4.5688e-11 |
5 | 2.7710e-04 | 2.3571e-05 | 8.8436e-07 | 9.3036e-10 |
10 | 4.0780e-03 | 3.8953e-04 | 2.8067e-05 | 1.4820e-08 |
15 | 3.3288e-03 | 2.8728e-04 | 2.1309e-04 | 2.2781e-07 |
uniform | nonuniform | |
1.05 | 1.3605e-05 | 5.0592e-05 |
1.1 | 1.5511e-06 | 1.0653e-05 |
1.3 | 3.7907e-06 | 2.0445e-05 |
1.5 | 2.9437e-07 | 3.9908e-06 |
1.6 | 1.5585e-06 | 7.4171e-06 |
1.8 | 1.7836e-07 | 1.7089e-06 |
1.9 | 2.5754e-07 | 3.4347e-06 |
1.99 | 6.0471e-08 | 9.9797e-07 |
m,n | dt=2 | dt=3 | dt=4 | dt=5 | ||||
8 | 1.0091e-03 | 1.0123e-03 | 1.0227e-03 | 1.0394e-03 | ||||
10 | 2.0466e-04 | 7.1497 | 2.0526e-04 | 7.1511 | 2.0654e-04 | 7.1692 | 2.0796e-04 | 7.2107 |
12 | 5.5556e-05 | 7.1521 | 5.7191e-05 | 7.0089 | 5.7426e-05 | 7.0204 | 5.7744e-05 | 7.0278 |
14 | 1.9062e-05 | 6.9393 | 2.1790e-05 | 6.2599 | 2.8246e-05 | 4.6029 | 3.3826e-05 | 3.4693 |
m,n | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 1.4494e-02 | 4.3112e-03 | 2.0427e-03 | 1.0394e-03 | ||||
10 | 7.1283e-03 | 3.1802 | 1.4415e-03 | 4.9096 | 6.7844e-04 | 4.9395 | 2.0796e-04 | 7.2107 |
12 | 3.9852e-03 | 3.1894 | 6.0013e-04 | 4.8062 | 2.7092e-04 | 5.0349 | 5.7744e-05 | 7.0278 |
14 | 2.9746e-03 | 1.8973 | 1.4504e-03 | - | 6.3278e-04 | - | 3.3826e-05 | 3.4693 |
m,n | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 1.9490e-02 | 4.4626e-03 | 7.1364e-04 | 1.0394e-03 | ||||
10 | 8.1224e-03 | 3.9224 | 5.4856e-04 | 9.3939 | 4.5776e-04 | 1.9899 | 2.0796e-04 | 7.2107 |
12 | 3.9100e-03 | 4.0098 | 2.0389e-04 | 5.4284 | 1.0292e-04 | 8.1858 | 5.7744e-05 | 7.0278 |
14 | 2.1533e-03 | 3.8697 | 6.4616e-05 | 7.4546 | 2.0776e-05 | 10.380 | 3.3826e-05 | 3.4693 |
m,n | dt=2 | dt=3 | dt=4 | dt=5 | ||||
8 | 7.4953e-05 | 7.4985e-05 | 7.4823e-05 | 7.4663e-05 | ||||
10 | 4.4669e-05 | 2.3195 | 4.4515e-05 | 2.3369 | 4.4571e-05 | 2.3216 | 4.4558e-05 | 2.3133 |
12 | 1.3867e-05 | 6.4158 | 1.4149e-05 | 6.2868 | 1.4072e-05 | 6.3235 | 1.4030e-05 | 6.3383 |
14 | 4.0908e-06 | 7.9196 | 3.3018e-06 | 9.4397 | 3.4105e-06 | 9.1944 | 3.2595e-06 | 9.4687 |
m,n | ds=2 | ds=3 | ds=4 | |||
8 | 9.3201e-04 | 9.4352e-04 | 9.4689e-04 | |||
10 | 1.9149e-04 | 7.0919 | 1.8804e-04 | 7.2283 | 1.8804e-04 | 7.2443 |
12 | 4.9055e-05 | 7.4696 | 5.2968e-05 | 6.9491 | 5.1073e-05 | 7.1490 |
14 | 2.2723e-05 | 4.9923 | 2.0827e-05 | 6.0553 | 2.1242e-05 | 5.6910 |
m,n | dt=1 | dt=2 | dt=3 | dt=4 | ||||
8 | 1.3533e-02 | 3.9763e-03 | 1.8858e-03 | 9.5103e-04 | ||||
10 | 6.6743e-03 | 3.1676 | 1.3072e-03 | 4.9852 | 6.1744e-04 | 5.0035 | 1.8959e-04 | 7.2270 |
12 | 3.7253e-03 | 3.1983 | 5.3934e-04 | 4.8559 | 2.4381e-04 | 5.0965 | 5.1750e-05 | 7.1218 |
14 | 2.5987e-03 | 2.3364 | 3.0681e-04 | 3.6595 | 1.3060e-04 | 4.0495 | 2.0609e-05 | 5.9726 |
m,n | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 7.3421e-05 | 7.3288e-05 | 7.3555e-05 | 7.3699e-05 | ||||
10 | 4.5834e-05 | 2.1115 | 4.5522e-05 | 2.1341 | 4.6189e-05 | 2.0852 | 4.6041e-05 | 2.1083 |
12 | 1.4338e-05 | 6.3739 | 1.4995e-05 | 6.0906 | 1.4208e-05 | 6.4662 | 1.4082e-05 | 6.4975 |
14 | 2.8314e-06 | 10.523 | 3.3197e-06 | 9.7819 | 4.2225e-06 | 7.8714 | 4.4239e-06 | 7.5113 |
m,n | dt=1 | dt=2 | dt=3 | |||
8 | 1.9844e-02 | 4.6715e-03 | 7.3397e-04 | |||
10 | 8.1292e-03 | 3.9994 | 5.3572e-04 | 9.7050 | 4.7628e-04 | 1.9380 |
12 | 3.9786e-03 | 3.9191 | 1.8927e-04 | 5.7066 | 9.7191e-05 | 8.7172 |
14 | 2.4670e-03 | 3.1002 | 9.6933e-05 | 4.3409 | 3.4887e-05 | 6.6466 |
method of substitution | method of additional | |||
uniform | nonuniform | uniform | nonuniform | |
8 | 7.0419e-04 | 3.3178e-04 | 3.1465e-03 | 3.3304e-03 |
10 | 3.3310e-04 | 1.0079e-04 | 9.2704e-04 | 3.2072e-04 |
12 | 1.8129e-04 | 3.1367e-05 | 5.3770e-04 | 1.0461e-04 |
14 | 1.0696e-04 | 1.3069e-05 | 3.2444e-04 | 2.7111e-05 |
m,n,l | dt1=dt2=1 | dt1=dt2=2 | dt1=dt2=3 | dt1=dt2=4 | ||||
8 | 2.7562e-02 | 1.2846e-02 | 2.8232e-03 | 2.1145e-04 | ||||
10 | 2.4880e-02 | 0.4586 | 4.2585e-03 | 4.9481 | 4.1631e-04 | 8.5782 | 4.1373e-04 | - |
12 | 1.3801e-02 | 3.2323 | 2.2876e-03 | 3.4084 | 9.6620e-05 | 8.0115 | 1.0619e-04 | 7.4594 |
14 | 1.0876e-02 | 1.5456 | 1.2425e-03 | 3.9594 | 4.6241e-05 | 4.7805 | 3.9039e-05 | 6.4913 |
m,n,l | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 1.3243e+00 | 7.8057e-02 | 1.5961e-02 | 6.2422e-04 | ||||
10 | 7.3310e-01 | 2.6500 | 3.5876e-02 | 3.4837 | 4.9632e-03 | 5.2349 | 3.0553e-04 | 3.2017 |
12 | 6.2810e-01 | 0.8479 | 2.2361e-02 | 2.5930 | 2.1901e-03 | 4.4870 | 1.1816e-04 | 5.2105 |
14 | 5.5624e-01 | 0.7881 | 1.5276e-02 | 2.4719 | 1.1022e-03 | 4.4542 | 6.8114e-05 | 3.5737 |
m,n,l | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 1.4288e+00 | 7.6992e-01 | 7.8669e-02 | 2.0025e-03 | ||||
