Research article

Synchronization for discrete coupled fuzzy neural networks with uncertain information via observer-based impulsive control

  • Received: 18 June 2023 Revised: 04 December 2023 Accepted: 15 December 2023 Published: 15 March 2024
  • This paper discussed the synchronization of impulsive fuzzy neural networks (FNNs) with uncertainty of information exchange. Since the data of neural networks (NNs) cannot be completely measured in reality, we designed an observer-based impulsive controller on the basis of the partial measurement results and achieved the purpose of reducing the communication load and the controller load of FNNs. In terms of the Lyapunov stability theory, an impulsive augmented error system (IAES) was established and two sufficient criteria to guarantee the synchronization of our FNNs system were obtained. Finally, we demonstrated the validity of the results by a numerical example.

    Citation: Weisong Zhou, Kaihe Wang, Wei Zhu. Synchronization for discrete coupled fuzzy neural networks with uncertain information via observer-based impulsive control[J]. Mathematical Modelling and Control, 2024, 4(1): 17-31. doi: 10.3934/mmc.2024003

    Related Papers:

  • This paper discussed the synchronization of impulsive fuzzy neural networks (FNNs) with uncertainty of information exchange. Since the data of neural networks (NNs) cannot be completely measured in reality, we designed an observer-based impulsive controller on the basis of the partial measurement results and achieved the purpose of reducing the communication load and the controller load of FNNs. In terms of the Lyapunov stability theory, an impulsive augmented error system (IAES) was established and two sufficient criteria to guarantee the synchronization of our FNNs system were obtained. Finally, we demonstrated the validity of the results by a numerical example.



