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Abstract: We established positivity of ∇ f obtained from a systematic computation of a composition of sequential fractional differences
of the function f that satisfy certain conditions in a negative lower bound setup. First, we considered the different order sequential
fractional differences in which we need a complicated condition. Next, we equalled the order of fractional differences and we saw that a
simpler condition will be needed. We illustrated our positivity results for an increasing function of the rising type.
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1. Introduction

Discrete operators and fractional differences/sums are
important in many fields of science, including applied
science, mathematics, engineering sciences, and physics,
as well as some related research fields such as quantum
mechanics, number theory, fluid dynamics, mathematical
physics, and ordinary/partial differential equation (see,
e.g., [1–7]). Recently, Wu et al. [8] studied the inverse
problem model and concept of inverse-time fractional
chaotic maps with some application involving Riemann-
Liouville fractional difference operators; Wu et al. [9]
studied Liouville-Caputo fractional difference operators
with some more definitions of fractional differences and
their applications to fractional maps were compared;
Abdeljawad and Baleanu [10] defined Caputo-Fabrizio
fractional difference operators and they studied the
integration by parts and Euler-Lagrange equations on these
operators; and Mohammed et al. [11] examined sharpness
results analytically and numerically for those operators
involving Atangana-Baleanu fractional differences.

The positivity analysis, which is derived from discrete
fractional operators, is one of the significant models
in the context of discrete fractional calculus. This
analysis is also known as monotonicity analysis, and
it represents the positivity of ∇ f . The positivity
analyses have been frequently utilized to check if
a function is increasing or decreasing. Some of the
featured applications of positivity analysis are related
to Riemann-Liouville fractional difference type [12, 13],
Liouville-Caputo fractional difference type [14,15], Caputo-
Fabrizio fractional difference type [16–18], and Atangana-
Baleanu fractional difference type [19, 20]. The published
articles [21–24] are also important from a sequential aspect
to understanding the behavior of monotonicity and positivity
analyses in a composition of two discrete fractional
operators.

In the present study, we consider the sequential fractional
difference operator (

CF
a+1∇

α
rl

CF
a∇
β
rl f

)
(τ) (1.1)

defined on the pair set

D1 B
{
(α, β); 0 < α, β < 1 and 1 ≦ α + β < 2 for β , α

}
, (1.2)
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or, in the case when α = β, on the set

D2 B
{
(α, β); 0 < α, β < 1 and 1 ≦ α + β < 2 for β = α

}
(1.3)

for α, β ∈ R. We will analyze (1.1) to produce the positivity
of (∇ f )(τ) under certain conditions. Incidentally, we can
say that this article is the extension of the Liouville-Caputo
work [17], but here in the sense of Riemann-Liouville
operators.

The subsequent sections of the article are organized as
follows: In Section 2, we recall the definition of the Caputo-
Fabrizio that occurred in (1.1) and we formulated the main
lemmas. Moving on to Section 3, we delve into the topics
of positivity and monotonicity in analysis for sequential
operator Eq (1.1). We end with some concluding remarks
about the main results in Section 4.

2. Caputo-Fabrizio and important lemmas

The discrete operator that appeared in (1.1) is the
fractional difference operator with exponential kernel or,
briefly, is the Caputo-Fabrizio fractional difference operator
in the sense of Riemann-Liouville. It is defined by the
following summation formula (see [1, 4]):

(
CF

a∇
α
rl f

)
(τ) = B(α)∇τ

 τ∑
s=a+1

f (s)(1 − α)τ−s

 , (2.1)

where τ ∈ Na+1, a ∈ R, α ∈ [0, 1), and B(α) > 0 is
a normalization constant. It is also worth mentioning that(
∇ f

)
(τ) is the ∇ difference operator of f and is given by

f (τ) − f (τ − 1).