10 | 3.3357e-01 | 6.5191 | 1.2495e+00 | 3.3837e-02 | 3.7810 | 1.0038e-03 | 3.0947 | |
12 | 1.4418e-01 | 4.6005 | 2.8110e+00 | 1.6731e-02 | 3.8627 | 5.9571e-04 | 2.8621 | |
14 | 1.0264e-01 | 2.2045 | 4.1671e+01 | 1.0120e-02 | 3.2616 | 5.0537e-04 | 1.0670 |
m,n,l | dt1=dt2=1 | dt1=dt2=2 | dt1=dt2=3 | dt1=dt2=4 | ||||
8 | 1.2826e-02 | 5.7354e-03 | 1.5229e-03 | 1.2495e-03 | ||||
10 | 9.0437e-03 | 1.5660 | 2.9311e-03 | 3.0082 | 4.9942e-04 | 4.9966 | 5.6185e-04 | 3.5819 |
12 | 6.2085e-03 | 2.0631 | 1.6990e-03 | 2.9911 | 2.0744e-04 | 4.8189 | 2.9431e-04 | 3.5465 |
14 | 4.8193e-03 | 1.6431 | 1.0705e-03 | 2.9963 | 1.1045e-04 | 4.0887 | 1.9707e-04 | 2.6017 |
m,n,l | dt1=dt2=2 | dt1=dt2=3 | dt1=dt2=4 | dt1=dt2=5 | ||||
8 | 7.2024e-03 | 4.2245e-03 | 1.1282e-03 | 7.7258e-04 | ||||
10 | 4.6350e-03 | 1.9754 | 2.3361e-03 | 2.6550 | 4.1889e-04 | 4.4402 | 3.3536e-04 | 3.7399 |
12 | 3.2040e-03 | 2.0251 | 1.4242e-03 | 2.7142 | 1.8938e-04 | 4.3540 | 1.8214e-04 | 3.3481 |
14 | 2.3575e-03 | 1.9902 | 9.3114e-04 | 2.7567 | 1.0609e-04 | 3.7595 | 1.0722e-04 | 3.4378 |
m,n,l | ds=1 | ds=2 | ds=3 | ds=4 | |||
8 | 7.1413e-01 | 1.9907e-01 | 6.9366e-02 | 1.2212e-03 | |||
10 | 7.5039e-01 | 1.7041e-01 | 0.6966 | 4.4086e-02 | 2.0312 | 8.0096e-04 | 1.8900 |
12 | 7.7490e-01 | 1.4576e-01 | 0.8571 | 3.0184e-02 | 2.0778 | 5.3284e-04 | 2.2356 |
14 | 7.8155e-01 | 1.2601e-01 | 0.9444 | 2.1918e-02 | 2.0758 | 3.6584e-04 | 2.4392 |
m,n,l | dt1=dt2=2 | dt1=dt2=3 | dt1=dt2=4 | dt1=dt2=5 | ||||
8 | 1.8544e-02 | 9.4605e-03 | 1.8420e-03 | 3.1671e-04 | ||||
10 | 1.4747e-02 | 1.0267 | 3.2891e-03 | 4.7346 | 3.5472e-04 | 7.3821 | 2.6826e-04 | 0.7440 |
12 | 8.6541e-03 | 2.9234 | 1.4864e-03 | 4.3563 | 1.0556e-04 | 6.6478 | 7.3391e-05 | 7.1092 |
14 | 5.9605e-03 | 2.4189 | 8.7234e-04 | 3.4574 | 3.7193e-05 | 6.7671 | 1.8804e-05 | 8.8340 |
m,n,l | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 5.8112e-01 | 1.1023e-01 | 2.9033e-02 | 6.2495e-04 | ||||
10 | 6.2713e-01 | - | 7.3871e-02 | 1.7937 | 1.2478e-02 | 3.7842 | 2.6071e-04 | 3.9179 |
12 | 6.4611e-01 | - | 5.1865e-02 | 1.9399 | 6.0291e-03 | 3.9897 | 1.0664e-04 | 4.9032 |
14 | 6.5178e-01 | - | 3.7744e-02 | 2.0616 | 3.1919e-03 | 4.1257 | 4.9371e-05 | 4.9957 |
uniform | nonuniform | uniform | nonuniform | |
t | (12,12)dt=ds=5 | (12,12)dt=ds=5 | (12,12) | (12,12) |
0.5 | 1.6077e-05 | 3.4641e-06 | 9.4012e-09 | 5.4710e-11 |
0.9 | 7.6161e-06 | 1.2065e-06 | 1.1950e-08 | 1.0220e-11 |
1 | 3.3826e-05 | 3.2595e-06 | 6.1614e-08 | 4.5688e-11 |
5 | 2.7710e-04 | 2.3571e-05 | 8.8436e-07 | 9.3036e-10 |
10 | 4.0780e-03 | 3.8953e-04 | 2.8067e-05 | 1.4820e-08 |
15 | 3.3288e-03 | 2.8728e-04 | 2.1309e-04 | 2.2781e-07 |
uniform | nonuniform | |
1.05 | 1.3605e-05 | 5.0592e-05 |
1.1 | 1.5511e-06 | 1.0653e-05 |
1.3 | 3.7907e-06 | 2.0445e-05 |
1.5 | 2.9437e-07 | 3.9908e-06 |
1.6 | 1.5585e-06 | 7.4171e-06 |
1.8 | 1.7836e-07 | 1.7089e-06 |
1.9 | 2.5754e-07 | 3.4347e-06 |
1.99 | 6.0471e-08 | 9.9797e-07 |
m,n | dt=2 | dt=3 | dt=4 | dt=5 | ||||
8 | 1.0091e-03 | 1.0123e-03 | 1.0227e-03 | 1.0394e-03 | ||||
10 | 2.0466e-04 | 7.1497 | 2.0526e-04 | 7.1511 | 2.0654e-04 | 7.1692 | 2.0796e-04 | 7.2107 |
12 | 5.5556e-05 | 7.1521 | 5.7191e-05 | 7.0089 | 5.7426e-05 | 7.0204 | 5.7744e-05 | 7.0278 |
14 | 1.9062e-05 | 6.9393 | 2.1790e-05 | 6.2599 | 2.8246e-05 | 4.6029 | 3.3826e-05 | 3.4693 |
m,n | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 1.4494e-02 | 4.3112e-03 | 2.0427e-03 | 1.0394e-03 | ||||
10 | 7.1283e-03 | 3.1802 | 1.4415e-03 | 4.9096 | 6.7844e-04 | 4.9395 | 2.0796e-04 | 7.2107 |
12 | 3.9852e-03 | 3.1894 | 6.0013e-04 | 4.8062 | 2.7092e-04 | 5.0349 | 5.7744e-05 | 7.0278 |
14 | 2.9746e-03 | 1.8973 | 1.4504e-03 | - | 6.3278e-04 | - | 3.3826e-05 | 3.4693 |
m,n | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 1.9490e-02 | 4.4626e-03 | 7.1364e-04 | 1.0394e-03 | ||||
10 | 8.1224e-03 | 3.9224 | 5.4856e-04 | 9.3939 | 4.5776e-04 | 1.9899 | 2.0796e-04 | 7.2107 |
12 | 3.9100e-03 | 4.0098 | 2.0389e-04 | 5.4284 | 1.0292e-04 | 8.1858 | 5.7744e-05 | 7.0278 |
14 | 2.1533e-03 | 3.8697 | 6.4616e-05 | 7.4546 | 2.0776e-05 | 10.380 | 3.3826e-05 | 3.4693 |
m,n | dt=2 | dt=3 | dt=4 | dt=5 | ||||
8 | 7.4953e-05 | 7.4985e-05 | 7.4823e-05 | 7.4663e-05 | ||||
10 | 4.4669e-05 | 2.3195 | 4.4515e-05 | 2.3369 | 4.4571e-05 | 2.3216 | 4.4558e-05 | 2.3133 |
12 | 1.3867e-05 | 6.4158 | 1.4149e-05 | 6.2868 | 1.4072e-05 | 6.3235 | 1.4030e-05 | 6.3383 |
14 | 4.0908e-06 | 7.9196 | 3.3018e-06 | 9.4397 | 3.4105e-06 | 9.1944 | 3.2595e-06 | 9.4687 |
m,n | ds=2 | ds=3 | ds=4 | |||
8 | 9.3201e-04 | 9.4352e-04 | 9.4689e-04 | |||
10 | 1.9149e-04 | 7.0919 | 1.8804e-04 | 7.2283 | 1.8804e-04 | 7.2443 |
12 | 4.9055e-05 | 7.4696 | 5.2968e-05 | 6.9491 | 5.1073e-05 | 7.1490 |
14 | 2.2723e-05 | 4.9923 | 2.0827e-05 | 6.0553 | 2.1242e-05 | 5.6910 |
m,n | dt=1 | dt=2 | dt=3 | dt=4 | ||||
8 | 1.3533e-02 | 3.9763e-03 | 1.8858e-03 | 9.5103e-04 | ||||
10 | 6.6743e-03 | 3.1676 | 1.3072e-03 | 4.9852 | 6.1744e-04 | 5.0035 | 1.8959e-04 | 7.2270 |
12 | 3.7253e-03 | 3.1983 | 5.3934e-04 | 4.8559 | 2.4381e-04 | 5.0965 | 5.1750e-05 | 7.1218 |
14 | 2.5987e-03 | 2.3364 | 3.0681e-04 | 3.6595 | 1.3060e-04 | 4.0495 | 2.0609e-05 | 5.9726 |
m,n | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 7.3421e-05 | 7.3288e-05 | 7.3555e-05 | 7.3699e-05 | ||||
10 | 4.5834e-05 | 2.1115 | 4.5522e-05 | 2.1341 | 4.6189e-05 | 2.0852 | 4.6041e-05 | 2.1083 |
12 | 1.4338e-05 | 6.3739 | 1.4995e-05 | 6.0906 | 1.4208e-05 | 6.4662 | 1.4082e-05 | 6.4975 |
14 | 2.8314e-06 | 10.523 | 3.3197e-06 | 9.7819 | 4.2225e-06 | 7.8714 | 4.4239e-06 | 7.5113 |
m,n | dt=1 | dt=2 | dt=3 | |||
8 | 1.9844e-02 | 4.6715e-03 | 7.3397e-04 | |||
10 | 8.1292e-03 | 3.9994 | 5.3572e-04 | 9.7050 | 4.7628e-04 | 1.9380 |
12 | 3.9786e-03 | 3.9191 | 1.8927e-04 | 5.7066 | 9.7191e-05 | 8.7172 |
14 | 2.4670e-03 | 3.1002 | 9.6933e-05 | 4.3409 | 3.4887e-05 | 6.6466 |
method of substitution | method of additional | |||
uniform | nonuniform | uniform | nonuniform | |
8 | 7.0419e-04 | 3.3178e-04 | 3.1465e-03 | 3.3304e-03 |
10 | 3.3310e-04 | 1.0079e-04 | 9.2704e-04 | 3.2072e-04 |
12 | 1.8129e-04 | 3.1367e-05 | 5.3770e-04 | 1.0461e-04 |
14 | 1.0696e-04 | 1.3069e-05 | 3.2444e-04 | 2.7111e-05 |
m,n,l | dt1=dt2=1 | dt1=dt2=2 | dt1=dt2=3 | dt1=dt2=4 | ||||
8 | 2.7562e-02 | 1.2846e-02 | 2.8232e-03 | 2.1145e-04 | ||||
10 | 2.4880e-02 | 0.4586 | 4.2585e-03 | 4.9481 | 4.1631e-04 | 8.5782 | 4.1373e-04 | - |
12 | 1.3801e-02 | 3.2323 | 2.2876e-03 | 3.4084 | 9.6620e-05 | 8.0115 | 1.0619e-04 | 7.4594 |
14 | 1.0876e-02 | 1.5456 | 1.2425e-03 | 3.9594 | 4.6241e-05 | 4.7805 | 3.9039e-05 | 6.4913 |
m,n,l | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 1.3243e+00 | 7.8057e-02 | 1.5961e-02 | 6.2422e-04 | ||||
10 | 7.3310e-01 | 2.6500 | 3.5876e-02 | 3.4837 | 4.9632e-03 | 5.2349 | 3.0553e-04 | 3.2017 |
12 | 6.2810e-01 | 0.8479 | 2.2361e-02 | 2.5930 | 2.1901e-03 | 4.4870 | 1.1816e-04 | 5.2105 |
14 | 5.5624e-01 | 0.7881 | 1.5276e-02 | 2.4719 | 1.1022e-03 | 4.4542 | 6.8114e-05 | 3.5737 |
m,n,l | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 1.4288e+00 | 7.6992e-01 | 7.8669e-02 | 2.0025e-03 | ||||
10 | 3.3357e-01 | 6.5191 | 1.2495e+00 | 3.3837e-02 | 3.7810 | 1.0038e-03 | 3.0947 | |
12 | 1.4418e-01 | 4.6005 | 2.8110e+00 | 1.6731e-02 | 3.8627 | 5.9571e-04 | 2.8621 | |
14 | 1.0264e-01 | 2.2045 | 4.1671e+01 | 1.0120e-02 | 3.2616 | 5.0537e-04 | 1.0670 |
m,n,l | dt1=dt2=1 | dt1=dt2=2 | dt1=dt2=3 | dt1=dt2=4 | ||||
8 | 1.2826e-02 | 5.7354e-03 | 1.5229e-03 | 1.2495e-03 | ||||
10 | 9.0437e-03 | 1.5660 | 2.9311e-03 | 3.0082 | 4.9942e-04 | 4.9966 | 5.6185e-04 | 3.5819 |
12 | 6.2085e-03 | 2.0631 | 1.6990e-03 | 2.9911 | 2.0744e-04 | 4.8189 | 2.9431e-04 | 3.5465 |
14 | 4.8193e-03 | 1.6431 | 1.0705e-03 | 2.9963 | 1.1045e-04 | 4.0887 | 1.9707e-04 | 2.6017 |
m,n,l | dt1=dt2=2 | dt1=dt2=3 | dt1=dt2=4 | dt1=dt2=5 | ||||
8 | 7.2024e-03 | 4.2245e-03 | 1.1282e-03 | 7.7258e-04 | ||||
10 | 4.6350e-03 | 1.9754 | 2.3361e-03 | 2.6550 | 4.1889e-04 | 4.4402 | 3.3536e-04 | 3.7399 |
12 | 3.2040e-03 | 2.0251 | 1.4242e-03 | 2.7142 | 1.8938e-04 | 4.3540 | 1.8214e-04 | 3.3481 |
14 | 2.3575e-03 | 1.9902 | 9.3114e-04 | 2.7567 | 1.0609e-04 | 3.7595 | 1.0722e-04 | 3.4378 |
m,n,l | ds=1 | ds=2 | ds=3 | ds=4 | |||
8 | 7.1413e-01 | 1.9907e-01 | 6.9366e-02 | 1.2212e-03 | |||
10 | 7.5039e-01 | 1.7041e-01 | 0.6966 | 4.4086e-02 | 2.0312 | 8.0096e-04 | 1.8900 |
12 | 7.7490e-01 | 1.4576e-01 | 0.8571 | 3.0184e-02 | 2.0778 | 5.3284e-04 | 2.2356 |
14 | 7.8155e-01 | 1.2601e-01 | 0.9444 | 2.1918e-02 | 2.0758 | 3.6584e-04 | 2.4392 |
m,n,l | dt1=dt2=2 | dt1=dt2=3 | dt1=dt2=4 | dt1=dt2=5 | ||||
8 | 1.8544e-02 | 9.4605e-03 | 1.8420e-03 | 3.1671e-04 | ||||
10 | 1.4747e-02 | 1.0267 | 3.2891e-03 | 4.7346 | 3.5472e-04 | 7.3821 | 2.6826e-04 | 0.7440 |
12 | 8.6541e-03 | 2.9234 | 1.4864e-03 | 4.3563 | 1.0556e-04 | 6.6478 | 7.3391e-05 | 7.1092 |
14 | 5.9605e-03 | 2.4189 | 8.7234e-04 | 3.4574 | 3.7193e-05 | 6.7671 | 1.8804e-05 | 8.8340 |
m,n,l | ds=2 | ds=3 | ds=4 | ds=5 | ||||
8 | 5.8112e-01 | 1.1023e-01 | 2.9033e-02 | 6.2495e-04 | ||||
10 | 6.2713e-01 | - | 7.3871e-02 | 1.7937 | 1.2478e-02 | 3.7842 | 2.6071e-04 | 3.9179 |
12 | 6.4611e-01 | - | 5.1865e-02 | 1.9399 | 6.0291e-03 | 3.9897 | 1.0664e-04 | 4.9032 |
14 | 6.5178e-01 | - | 3.7744e-02 | 2.0616 | 3.1919e-03 | 4.1257 | 4.9371e-05 | 4.9957 |