    加载中


    [1] J. Buckley, Y. Hayashi, Fuzzy neural networks: a survey, Fuzzy Sets Syst., 66 (1994), 1–13. https://doi.org/10.1016/0165-0114(94)90297-6 doi: 10.1016/0165-0114(94)90297-6
    [2] X. Wang, Y. Yu, S. Zhong, K. Shi, N. Yang, D. Zhang, et al., Novel heterogeneous mode-dependent impulsive synchronization for piecewise T-S fuzzy probabilistic coupled delayed neural networks, IEEE Trans. Fuzzy Syst., 30 (2021), 2142–2156. https://doi.org/10.1109/TFUZZ.2021.3076525 doi: 10.1109/TFUZZ.2021.3076525
    [3] X. Wang, Y. Yu, K. Shi, H. Chen, S. Zhong, X. Yang, et al., Membership-mismatched impulsive exponential stabilization for fuzzy unconstrained multilayer neural networks with node-dependent delays, IEEE Trans. Fuzzy Syst., 31 (2022), 1214–1228. https://doi.org/10.1109/TFUZZ.2022.3197925 doi: 10.1109/TFUZZ.2022.3197925
    [4] X. Wang, Y. Yu, J. Cai, N. Yang, K. Shi, S. Zhong, et al., Multiple mismatched synchronization for coupled memristive neural networks with topology-based probability impulsive mechanism on time scales, IEEE Trans. Cybern., 53 (2021), 1485–1498. https://doi.org/10.1109/TCYB.2021.3104345 doi: 10.1109/TCYB.2021.3104345
    [5] A. Iwata, Y. Nagasaka, N. Suzumura, Data compression of the ECG using neural network for digital Holter monitor, IEEE Eng. Med. Biol. Mag., 9 (1990), 53–57. https://doi.org/10.1109/51.59214 doi: 10.1109/51.59214
    [6] M. Patricia, D. Sánchez, Multi-objective optimization for modular granular neural networks applied to pattern recognition, Inf. Sci., 460-461 (2018), 594–610. https://doi.org/10.1016/j.ins.2017.09.031 doi: 10.1016/j.ins.2017.09.031
    [7] Y. Zhao, X. He, T. Huang, J. Huang, P. Li, A smoothing neural network for minimization $l_1$-$l_p$ in sparse signal reconstruction with measurement noises, Neural Networks, 122 (2020), 40–53. https://doi.org/10.1016/j.neunet.2019.10.006 doi: 10.1016/j.neunet.2019.10.006
    [8] M. R. G. Meireles, P. E. Almeida, M. G. Simes, A comprehensive review for industrial applicability of artificial neural networks, IEEE Trans. Ind. Electron., 50 (2003), 585–601. https://doi.org/10.1109/TIE.2003.812470 doi: 10.1109/TIE.2003.812470
    [9] G. A. Carpenter, Neural network models for pattern recognition and associative memory, Neural Networks, 2 (1989), 243–257. https://doi.org/10.1016/0893-6080(89)90035-X doi: 10.1016/0893-6080(89)90035-X
    [10] W. He, Y. Dong, Adaptive fuzzy neural network control for a constrained robot using impedance learning, IEEE Trans. Neural Networks Learn. Syst., 29 (2017), 1174–1186. https://doi.org/10.1109/TNNLS.2017.2665581 doi: 10.1109/TNNLS.2017.2665581
    [11] Q. Song, W. Yu, J. Cao, F. Liu, Reaching synchronization in networked harmonic oscillators with outdated position data, IEEE Trans. Cybern., 46 (2016), 1566–1578. https://doi.org/10.1109/TCYB.2015.2451651 doi: 10.1109/TCYB.2015.2451651
    [12] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cybern., 15 (1993), 116–132. https://doi.org/10.1109/TSMC.1985.6313399 doi: 10.1109/TSMC.1985.6313399
    [13] S. Selcuk, New stability results for Takagi-Sugeno fuzzy Cohen-Grossberg neural networks with multiple delays, Neural Networks, 114 (2019), 60–66. https://doi.org/10.1016/j.neunet.2019.02.010 doi: 10.1016/j.neunet.2019.02.010
    [14] A. Wu, Z. Zeng, Boundedness, Mittag-Leffler stability and asymptotical $ $ periodicity of fractional order fuzzy neural networks, Neural Networks, 74 (2016), 73–84. https://doi.org/10.1016/j.neunet.2015.11.003 doi: 10.1016/j.neunet.2015.11.003
    [15] Y. Xu, J. Li, R. Lu, C. Liu, Y. Wu, Finite-horizon $l_2$-$l_\infty $ synchronization for time-varying Markovian jump neural networks under mixed-type attacks: observer-based case, IEEE Trans. Neural Networks Learn. Syst., 30 (2018), 1695–1704. https://doi.org/10.1109/TNNLS.2018.2873163 doi: 10.1109/TNNLS.2018.2873163
    [16] X. Yang, G. Feng, C. He, J. Cao, Event-triggered dynamic output quantization control of switched T-S fuzzy systems with unstable modes, IEEE Trans. Fuzzy Syst., 30 (2022), 4201–4210. https://doi.org/10.1109/TFUZZ.2022.3145808 doi: 10.1109/TFUZZ.2022.3145808
    [17] J. Li, B. Zhang, R. Lu, Y. Xu, T. Huang, Distributed $H_{\infty}$ state estimator design for time-delay periodic systems over scheduling sensor networks, IEEE Trans. Cybern., 51 (2019), 462–472. https://doi.org/10.1109/TCYB.2019.2894392 doi: 10.1109/TCYB.2019.2894392
    [18] Y. Xu, J. Dong, R. Lu, L. Xie, Stability of continuous-time positive switched linear systems: a weak common copositive Lyapunov functions approach, Automatica, 97 (2018), 278–285. https://doi.org/10.1016/j.automatica.2018.04.037 doi: 10.1016/j.automatica.2018.04.037
    [19] X. Xie, T. Wei, X. Li, Hybrid event-triggered approach for quasi-consensus of uncertain multi-agent systems with impulsive protocols, IEEE Trans. Circuits Syst., 69 (2022), 872–883. https://doi.org/10.1109/TCSI.2021.3119065 doi: 10.1109/TCSI.2021.3119065
    [20] H. Trentelman, K. Takaba, N. Monshizadeh, Robust synchronization of uncertain linear multi-agent systems, IEEE Trans. Autom. Control, 58 (2013), 1511–1523. https://doi.org/10.1109/TAC.2013.2239011 doi: 10.1109/TAC.2013.2239011
    [21] T. Li, M. Fu, L. Xie, J. Zhang, Distributed consensus with limited communication data rate, IEEE Trans. Autom. Control, 56 (2010), 279–292. https://doi.org/10.1109/TAC.2010.2052384 doi: 10.1109/TAC.2010.2052384
    [22] T. Li, F. Wu, J. Zhang, Multi-agent consensus with relative-state-dependent measurement noises, IEEE Trans. Autom. Control, 59 (2014), 2463–2468. https://doi.org/10.1109/TAC.2014.2304368 doi: 10.1109/TAC.2014.2304368