Lemma 2.1. If (α, β) ∈ D1, then

σ1(i) B
1
α − β

[
β(1 − β)i − α(1 − α)i

]
≧ 0 (2.2)

is nonnegative, and

σ2(i) B
1
α − β

[
(1 − β)i − (1 − α)i

]
(2.3)

is positive for each i ∈ N1.

Proof. By using the mathematical induction process, first
for i = 1, we have

σ1(1) B
1
α − β

[
β(1 − β) − α(1 − α)

]
= −1 + α + β ≧ 0,

since α + β ≧ 1. Now, we suppose that

σ1( ȷ) =
1
α − β

[
β(1 − β) ȷ − α(1 − α) ȷ

]
≧ 0, (2.4)

for some ȷ ∈ N1, then we have to prove that σ1( ȷ + 1) ≧ 0.
Here, two cases arise: the case when α > β leads to

σ1( ȷ + 1) =
1
α − β︸︷︷︸
>0

[
β(1 − β) ȷ+1 − α(1 − α) ȷ+1

]
,

which remains to prove that[
β(1 − β) ȷ+1 − α(1 − α) ȷ+1

]
≧ 0.

It is clear that

β(1 − β) ȷ+1
by
≧

(2.4)
α(1 − α) ȷ(1 − β) ≧ α(1 − α) ȷ+1,

where the fact 1 − β > 1 − α > 0 has been used and thus
σ1( ȷ + 1) ≧ 0 for α > β. By the same process, we can prove
that σ1( ȷ + 1) ≧ 0 for α < β. Hence, σ1(i) ≧ 0 for each
(α, β) ∈ D1 and i ∈ N1. Consequently, the first part of the
lemma is proved.

To prove the inequality (2.3): for each i ≧ 1, we have

1
α − β

[
(1 − β)i − (1 − α)i

]
>

1
α − β︸︷︷︸
>0

[
(1 − β)i − (1 − β)i

]
︸                   ︷︷                   ︸

=0

= 0,

for α > β (=⇒ 1 − β > 1 − α > 0), and

1
α − β

[
(1 − β)i − (1 − α)i

]
=

1
β − α

[
(1 − α)i − (1 − β)i

]
>

1
β − α︸︷︷︸
>0

[
(1 − β)i − (1 − β)i

]
︸                   ︷︷                   ︸

=0

= 0,

for β > α (hence, 1 − α > 1 − β > 0). Thus, the proof is
completed. □

Lemma 2.2. If α ∈
[

1
2 , 1

)
, then

σ3(i) B (1 − α)i−1[α i − (1 − α)
]

(2.5)

is nonnegative for each i ∈ N1.
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Proof. Applying induction on (2.5), we have for i = 1,
σ3(1) = 2α − 1, and it is clear that is nonnegative as
α ∈

[
1
2 , 1

)
. Suppose that σ3( ȷ) ≧ 0; that is,

(1 − α) ȷ−1[α ȷ − (1 − α)
]
≧ 0, (2.6)

for some ȷ ∈ N1, then we have to prove that σ3( ȷ + 1) ≧ 0.
It is clear that

(1 − α) ȷ
[
α ( ȷ + 1) − (1 − α)

]
= (1 − α)︸ ︷︷ ︸

>0

(1 − α) ȷ−1[α ȷ − (1 − α)
]︸                         ︷︷                         ︸

≧0 by claim (2.6)

+α (1 − α) ȷ︸     ︷︷     ︸
>0

≧ 0,

and this tells us σ3( ȷ+ 1) ≧ 0. Thus, we see that (2.5) is true
for each i ∈ N1. The proof is done. □

Lemma 2.3. If f is a function f : Na → R, then we have

∇
(

CF
a∇
α
rl f

)
(τ) =B(α)

[(
∇ f

)
(τ) − α f (a + 1)(1 − α)τ−2−a

− α

τ−1∑
s=a+2

(
∇ f

)
(s)(1 − α)τ−s−1

]
,

for α ∈ (0, 1) and τ ∈ Na+2.

Proof. Considering the definition of (2.1), we have

(
CF

a∇
α
rl f

)
(τ) =B(α)

[ τ∑
s=a+1

f (s)(1 − α)τ−s

−

τ−1∑
s=a+1

f (s)(1 − α)τ−s−1
]

=B(α)

 f (τ) − α
τ−1∑

s=a+1

f (s)(1 − α)τ−s−1

 .
It follows from this that

∇
(

CF
a∇
α
rl f

)
(τ) =B(α)

[(
∇ f

)
(τ) − α

τ−1∑
s=a+1

f (s)(1 − α)τ−s−1

+ α

τ−2∑
s=a+1

f (s)(1 − α)τ−s−2
]

=B(α)
[(
∇ f

)
(τ) − α f (a + 1)(1 − α)τ−2−a

− α

τ−1∑
s=a+2

f (s)(1 − α)τ−s−1

+ α

τ−1∑
s=a+2

f (s − 1)(1 − α)τ−s−1
]

=B(α)
[(
∇ f

)
(τ) − α f (a + 1)(1 − α)τ−2−a

− α

τ−1∑
s=a+2

(
∇ f

)
(s)(1 − α)τ−s−1

]
, (2.7)

for each τ ∈ Na+2. This completes the proof. □

3. Positive analyses

In this section, we give some positivity results on
the sequential fractional difference (1.1) when there is a
negative lower bound in the right side of the inequality in
Theorem 3.1. These results are based on the set D1 as plotted
in Figure 1.

0.5 1

0.5

1

D1

β

α

Figure 1. The region of D1.

Theorem 3.1. If

ξ ≧ 0 and N ȷa B {a, a + 1, . . . , ȷ}

and the function f : Na → R satisfies

(i)
(
∇ f

)
(a + 2) ≧ 0;

(ii)(
CF

a+1∇
α
rl

CF
a∇
β
rl f

)
(τ) ≧ −ξ B(α)B(β)

{
f (a + 2) − β f (a + 1)

}
;

(iii)
β (1 − β)τ−2−a − α (1 − α)τ−2−a

α − β
≧ ξ;

for each (α, β) ∈ D1 and τ ∈ N ȷa+3, for some ȷ ∈ Na+3, then,(
∇ f

)
(τ) ≧ 0 for every τ ∈ N ȷa+2.
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Proof. Let
h(τ) :=

(
CF

a∇
β
rl f

)
(τ),

then (2.1) enables us to write(
CF

a+1∇
α
rl

CF
a∇
β
rl f

)
(τ) =

(
CF

a+1∇
α
rlh

)
(τ)

= B(α)
[ τ∑

s=a+2

h(s)(1 − α)τ−s −

τ−1∑
s=a+2

h(s)(1 − α)τ−1−s
]

= B(α)
[
(1 − α)τ−a−2h(a + 2) +

τ∑
s=a+3

(∇ h) (s)(1 − α)τ−s
]
.

(3.1)

It follows from Lemma 2.3 that(
CF

a+1∇
α
rl

CF
a∇
β
rl f

)
(τ)

= B(α)B(β)
[
(1 − α)τ−a−2

{
f (a + 2) − β f (a + 1)

}
+

(
∇ f

)
(τ) +

τ−1∑
s=a+3

(
∇ f

)
(s)(1 − α)τ−s

− β f (a + 1)
τ∑

s=a+3

(1 − β)s−a−2(1 − α)τ−s

− β

τ∑
s=a+3

s−1∑
r=a+2

(
∇ f

)
(r)(1 − β)s−r−1(1 − α)τ−s

]
B B(α)B(β)

[
(1 − α)τ−a−2

{
f (a + 2) − β f (a + 1)

}
+ A1(τ) − A2(τ) f (a + 1) − A3(τ)

]
, (3.2)

where the following is used,

h(a + 2) =
(

CF
a∇
β
rl f

)
(a + 2) = f (a + 2) − β f (a + 1).

Compute A1(τ), A2(τ), and A3(τ) to get

A1(τ) B
τ∑

s=a+3

(
∇ f

)
(s)(1 − α)τ−s

=
(
∇ f

)
(τ) +

τ−1∑
s=a+3

(
∇ f

)
(s)(1 − α)τ−s, (3.3)

A2(τ) B β
τ∑

s=a+3

(1 − β)s−a−2(1 − α)τ−s

= β (1 − β)(1 − α)τ−a−3
τ−a−3∑
κ=0

(
1 − β
1 − α

)κ

= β (1 − β)(1 − α)τ−a−3 ·
1 −

(
1−β
1−α

)τ−a−2

1 − 1−β
1−α

= β (1 − β)
(

(1 − β)τ−a−2 − (1 − α)τ−a−2

α − β

)
, (3.4)

and

A3(τ) B β
τ∑

s=a+3

s−1∑
r=a+2

(
∇ f

)
(r)(1 − β)s−r−1(1 − α)τ−s

= β

τ−1∑
r=a+2

(∇ f
)
(r)

(1 − α)τ

(1 − β)r+1

τ∑
s=r+1

(
1 − β
1 − α

)s
= β

τ−1∑
r=a+2

(
∇ f

)
(r)(1 − α)τ−1−r ·

1 −
(

1−β
1−α

)τ−r

1 − 1−β
1−α

= β

τ−1∑
r=a+2

(
∇ f

)
(r)

(
(1 − β)τ−r − (1 − α)τ−r

α − β

)
= β

(
(1 − β)τ−a−2 − (1 − α)τ−a−2

α − β

) (
∇ f

)
(a + 2)

+ β

τ−1∑
r=a+3

(
∇ f

)
(r)

(
(1 − β)τ−r − (1 − α)τ−r

α − β

)
. (3.5)

By making use of (3.3)–(3.5) and (ii) in (3.2), together with
the fact that 0 < B(α)B(β), we obtain

(
∇ f

)
(τ) ≧ −(1 − α)τ−a−2

{
f (a + 2) − β f (a + 1)

}
− ξ

{
f (a + 2) − β f (a + 1)

}
+ β

(
(1 − β)τ−a−2 − (1 − α)τ−a−2

α − β

) (
∇ f

)
(a + 2)

+ β (1 − β)
(

(1 − β)τ−a−2 − (1 − α)τ−a−2

α − β

)
f (a + 1)

−

τ−1∑
s=a+3

(
∇ f

)
(s)(1 − α)τ−s

+ β

τ−1∑
r=a+3

(
∇ f

)
(r)

(
(1 − β)τ−r − (1 − α)τ−r

α − β

)
=

(
β (1 − β)τ−a−2 − α (1 − α)τ−a−2

α − β
− ξ

)
︸                                          ︷︷                                          ︸

≧0 by (iii)

×

{
f (a + 2) − β f (a + 1)

}
︸                        ︷︷                        ︸

≧0 by (i)

+

τ−1∑
s=a+3

(
∇ f

)
(s)

1
α − β

[
β(1 − β)τ−s − α(1 − α)τ−s

]
︸                                     ︷︷                                     ︸

≧0 by (2.2)

,

(3.6)

for τ ∈ N ȷa+2. Now, we know from (i) that
(
∇ f

)
(a + 2) ≧ 0,

which implies that

f (a + 2) ≧ f (a + 1) > β f (a + 1).
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By substituting τ = a + 3 into (3.6), we get

(
∇ f

)
(a + 3) ≧

(
β (1 − β) − α (1 − α)

α − β

)
{

f (a + 2) − β f (a + 1)
}
+

a+2∑
s=a+3

(·)︸ ︷︷ ︸
=0

≧(β + α − 1)
{

f (a + 2) − β f (a + 1)
}

≧0.

Repeating this action together with the help of (2.2), we
reach that

(
∇ f

)
(τ) ≧ 0 for each τ ∈ N ȷa+2, as desired. □

To confirm the validity of the above theorem, we consider
the following example.

Example 3.1. Suppose that f is a function f : N0 → R

defined by
f (τ) = τα+β.

First of all, for α = 0.5 and β = 0.55, we see that

1 < α + β < 2 =⇒ 1 < 1.05 < 2,

which verifies that (α, β) ∈ D1.
Now, by using (3.2) with ξ = 0.001, τ = a + 3, and a = 0,

we get

(
CF

1∇
α
rl

CF
0∇
β
rl f

)
(2) =B(α)B(β)

[
(1 − α)

{
f (2) − β f (1)

}
+

3∑
s=3

(
∇ f

)
(s)(1 − α)3−s

− β f (1)
3∑

s=3

(1 − β)s−2(1 − α)3−s

− β

3∑
s=3

s−1∑
r=2

(
∇ f

)
(r)(1 − β)s−r−1(1 − α)3−s

]
=1.0638 B(α)B(β)

≧ − 0.0015 B(α)B(β).

Hence, the second condition of Theorem 3.1 is satisfied for
τ = a + 3. Furthermore, the first condition of Theorem 3.1

(∇ f )(2) = 1.0733 ≧ 0

holds. The last condition

β(1 − β) − α(1 − α)
α − β

= 0.05 ≧ 0.001

is satisfied. Hence, τα+β is increasing at τ = a+ 3, according
to Theorem 3.1. Moreover, τα+β is an increasing function on
N1, as its plot has been shown in Figure 2.

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Figure 2. Graph of τα+β for α = 0.5 and β = 0.55.

Our second result is based on the set D2, which is plotted
clearly in Figure 3.

0.5 1

0.5

1

D 2

β

α

Figure 3. The region of D2.

Let us start stating and proving our last theorem.

Theorem 3.2. If 0 ≦ ξ and α ∈
[

1
2 , 1

)
and the function f :

Na → R satisfies

(i)
(
∇ f

)
(a + 2) ≧ 0;

(ii)(
CF

a+1∇
α
rl

CF
a∇
α
rl f

)
(τ) ≧ −ξ B2(α)

{
f (a + 2) − α f (a + 1)

}
;

(iii)
ξ ≦ (1 − α)τ−a−2

[
α(τ − a − 2) − (1 − α)

]
;
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for each (α, β) ∈ D2 and τ ∈ N ȷa+3, for some ȷ ∈ Na+3, then,(
∇ f

)
(τ) ≧ 0 for every τ ∈ N ȷa+2.

Proof. We know from (3.1) that when β = α,

(
CF

a+1∇
α
rl

CF
a∇
β
rl f

)
(τ)

= B2(α)
[
(1 − α)τ−a−2

{
f (a + 2) − α f (a + 1)

}
+

τ∑
s=a+3

(
∇ f

)
(s)(1 − α)τ−s

− α f (a + 1)
τ∑

s=a+3

(1 − α)τ−a−2

− α

τ∑
s=a+3

s−1∑
r=a+2

(
∇ f

)
(r)(1 − α)τ−r−1

]
B B2(α)

[
(1 − α)τ−a−2

{
f (a + 2) − α f (a + 1)

}
+ B1(τ) − f (a + 1)B2(τ) − B3(τ)

]
. (3.7)

Compute B1(τ), B2(τ), and B3(τ) to get

B1(τ) B
τ∑

s=a+3

(
∇ f

)
(s)(1 − α)τ−s

=
(
∇ f

)
(τ) +

τ−1∑
s=a+3

(
∇ f

)
(s)(1 − α)τ−s, (3.8)

B2(τ) B α
τ∑

s=a+3

(1 − α)τ−a−2

= α (1 − α)τ−a−2
τ−a−2∑
κ=1

(1)

= α (τ − a − 2)(1 − α)τ−a−2 (3.9)

and

B3(τ) Bα
τ∑

s=a+3

s−1∑
r=a+2

(
∇ f

)
(r)(1 − α)τ−r−1

=α

τ−1∑
r=a+2

(
∇ f

)
(r)(1 − α)τ−r−1

τ∑
s=r+1

(1)

=α (τ − a − 2)(1 − α)τ−a−3(∇ f
)
(a + 2)

+ α

τ−1∑
r=a+3

(
∇ f

)
(r)(τ − r)(1 − α)τ−r−1. (3.10)

By making use of (3.8)–(3.10) and using (ii) in (3.7),

together with the fact that 0 < B(α)B(β), we get

(
∇ f

)
(τ) ≧ − (1 − α)τ−a−2

{
f (a + 2) − α f (a + 1)

}
− ξ

{
f (a + 2) − α f (a + 1)

}
+ α (τ − a − 2)(1 − α)τ−a−3(∇ f

)
(a + 2)

+ α (τ − a − 2)(1 − α)τ−a−2 f (a + 1)

−

τ−1∑
s=a+3

(
∇ f

)
(s)(1 − α)τ−s

+ α

τ−1∑
r=a+3

(
∇ f

)
(r)(τ − r)(1 − α)τ−r−1

=
(
(1 − α)τ−a−2[α(τ − a − 2) − (1 − α)

]
− ξ

)︸                                                 ︷︷                                                 ︸
≧0 by (iii)

×

{
f (a + 2) − β f (a + 1)

}
︸                        ︷︷                        ︸

≧0 by (i)

+

τ−1∑
s=a+3

(
∇ f

)
(s) (1 − α)τ−s−1

[
α(τ − s) − (1 − α)

]
︸                                   ︷︷                                   ︸

≧0 by (2.5)

.

(3.11)

By considering (i) and the last positive inequality (3.11), we
can deduce that

(
∇ f

)
(τ) ≧ 0 for each τ ∈ N ȷa+2, as desired.

□

We consider the following example in order to see the
validity of the above theorem.

Example 3.2. We consider the same function defined in
Example 3.1, then for choosing α = β = 0.6, we have

1 < α + β < 2 =⇒ 1 < 1.2 < 2,

which verifies that (α, β) ∈ D2. Moreover,

(∇ f )(2) = 0.8713 ≧ 0,

and(
CF

1∇
α
rl

CF
0∇
α
rl f

)
(2)

= B2(α)
[
(1 − α)

{
f (2) − α f (1)

}
+

3∑
s=3

(
∇ f

)
(s)(1 − α)3−s

− α f (a + 1)
τ∑

s=3

(1) − α
3∑

s=3

s−1∑
r=2

(
∇ f

)
(r)(1 − α)2−r

]
= 1.2951 B2(α)

≧ −0.0018 B2(α).
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In addition,

(1 − α)τ−a−2[α(τ − a − 2) − (1 − α)
]
= 0.08 ≧ 0.001.

Thus, all the conditions of Theorem 3.2 are satisfied.
Therefore, the increase of τα+β is proved at τ = a + 3. For
more clarification, see below Figure 4 as τα+β is increasing
on N1.

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

2

3

4

5

6

7

8

9

Figure 4. Graph of τα+β for α = β = 0.4.

4. Conclusions

In this study, we have considered analyzing(
CF

a+1∇
α
rl

CF
a∇
β
rl f

)
(τ) on the set D1 in which β , α, and(

CF
a+1∇

α
rl

CF
a∇
α
rl f

)
(τ) on the set D2 in which β = α. The

positivity
(
∇ f

)
(τ) has been examined from analyzing these

sequential fractional differences on a finite time set N ȷa+2

for some ȷ ∈ Na+3 in both cases when (α, β) ∈ D1 or
(α, β) ∈ D2. In the first case, we have used a complex
condition as appeared in Theorem 3.1 (iii). However, a
simpler condition has been applied in the second case as
stated in Theorem 3.2 (iii). In the end, we have provided an
increasing function to support our claims and results, and it
has been shown that the positivity of our main theorems is
accurate and can be obtained under the certain conditions.
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