    [23] B. Liu, X. Liu, G. Chen, H. Wang, Robust impulsive synchronization of uncertain dynamical networks, IEEE Trans. Circuits Syst. I, 52 (2005), 1431–1441. https://doi.org/10.1109/TCSI.2005.851708 doi: 10.1109/TCSI.2005.851708
    [24] S. Yang, Z. Guo, J. Wang, Robust synchronization of multiple memristive neural networks with uncertain parameters via nonlinear coupling, IEEE Trans. Syst. Man Cybern., 45 (2015), 1077–1086. https://doi.org/10.1109/TSMC.2014.2388199 doi: 10.1109/TSMC.2014.2388199
    [25] T. Chen, X. Liu, W. Lu, Pinning complex networks by a single controller, IEEE Trans. Circuits Syst. I, 54 (2007), 1317–1326. https://doi.org/10.1109/TCSI.2007.895383 doi: 10.1109/TCSI.2007.895383
    [26] W. Yu, G. Chen, J. Lü, On pinning synchronization of complex dynamical networks, Automatica, 45 (2009), 429–435. https://doi.org/10.1016/j.automatica.2008.07.016 doi: 10.1016/j.automatica.2008.07.016
    [27] X. Li, X. Yang, S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135–140. https://doi.org/10.1016/j.automatica.2019.01.031 doi: 10.1016/j.automatica.2019.01.031
    [28] X. Yang, Y. Liu, J. Cao, L. Rutkowski, Synchronization of coupled time-delay neural networks with mode-dependent average dwell time switching, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 5483–5496. https://doi.org/10.1109/TNNLS.2020.2968342 doi: 10.1109/TNNLS.2020.2968342
    [29] J. Lu, C. Ding, J. Lou, J. Cao, Outer synchronization of partially coupled dynamical networks via pinning impulsive controllers, J. Franklin Inst., 352 (2015), 5024–5041. https://doi.org/10.1016/j.jfranklin.2015.08.016 doi: 10.1016/j.jfranklin.2015.08.016
    [30] X. Li, S. Song, J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Automa. Control, 64 (2019), 4024–4034. https://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271
    [31] X. Li, D. Ho, J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361–368. https://doi.org/10.1016/j.automatica.2018.10.024 doi: 10.1016/j.automatica.2018.10.024
    [32] X. Li, X. Yang, J. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica, 117 (2020), 108981. https://doi.org/10.1016/j.automatica.2020.108981 doi: 10.1016/j.automatica.2020.108981
    [33] X. Li, D. Peng, J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
    [34] W. Zhu, D. Wang, L. Liu, G. Feng, Event-based impulsive control of continuous-time dynamic systems and its application to synchronization of Memristive neural networks, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 3599–3609. https://doi.org/10.1109/TNNLS.2017.2731865 doi: 10.1109/TNNLS.2017.2731865
    [35] S. Ding, Z. Wang, Event-triggered synchronization of discrete-time neural networks: a switching approach, Neural Networks, 125 (2020), 31–40. https://doi.org/10.1016/j.neunet.2020.01.024 doi: 10.1016/j.neunet.2020.01.024
    [36] H. Rao, F. Liu, H. Peng, Y. Xu, R. Lu, Observer-based impulsive synchronization for neural networks with uncertain exchanging information, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 3777–3787. https://doi.org/10.1109/TNNLS.2019.2946151 doi: 10.1109/TNNLS.2019.2946151
    [37] P. Chen, J. Wang, S. He, X. Luan, F. Liu, Observer-based asynchronous fault detection for conic-type nonlinear jumping systems and its application to separately excited DC motor, IEEE Trans. Circuits Syst. I, 67 (2019), 951–962. https://doi.org/10.1109/TCSI.2019.2949368 doi: 10.1109/TCSI.2019.2949368
    [38] M. de Magistris, M. di Bernardo, E. di Tucci, S. Manfredi, Synchronization of networks of non-identical Chua's circuits: analysis and experiments, IEEE Trans. Circuits Syst. I, 59 (2012), 1029–1041. https://doi.org/10.1109/TCSI.2012.2185279 doi: 10.1109/TCSI.2012.2185279
    [39] F. Liu, C. Liu, R. Rao, Y. Xu, T. Wang, Reliable impulsive synchronization for fuzzy neural networks with mixed controllers, Neural Networks, 143 (2021), 759–766. https://doi.org/10.1016/j.neunet.2021.08.013 doi: 10.1016/j.neunet.2021.08.013
    [40] P. Chen, S. He, V. Stojanovic, X. Luan, F. Liu, Fuzzy fault detection for Markov jump systems with partly accessible hidden information: an event-triggered approach, IEEE Trans. Cybern., 52 (2021), 7352–7361. https://doi.org/10.1109/TCYB.2021.3050209 doi: 10.1109/TCYB.2021.3050209
    [41] H. Rao, F. Liu, H. Peng, Y. Xu, R. Lu, Observer-based impulsive synchronization for neural networks with uncertain exchanging information, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 3777–3787. https://doi.org/10.1109/TNNLS.2019.2946151 doi: 10.1109/TNNLS.2019.2946151
    [42] L. Wang, Z. Wang, Q. Han, G. Wei, Synchronization control for a class of discrete-time dynamical networks with packet dropouts: a coding-decoding-based approach, IEEE Trans. Cybern., 48 (2018), 2437–2448. https://doi.org/10.1109/TCYB.2017.2740309 doi: 10.1109/TCYB.2017.2740309
    [43] L. Xie, Output feedback $H_{\infty}$ control of systems with parameter uncertainty, Int. J. Control, 63 (1996), 741–750. https://doi.org/10.1080/00207179608921866 doi: 10.1080/00207179608921866
    [44] H. Rao, F. Liu, H. Peng, Y. Xu, R. Lu, Observer-based impulsive synchronization for neural networks with uncertain exchanging information, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 3777–3787. https://doi.org/10.1109/TNNLS.2019.2946151 doi: 10.1109/TNNLS.2019.2946151
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(860) PDF downloads(140) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog