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Abstract: This paper discussed the synchronization of impulsive fuzzy neural networks (FNNs) with uncertainty of information
exchange. Since the data of neural networks (NNs) cannot be completely measured in reality, we designed an observer-based impulsive
controller on the basis of the partial measurement results and achieved the purpose of reducing the communication load and the controller
load of FNNs. In terms of the Lyapunov stability theory, an impulsive augmented error system (IAES) was established and two sufficient
criteria to guarantee the synchronization of our FNNs system were obtained. Finally, we demonstrated the validity of the results by a
numerical example.
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1. Introduction

Fuzzy neural networks (FNNs) [1], which allow the
activity of a neuron to be a “fuzzy” rather than an “all-
or-one” process, have attracted popularity as a powerful
tool for modeling complex systems due to their ability to
handle uncertain and nonlienar dynamics. Recently, such
neural networks (NNs) have drawn considerable attention.
For example, a novel Takagi-Sugeno (T-S) fuzzy coupling
NN with adjustable coupling intensity was designed [2].
In the work [3], a fuzzy pulse controller that does not
need to share fuzzy parameters with FNNs has been
presented. In the work [4], a topology-based fuzzy
impulsive mechanism is proposed to schedule information
transmission on the network for the first time, and the
exponential synchronization of discrete and continuous
systems are derived. Moreover, FNNs arise naturally in
a number of applications, such as data compression [5],
pattern recognition [6], image processing [7], adaptive

signal processing [8], associative memory [9], optimization
problems [10], and so on [11–14]. The advantage of FNNs
is the ability to handle uncertainty and adapt to specific
problems, allowing for greater flexibility than traditional
NNs. Unfortunately, many existing excellent studies are
about continuous-time FNNs, but there are few studies on
discrete-time conditions.

The uncertainty in the information interaction NNs
is unavoidable and may lead to packet dropouts,
communication delay, communication error, or other
problems [15–18]. In recent years, many research results
have emerged around the uncertainty model of NNs.
In [19], based on the event-triggered mechanism, the
quasi-consensus tracking problems of uncertain multi-
agent systems were studied. In [20], the synchronization
conditions for NNs with bounded delay are achieved.
As time goes on, robust synchronization attracted lots
of attention since it became a powerful tool to study the
uncertainty between coupled neural nodes [21]. In [22],
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using the impulsive control and the stability theory, several
criteria for local and global robust synchronization in
complex dynamical networks with unknown network
coupling functions are developed. In [23], global robust
synchronization for the multiple memory NNs with
uncertain parameters was studied by an adaptive coupling
method. Therefore, it is worthful and meaningful to devise
a method to make NN models with uncertain information.

In the past decades, many effective control strategies have
been proposed to synchronize NNs, such as state-feedback
control [24–26], adaptive control, coupling control [27],
pinning control [28], and so on. Among these control
methods, impulse control is one of the most practical and
economical strategies since it is discontinuous. Therefore,
the implementation of the controller is easier and the control
cost is effective [29–31]. In recent years, many scholars have
studied the synchronization of NNs based on impulse control
strategies. The synchronization of nonlinear delay systems
is investigated by means of event-triggered impulsive
control [32], where impulsive instants are determined by
a Lyapunov-based event-triggered mechanism. In [33],
the Lyapunov stability of impulsive systems via event-
triggered impulsive control is explored, where dynamical
systems evolve depending on continuous time equations
most of the time, but occasionally exhibit instantaneous
jumps when impulsive events are triggered. Two sufficient
criterion for the hybrid delay stochastic reaction diffusion
NNs to achieve exponential synchronization are designed
by an impulsive controller in [34]. Almost all the existing
synchronization strategies are designed on the condition
that the state of the master system is available [35].
Due to the constraints of physical systems and sensors,
part states of high-order systems cannot be measured
directly [36]. Therefore, it is worthy and necessary to
design a new type of synchronization control strategy for
FNNs by making full use of the available measurement
information. In [37], asynchronous observer and fault
detection algorithms are designed to tackle a hidden Markov
model. Although the continuous time impulsive systems
have been studied comprehensively, there are few studies
on the synchronization of discrete time FNNs by using
impulse control strategies; thus, it is valuable to strengthen
the research in discrete-time FNNs.

Motivated by the above discussions, a discrete-time
FNN (2.2) with uncertain information exchange is
established, and a distributed impulsive observer-based
controller (DIOBC) and impulsive augmented error system
(IAES) are designed. Based on the Lyapunov method,
two sufficient conditions for the model to achieve
synchronization are obtained, and the validity of our results
is illustrated by numerical examples. The main contributions
of our article are summarized as follows:

(1) The traditional general control strategy will lead to
heavy communication load and waste of controller
resources due to too many control times. The impulsive
controller we designed works only at the impulsive time
tm, and the FNN also interacts only at tm time. By
designing such an impulsive controller, the controller
benefit is greatly improved.

(2) An impulsive controller with unknown weight
information between nodes has been designed, which
is the main challenge to the research of master-slave
FNNs. The uncertain weights are transformed into
a Laplacian matrix with bounded norm to deal with
the uncertain information interaction caused by the
uncertain weights of the nodes in the FNNs.

(3) The case where we only measure the state
information of FNNs is considered, and through
these measurements, the observer-based impulsive
controller model is established. In addition, the
controller with an impulsive observer also makes our
synchronization analysis more complicated.

We introduce the FNNs, DIOBC and IAES in Section 2,
and in Section 3, the synchronization of FNNS is proved.
In Section 4, the gains about controller and observer are
designed. In Section 5, a numerical example is presented to
clarify the validity of the results. Our conclusion is depicted
in Section 6.
Notations: Z, Z+ stand for nonnegative integers and positive
integers, respectively. Rn andRm×n denote the n-dimensional
Euclidean space and the set of all m×n matrices. The 2-norm
for a vector is expressed as ∥·∥2. For a matrix A, its transpose,
largest eigenvalue, and smallest eigenvalue are denoted by
AT , λ̄(A), and λ(A), respectively. The notation ∗ inside the
matrix denotes the term induced by symmetry. The positive
definite matrix A is represented by A > 0, and the notation
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A1 − A2 > 0 (A1 − A2 ≥ 0) means A1 > A2 (A1 ≥ A2), where
A1 and A2 are symmetric matrices. The matrix diagn{·}

stands for a diagonal matrix belonging to Rn×n. The symbol
⊗ stands for the Kronecker product. ai j(k) > 0,∀i , j

means that the nodes vi and v j can exchange information
mutually. The Laplacian matrix of the connection condition
is represented by L(k), where Lii(k) =

∑
i, j ai j(k) and

Li j(k) = −ai j(k).

2. Preliminaries

2.1. FNNs description

Each node in the FNNs model needs to satisfy the
following rules:

Plant Rule l: If ξ1(k) is ml1 and . . . and ξp(k) is mlp, thenxi(k + 1) = Dlxi(k) + Blg (xi(k)) + ui(k),

yi(k + 1) = Clxi(k),
(2.1)

where

i ∈ ΦN ≜ {1, 2, . . . ,N}, xi(k) ∈ Rn,

and ui(k) ∈ Rn are the state and the control input of the FNNs
node i, respectively. ξ1(k), . . . , ξp(k) are premise variables
that are functions of time, and ml1, . . . ,mlp are the fuzzy sets
for each premise variable. The index l belongs to the set

Φl ≜ {1, 2, . . . , r},

where r denotes the number of fuzzy rules.

g (xi(k)) =
[
g1 (xi1(k)) , g2 (xi2(k)) , . . . , gn (xin(k))

]T
represents the nonlinear activation functions, and the matrix

Dl = diagn {dl1, . . . , dln} ∈ R
n×n, Bl ∈ R

n×n, Cl ∈ R
n×m

of FNNs is the matrix of coefficients, that we know.

Integrate all the nodes together, and the FNNs (2.1) can
be given as

xi(k + 1) =
r∑

l=1

θl(k) {Dlxi(k) + Blg (xi(k))} + ui(k),

yi(k + 1) =
r∑

l=1

θl(k)Clxi(k),

(2.2)

where θl(k) satisfies

θl(k) =
∏p
ι=1 mlι (ξι(k))∑r

j=1
∏p
ι=1 m jι (ξι(k))

with
r∑

l=1

θl(k) = 1,

and mlι (ξι(k)) is the grade of membership of ξι(k) in

mlι, ι ∈ Φp ≜ {1, 2, . . . , p}.

Define s(k) as the trajectory, which the FNNs (2.2) aim to
follow:

s(k + 1) =
r∑

l=1

θl(k) {Dls(k) + Blg (s(k))} ,

ys(k + 1) =
r∑

l=1

θl(k)Cls(k),

(2.3)

where g (s(k)) is an activation function and satisfies the
following assumption.

Assumption 2.1. The functions

g j(·), j ∈ Φn ≜ {1, 2, . . . , n}

satisfy g j(0) = 0, and there exist the constants ϑ̄ j and ϑ j

such that

ϑ j ≤
g j (χ1) − g j (χ2)
χ1 − χ2

≤ ϑ̄ j, (2.4)

where the constants χ1, χ2 ∈ R satisfy χ1 , χ2.

Remark 2.1. Each state s(k) is a target signal of FNNs (2.2)

to achieve synchronization by using the leader-follower

method [38]. In [39], the T-S fuzzy logic is used to study the

synchronization of master-slave NNs in terms of fuzzy rules

to tackle local linear representation of nonlinear systems.

Founded on the above, we investigate the synchronization of

a group of master-slave NNs with n nodes. It is worth noting

that most of the existing works assume that the states of

FNNs (2.2) and unforced FNNs (2.3) are available, whereas

in reality, due to the constraints of physical systems and

sensors, only partial states of the FNNs (2.2) and (2.3) can

be measured.

Mathematical Modelling and Control Volume 4, Issue 1, 17–31.



20

2.2. DIOBC

The continuous-time control causes problems such as
high communication loads and low controller efficiency.
In this section, an observer-based impulsive controller is
designed to optimize these problems. The impulsive instants
are denoted as

{tm} , m ∈ Z. (2.5)

Define t0 = −1. The impulsive intervals τm,m ∈ Z+ satisfy

τm ≜ tm − tm−1.

Before arguing our main conclusions, we need the
following assumption:

Assumption 2.2. The interval τm,m ∈ Z+ satisfies

0 < τm ≤ τ. (2.6)

Based on the partial information obtained from FNNs

measurements, the following observers were designed. For

the non-impulsive instants k, the observers are given as

follows:
x̂i(k + 1) =

r∑
l=1

θl(k) {Dl x̂i(k) + Blg (x̂i(k))} ,

ŝ(k + 1) =
r∑

l=1

θl(k) {Dl ŝ(k) + Alg (ŝ(k))} ,

(2.7)

where x̂i(k) and ŝ(k) are observer states of FNNs (2.2)

and (2.3), respectively.

Furthermore, at the impulsive instants tm, the observer

model is

ŝ(tm + 1) = ŝ(tm) +
r∑

n=1

θn(tm) {Rsn (ys(tm) − ŷs(tm))} ,

x̂i(tm + 1) = x̂i(tm) +
r∑

n=1

θn(tm) {Rin (yi(tm) − ŷi(tm))}

+ ui(tm),

(2.8)

where Rsn ∈ R
n×m and Rin ∈ R

n×m are observer gains.

Remark 2.2. Using available measurement values to

estimate the system state is an important technique in the

field of control. In [40], Cheng et al. designed an

asynchronous state observer by using a hidden Markov

model and obtained sufficient conditions for the existence

of a fuzzy asynchronous fault detection filter for a class

of nonlinear Markov jump systems. However, the system

state may not be fully accessible. In this case, we need

to construct an observer and establish a corresponding

tracking error system between the observer and the target. It

should be noted that the system (2.2) under the control input

ui(t) is a type of pulse system. Therefore, in order to build

a suitable tracking error system, it is natural to consider the

observer with impulse effect.

Based on the observer model given above, we design the
following impulsive controller. With u(k) = 0 at the non-
impulsive instants k and at the instants tm, our FNNs of the
node i are given as

ui(tm) =
r∑

l=1

θl(tm)
{
Kil

N∑
j=1

ai j(tm)x̂ j(tm)

+ ςiHil (x̂i(tm) − ŝ(tm))

+ Mil

N∑
j=1

ai j(tm)y j(tm)

+ ςiFil (yi(tm) − ys(tm))
}
,

(2.9)

where matrices Kil ∈ R
n×n,Hil ∈ R

n×n,Mil ∈ R
n×m, Fil ∈

Rn×m, and ςi ≥ 0 are the controller gain and pinning gain
respectively.

Remark 2.3. As far as we know, most of the synchronization

controllers used in NNs depend on the state information

of the master-slave systems. However, the synchronization

of FNNs are derived based on the the coupling effect

between nodes and an uncertain information impulsive

controller [41]. Motivated by this method, we employ the

fuzzy theory to describe the nonlinear model and design a

fuzzy uncertain information impulsive controller.

2.3. IAES and preliminaries

The uncertainty of the connection weight ai j(k), i, j ∈

ΦN between the nodes of FNNs will lead to uncertain
information interaction. In order to deal with this problem,
we assume that these connection weights will vary over an
interval, that is,

0 ≤ ai j ≤ ai j(k) ≤ āi j, i , j. (2.10)

Mathematical Modelling and Control Volume 4, Issue 1, 17–31.
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To solve the problem of uncertain node weights, we
introduce the following notations:

ǎi j =


1
2
∑N

j=1,i, j

(
ai j + āi j

)
, i = j,

− 1
2

(
ai j + āi j

)
, i , j,

âi j =


1
2
∑N

j=1,i, j

(
ai j − āi j

)
, i = j,

− 1
2

(
ai j − āi j

)
, i , j.

(2.11)

Through the above discussion, the uncertain connection
weight (2.10) can be rewritten as

ai j(k) = ǎi j + âi jΛl(k), (2.12)

where the index is

l = N(i − 1) + j,

and the time-varying scalar Λl(k) satisfies

−I ≤ Λl(k) ≤ I.

The Laplacian matrix of the distributed protocol is
expressed as

L(k) = L + ∆L(k) = L + MΛ(k)N, (2.13)

where

L =


ǎ11 ǎ12 . . . ǎ1N

ǎ21 ǎ22 . . . ǎ2N
...

...
. . .

...

ǎN1 ǎN2 . . . ǎNN


,

M =
[ √

â11e1,
√

â12e1, . . . ,
√

â1Ne1, . . . ,
√

âN1eN , . . . ,√
âNNeN

]
∈ RN×N2

,

N =
[ √

â11e1,
√

â12e2, . . . ,
√

â1NeN , . . . ,
√

âN1e1, . . . ,√
âNNeN

]T
∈ RN2×N ,

ei =[0, . . . , 0︸  ︷︷  ︸
i−1

, 1, 0, . . . , 0︸  ︷︷  ︸
N−i

]T ,

Λ(k) = diagN2 {Λ1(k),Λ2(k), . . . ,ΛN2 (k)} .

We denote the estimation error of the leader FNNs, the state
error, and the estimation error between the leader FNNs (2.3)
and the FNNs node i as

es(k) ≜ s(k) − ŝ(k), ei(k) ≜ xi(k) − s(k)

and
êi(k) ≜ x̂i(k) − ŝ(k),

respectively. Furthermore, the augmented state

ηi(k) =
[
eT

s (k) eT
i (k) êT

i (k)
]T

is defined. By integrating the formulae (2.2), (2.3), (2.8),
(2.9), and (2.12), we have

ηi(k + 1) =



∑r
l=1 θl(k) {(I3 ⊗ Dl) ηi(k)

+ (I3 ⊗ Bl) g (ηi(k))} , k , tm,∑r
l=1 θl(tm)

∑r
n=1 θn(tm)

×
{
D̄ηi(tm) + (I3 ⊗ Bln) g (ηi(tm))

+K̄
∑N

j=1Li jη j(tm)
}
, k = tm,

(2.14)

where

K̄ =


0 0 0
0 MinCl Kin

0 MinCl Kin

 ,

g (ηi(k)) =


g (s(k)) − g (ŝ(k))

g (xi(k)) − g (s(k))

g (x̂i(k)) − g (ŝ(k))

 ,
D11 =

 Dl − RsnCl 0
0 Dl + ςiFinCl

 ,
D12 =

[
0 ςiHin

]T
,

D21 =
[

RinCl − RsnCl RinCl + ςiFinCl

]
,

D22 = Dl − RinCl + ςiHin,

D̄ =

 D11 D12

D21 D22

 .
Considering the system (2.14) and defining the augmented
error state

η(k) =
[

eT
s (k) eT

1 (k) êT
1 (k) . . . eT

N(k) êT
N(k)

]T
,

we have the following IAES:

η(k + 1) =



∑r
l=1 θl(k) {(I2N+1 ⊗ Dl) η(k)

+ (I2N+1 ⊗ Bl) g(η(k))} , k , tm,∑r
l=1 θl(k)

∑r
n=1 θn(k) {Dlnη(k)

+ (I2N+1 ⊗ Bl) g(η(k))} , k = tm,

(2.15)
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where

Dln = (D1 +M ((L + ∆L) ⊗ I2m)C

+K ((L + ∆L) ⊗ I2n)I) ,

D1 =

 Dl − RsnCl 0
R D22

 ,
R̄i =

 0
RinCl − RsnCl

 ,
D22 = diagN {D221,D222, . . . ,D22N} ,

D22i =

 Dl + ςiFinCl ςiHin

RinCl + ςiFinCl Dl − RinCl + ςiHin

 ,
R =
[

R̄T
1n R̄T

2n . . . R̄T
Nn

]T
,

K =
[

0 KT
12

]T
,

K12 = diagN {K121,K122, . . . ,K12N} ,

M =
[

0 MT
12

]T
, I =

[
0 IN ⊗ Ī

]
,

M12 = diagN {M121,M122, . . . ,M12N} ,

K12i =

 0 Kin

0 Kin

 , Ī =

 0 0
0 In

 ,
M12i =

 Min 0
Min 0

 , C = [ 0 C12

]
,

C12 = diagN {C121,C122, . . . ,C12N} ,

C12i = diag2{Cl, 0}, g̃ (es(k)) = g (s(k)) − g (ŝ(k)) ,

g(η(k)) =
[
g̃T (es(k)) g̃T (η1(k)) . . . g̃T (ηN(k))

]T
,

g̃ (ηi(k)) =

 g (xi(k)) − g (s(k))

g (x̂i(k)) − g (ŝ(k))

 .
Remark 2.4. Since the information exchange between the

large-scale biological system and the artificial system is

not fixed, the robustness of the coupling system connection

weight is very important. In order to describe the

uncertainty of connection weights between FNN nodes

in more detail, the interval uncertainty model (2.12) is

introduced here.

For the third part of the proof, we give the following
definition and lemma.

Definition 2.1. [42] The synchronization of FNNs (2.2)

and (2.3) will be arrived if the following inequality holds

limk→∞ ∥η(k)∥2 = 0. (2.16)

Lemma 2.1. [43] For a real matrix Ξ = ΞT , the following

assertions are equivalent

Ξ :=

 Ξ11 Ξ12

∗ Ξ22

 < 0,

Ξ11 < 0,Ξ22 − Ξ
T
12Ξ
−1
11Ξ12 < 0,

Ξ22 < 0,Ξ11 − Ξ12Ξ
−1
22Ξ

T
12 < 0.

3. Main results

In this section, sufficient conditions for the
synchronization of FNNs (2.2) with the trajectory (2.3) are
presented.

Theorem 3.1. Suppose that the scalars α1 and α2 satisfy

0 < α2 < 1 ≤ α1. FNNs (2.2) are said to be

synchronized with (2.3) if there exist matrices Pl > 0, ϵ̂1 > 0,

Fin,Hin,Kin,Min,Rsn, and Rin and Conditions (3.1)–(3.3)

hold for ∀σ ∈ Φl:
−α1Pl − T 1ϵ̂1 T 2ϵ̂1 (I2N+1 ⊗ Dl)T Pl

∗ −ϵ̂1 (I2N+1 ⊗ Bl)T Pl

∗ ∗ −Pσ

 < 0, (3.1)


−α2Pl − I1ϵ̂1 T 2ϵ̂1 DT

∗ −ϵ̂1 (I2N+1 ⊗ Bl)T

∗ ∗ −P−1
σ

 < 0, (3.2)

(τ − 1) lnα1 + lnα2 < 0, (3.3)

where

T 1 = diag2N+1 {T1,T1, . . . ,T1} ,

T 2 = diag2N+1 {T2,T2, . . . ,T2} ,

T1 = diagn

{
ϑ1ϑ̄1, ϑ2ϑ̄2, . . . , ϑnϑ̄n

}
,

T2 = diagn

ϑ1 + ϑ̄1

2
,
ϑ2 + ϑ̄2

2
, . . . ,

ϑn + ϑ̄n

2

 ,
ϵ̂1 = diag2N+1 {ϵ1, ϵ1, . . . , ϵ1} ,

ϵ1 = diagn {ϵ11, ϵ12, . . . , ϵ1n} .

Proof. Based on DIOBC and IAES, we establish the
following Lyapunov functional

V(η(k), k) = ηT (k)(
r∑

l=1

θσ(k)Pσ)η(k), (3.4)

where Pσ > 0, ∀σ ∈ Φl, and for the sake of simplicity, we
useV(k) to representV(η(k), k). □
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Next, we demonstrate the synchronization of FNNs (2.2)
with the next three steps.

Step 1. When k , tm, we define the Lyapunov
functional (3.4) as

∆V(k) ≜ V(k + 1) − α1V(k). (3.5)

By substituting the IAES (2.15) into (3.5), we obtain

∆V(k)

=

r∑
σ=1

θσ(k + 1)
r∑

l=1

θl(k)

×
{
ηT (k + 1)T Pση(k + 1) − α1η

T (k)Plη(k)
}

=

r∑
σ=1

θσ(k + 1)
r∑

l=1

θl(k)
r∑

n=1

θ j(k)

×
{(
ηT (k) (I2N+1 ⊗ Dl)T + gT (η(k)) (I2N+1 ⊗ Bl)T

)
×Pσ ((I2N+1 ⊗ Dn) η(k) + (I2N+1 ⊗ Bn) g(η(k)))

−α1η
T (k)Plη(k)

}
≤

r∑
σ=1

θσ(k + 1)
r∑

l=1

θl(k)

×
{(
ηT (k) (I2N+1 ⊗ Dl)T + gT (η(k)) (I2N+1 ⊗ Bl)T

)
× Pσ ((I2N+1 ⊗ Dl) η(k) + (I2N+1 ⊗ Bl) g(η(k)))

−α1η
T (k)Plη(k)

}
=

r∑
σ=1

θσ(k + 1)
r∑

l=1

θl(k)

×
{
ηT (k) (I2N+1 ⊗ Dl)T Pσ (I2N+1 ⊗ Dl) η(k)

+ ηT (k) (I2N+1 ⊗ Dl)T Pσ (I2N+1 ⊗ Bl) g(η(k))

+ η(k) (I2N+1 ⊗ Dl) PσgT (η(k)) (I2N+1 ⊗ Bl)T

+ gT (η(k)) (I2N+1 ⊗ Bl)T Pσ (I2N+1 ⊗ Bl) g(η(k))

−α1η
T (k)Plη(k)

}
=

r∑
σ=1

θσ(k + 1)
r∑

l=1

θl(k)
{
ζT (k)Ωσlζ(k)

}
,

(3.6)

where

Ωσl =

 Ω111 − α1Pσ Ω112

∗ Ω122

 ,
Ω111 = (I2N+1 ⊗ Dl)T Pσ (I2N+1 ⊗ Dl) ,

Ω112 = (I2N+1 ⊗ Dl)T Pσ (I2N+1 ⊗ Bl) ,

Ω122 = (I2N+1 ⊗ Bl)T Pσ (I2N+1 ⊗ Bl) ,

ζ(k) =
[
ηT (k) gT (η(k))

]T
.

Combining with Assumption 2.1, we obtain the
inequalities (3.7) and (3.8) about the functions g j(·),
j ∈ ΦN for any scalar ϵ1 j > 0

ϵ1 j

(
g j

(
xi j(k)

)
− ϑ jxi j(k)

) (
g j

(
xi j(k)

)
− ϑ̄ jxi j(k)

)
≤ 0, (3.7)

ϵ1 j

(
g j

(
x̂i j(k)

)
− ϑ j x̂i j(k)

) (
g j

(
x̂i j(k)

)
− ϑ̄ j x̂i j(k)

)
≤ 0. (3.8)

By combining with inequalities (3.7) and (3.8), we get
that the following (3.9) holds for any ϵ1 > 0

ϵ̂1(g(η(k)) − ϑ̌η(k))T (g(η(k)) − ˆ̄ϑη(k)) ≤ 0, (3.9)

where

ϑ̌ = diag2N+1{ϑ̂, ϑ̂, . . . , ϑ̂},

ϑ̂ = diagn

{
ϑ1, ϑ2, . . . , ϑn

}
,

ˇ̄ϑ = diag2N+1{
ˆ̄ϑ, ˆ̄ϑ, . . . , ˆ̄ϑ},

ˆ̄ϑ = diagn

{
ϑ̄1, ϑ̄2, . . . , ϑ̄n

}
.

According to the inequality of the activation
function (3.9), it follows that

ζT (k)

 T 1ϵ̂1 −T 2ϵ̂1

∗ ϵ̂1

 ζ(k) ≤ 0. (3.10)

The difference is that (3.5) satisfies the following
inequality (3.11) by taking (3.6) into (3.10):

∆V(k) ≤
r∑
σ=1

θσ(k + 1)
r∑

l=1

θl(k)
{
ζT (k)Ωσl2ζ(k)

}
, (3.11)

where

Ωσl2 =

 Ω111 − α1Pl − T 1ϵ̂1 Ω112 + T 2ϵ̂1

∗ Ω122 − ϵ̂1

 .
Pre-multiplying and post-multiplying the inequality

condition (3.1) with diag3 {I, I, P} and applying Lemma 2.1,
we have Ωσl2 < 0, that is,

V(k + 1) < α1V(k). (3.12)

Step 2. When the time is k = tm, we define the Lyapunov
functional (3.4) as:

∆V(tm) = V(tm + 1) − α2V(tm). (3.13)
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Putting the IAES (2.15) into (3.13), we obtain

∆V(tm)

=

r∑
σ=1

θσ(tm + 1)
r∑

l=1

θl(tm)

×
{
ηT (tm + 1)Pση(tm + 1) − α2η

T (tm)Plη(tm)
}

=

r∑
σ=1

θσ(tm + 1)
r∑

l=1

θl(tm)
r∑

n=1

θn(tm)
r∑

a=1

θa(tm)

r∑
b=1

θb(tm) ·
{
gT (η(tm)) (Dlnη(tm) + (I2N+1 ⊗ Bl))T

×pσ (Dabη(tm) + (I2N+1 ⊗ Ba) g(η(tm)))

−α2η
T (tm)Plη(tm)

}
≤

r∑
σ=1

θσ(tm + 1)
r∑

l=1

θl(tm)
r∑

n=1

θn(tm)

×
{
gT (η(tm)) (Dlnη(tm) + (I2N+1 ⊗ Bl))T

×pσ (Dlnη(tm) + (I2N+1 ⊗ Bl) g(η(tm)))

−α2η
T (tm)Plη(tm)

}
=

r∑
σ=1

θσ(tm + 1)
r∑

l=1

θl(tm)
r∑

n=1

θn(tm) ·
{
ηT (tm)

· DT
lnPσDlnη(tm) + 2ηT (tm)DlnPσ (I2N+1 ⊗ Bl)

·g(η(tm)) + gT (η(tm)) (I2N+1 ⊗ Bl)T Pσ (I2N+1 ⊗ Bl)

·g(η(tm)) − α2η
T (tm)Plη(tm)

}
.

(3.14)

Combining inequalities of the activation function (3.10)
and the difference functional (3.14), we have

∆V(k) ≤
r∑
σ=1

θσ(tm + 1)
r∑

l=1

θl(tm)
r∑

n=1

θn(tm)

×
{
ζT (k)Ωσlnζ(k)

}
,

(3.15)

where

Ωσln =

 Ω311 Ω312

∗ (I2N+1 ⊗ Bl)T Pl (I2N+1 ⊗ Bl) − ϵ̂1

 ,
Ω311 = D

T
lnPlDln − α2Pσ − T 1ϵ̂1,

Ω312 = D
T
lnPl (I2N+1 ⊗ Bl) + T 2ϵ̂1.

Applying Lemma 2.1 to (3.2), the inequality (3.16) holds
with (3.15)

V(tm + 1) < α2V(tm). (3.16)

Step 3. Based on the above two steps, we discuss the
synchronization for the FNNs (2.2).

We obtain that the following inequalities hold for k ∈
(0, t1] by the inequality (3.12) and Assumption 2.2

V(k) <α1V(k − 1) < · · · < αk
1V(0) ≤ ατ−1

1 V(0). (3.17)

According to the inequalities (3.16) and (3.17), the
inequality (3.18) is derived at the instant k = t1 + 1.

V(t1 + 1) < α2α
τ−1
1 V(0). (3.18)

For instants k ∈ (t1 + 1, t2], it follows from (3.12)
and (3.17) that

V(k) < α1V(k − 1)

< · · · < αk−(t1+1)
1 V(t1 + 1)

< ατ−1
1 V(t1 + 1)

< α2α
2τ−2
1 V(0).

(3.19)

In view of (3.16) and (3.19), we have the following
inequality at instant k = t2 + 1

V(t2 + 1) < α2
2α

2τ−2
1 V(0). (3.20)

By combining the formulas (3.17) to (3.20), the
inequality (3.21) will hold for ∀m ∈ Z

V(tm + 1) <
(
α2α

τ−1
1

)m
V(0), (3.21)

and the inequality (3.21) implies that

λ(P) ∥η (tm + 1)∥22 <
(
α2α

τ−1
1

)m
λ̄(P)∥η(0)∥22.

Furthermore, we have

∥η (tm + 1)∥22 <
λ̄(P)
λ(P)

(
α2α

τ−1
1

)m
∥η(0)∥22. (3.22)

Due to 1 ≤ α1 and 0 < α2 < 1, it follows that

0 < α2α
τ−1
1 . (3.23)

By the inequality (3.3), one can derive that

α2α
τ−1
1 = elnα2α

τ−1
1 = e(τ−1) lnα1+lnα2 < 1. (3.24)

On the basis of Definition 2.1 and inequalities (3.22)–(3.24),
we get that the state is exponentially stable at instants tm +

1,m ∈ Z+, which implies

limm→∞ ∥η (tm + 1)∥2 = 0. (3.25)
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Through comparing with the inequalities (3.17) and (3.19)
and combining with the inequality (3.22), we can derive the
following inequality ∀k ∈ (tm + 1, tm+1] ,m ∈ Z

∥η(k)∥2 <

√
λ̄(P)
λ(P)
ατ−1

1 ∥η (tm + 1)∥2 . (3.26)

Due to the term (λ̄(P)/λ(P))ατ−1
1 being bounded, the

following conditions exist ∀k ∈ (tm + 1, tm+1] ,m ∈ Z

limk→∞ ∥η(k)∥2 <

√
λ̄(P)
λ(P)
ατ−1

1 limm→∞ ∥η (tm + 1)∥2 = 0.

Taking account of (3.25) and (3.26), we have

limk→∞ ∥η(k)∥ = 0,

which implies that the synchronization of FNNs (2.2) are
achieved.

4. Observer and controller gains design

In this section, we design the gains of an impulsive
observer and controller on the conclusions of Part III.

Theorem 4.1. Given scalars 0 < α2 < 1 ≤ α1, the group

of FNNs (2.2) is said to be synchronization if there exist

matrices Pl > 0, ϵ̂1 > 0, F̂il, Gl, Ĥil, K̂il, M̂il, R̂s, and R̂il and

scalars ϵ2 > 0 and ϵ3 > 0 such that Conditions (3.1), (3.3),

and (4.1) hold for ∀σ, l, j ∈ Φl.

Ψ̂11 T 2ϵ̂1 Ψ̂13 Ψ̂14 0 Ψ̂16 0
∗ −ϵ̂1 Ψ̂23 0 0 0 0
∗ ∗ Ψ̂33 0 Ψ̂35 0 Ψ̂37

∗ ∗ ∗ −ϵ2I 0 0 0
∗ ∗ ∗ ∗ −ϵ2I 0 0
∗ ∗ ∗ ∗ ∗ −ϵ3I 0
∗ ∗ ∗ ∗ ∗ ∗ −ϵ3I


< 0, (4.1)

where

Ψ̂11 = −α2Pl − T 1ϵ̂1, Ψ̂23 = (I2N+1 ⊗ Bl)T GT
j ,

D̂222 = diagN

{
D̂1, D̂2, . . . , D̂N

}
,

Ψ̂13 = D̂l j1T +
(
M̂ (L ⊗ I2m)C + K̂ (L ⊗ I2n)I

)T
,

D̂l j1 =

 G jDl − R̂S C 0
R̂ D̂222

 ,

R̂il =

 0
R̂ilCl − R̂S Cl

 ,
D̂il j =

 G jDl + ςiF̂i jCl ςiĤi j

R̂i jCl + ςiF̂i jCl GDl − R̂iCl + ςiĤi j

 ,
R̂ =
[
R̂1l R̂2l . . . R̂Nl

]
, M̂ =

[
0 M̂T

12

]T
,

M̂12 = diagN

{
M̂121, M̂122, . . . , M̂12N

}
,

K̂12 = diagN

{
K̂121, K̂122, . . . , K̂12N

}
,

M̂12i =

 M̂i j 0
M̂i j 0

 , K̂12i =

 0 K̂i j

0 K̂i j

 ,
K̂ =

[
0 K̂T

12

]T
, Ψ̂14 = ϵ2C

T (N ⊗ I2m)T ,

Ψ̂35 = M̂ (M ⊗ I2m) , Ψ̂16 = ϵ3I
T (N ⊗ I2n)T ,

Ψ̂37 = K̂ (M ⊗ I2n) , Ψ̂33 = Pσ − G j − G
T
j ,

G j = diag2N+1{G j,G j, . . . ,G j}.

Thus, the observer and controller gains are listed as follows:

Fil = G−1
l F̂il, Hil = G−1

l Ĥil, Kil = G−1
l K̂il,

Mil = G−1
l M̂il, Ril = G−1

l R̂il, Rs = G−1
l R̂s.

Proof. In terms of the Schur complement theorem, the
following inequality holds based on the condition (4.1):

Σ1 + ϵ2Σ
T
2Σ2 + ϵ

−1
2 Σ3Σ

T
3 + ϵ3Σ

T
4Σ4 + ϵ

−1
3 Σ5Σ

T
5 < 0, (4.2)

where

Σ1 =


−α2Pl − T 1ϵ̂1 T 2ϵ̂1 Ψ̂13

∗ −ϵ̂1 (I2N+1 ⊗ Bl)T GT
j

∗ ∗ Pσ − G j − G
T
j

 ,
Σ2 = [(N ⊗ I2m)C 0 0] ,

Σ3 =
[

0 0 (M ⊗ I2m)T M̂T
]T
,

Σ4U = [(N ⊗ I2n)I 0 0] ,

Σ5 =
[

0 0 (M ⊗ I2n)T K̂T
]T
.

For every matrix Pσ > 0, we can get P−1
σ > 0, and notice

that Pσ−G j is not a zero matrix. By the properties of positive
definite matrices, we have

(Pσ − G j)P−1
σ (Pσ − G j)T ≥ 0,

which implies

Pσ − G j − G
T
j ≥ G jP−1

σ G
T
j . (4.3)
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Define

F̂il ≜ GlFil, Ĥil ≜ GlHil, K̂il ≜ GlKil,

M̂il ≜ GlMil, R̂il ≜ GlRil, R̂s ≜ GlRs.

According to Lemma 2.1, (4.2), and (4.3), it follows that
−α2Pl − T 1ϵ̂1 T 2ϵ̂1 DTGT

j

∗ −ϵ̂1 (I2N+1 ⊗ Bl)T GT
j

∗ ∗ −G jPσGT
j

 < 0. (4.4)

Pre-multiplying and post-multiplying the obtained
inequality (4.4) with diag3

{
I, I,G−1

j

}
and its transpose,

the condition (3.2) holds, and the group of FNNs (2.2)
will achieve synchronization by combining conditions (3.1)
and (3.3). □

5. Illustrative example

To prove the validity of our results, we present a
numerical example of FNNs (2.2) with five nodes here,
whose parameters are as follows:

B1 =

 −0.2 −0.4
−0.4 −0.1

 ,
B2 =

 0.2 −0.4
−0.3 −0.1

 ,
C1 =

[
1 1

]
,

C2 =
[

1 0
]
,

D1 = diag2{−0.85,−0.85},

D2 = diag2{−0.85,−0.95}.

According to the connection topology of DIOBC, as shown
in Figure 1, its uncertain connection weights are expressed
as

a12(k) = a21(k) = 0.8 + 0.1 sin(k),

a14(k) = a41(k) = 0.9 + 0.1 sin(k),

a23(k) = a32(k) = 1.1 + 0.1 sin(k),

a25(k) = a52(k) = 1 + 0.1 sin(k),

a34(k) = a43(k) = 1.2 + 0.1 sin(k),

a35(k) = a53(k) = 1 + 0.1 sin(k).

The pinning gains of the DIOBC are ς1 = 1, ς2 = 1, ς3 =

0, ς4 = 1, ς5 = 0.

Figure 1. Impulsive signal of the DIOBC.

The nonlinear activation functions gi(·), i ∈ Φn of our
discrete-time FNNs (2.2) are defined as

g1 (xi1(k)) = 0.2 (|xi1(k) + 1| − |xi1(k) − 1|) ,

g2 (xi2(k)) = 0.1 (|xi2(k) + 1| − |xi2(k) − 1|) ,

which imply ϑ1 = 0, ϑ2 = 0, ϑ̄1 = 0.4 and ϑ̄2 = 0.2.

Assuming that the iterative step side is ε = 0.02,
according to the algorithm in [44], we can get that α1 =

1.04, α2 = 0.76, and the maximal allowed impulsive interval
is τ = 8. The observer and controller gains are listed below

R0 =

 −0.1667
−0.2082

 , R11 =

 −0.1699
−0.2081

 ,
R21 =

 −0.4254
−0.5601

 , R31 =

 −0.1411
−0.1591

 ,
R41 =

 −0.2185
−0.2761

 , R51 =

 −0.1205
−0.1325

 ,
H11 =

 0.1318 0.0954
0.1360 0.1696

 , F11 =

 0.3010
0.3676

 ,
H21 =

 0.0258 −0.0589
−0.0106 −0.0628

 , F21 =

 0.4854
0.6181

 ,
H41 =

 0.1570 0.1124
0.1769 0.1872

 , F41 =

 0.3744
0.4716

 ,
H31 = 0, H51 = 0, F31 = 0, F51 = 0,

K11 =

 −0.0002 −0.0005
−0.0007 −0.0009

 , M11 =

 0.0007
0.0003

 ,
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K21 =

 0.0152 0.0256
0.0203 0.0376

 , M21 =

 −0.0321
−0.0399

 ,
K31 =

 0.0420 0.0284
0.0434 0.0453

 , M31 =

 0.0971
0.1133

 ,
K41 =

 −0.0150 −0.0193
−0.0212 −0.0241

 , M41 =

 −0.0188
−0.0250

 ,
K51 =

 0.0514 0.0348
0.0549 0.0531

 , M51 =

 0.1156
0.1297

 ,
R22 =

 −0.4254
−0.6301

 , R32 =

 −0.1351
−0.1291

 ,
R42 =

 0.2325
−0.1224

 , R52 =

 −0.1205
−0.1435

 ,
H12 =

 0.1423 0.1426
0.1356 0.1246

 , F12 =

 0.2430
0.5626

 ,
H22 =

 0.0258 −0.0589
−0.2346 −0.7428

 , F22 =

 0.4354
0.5381

 ,
H42 =

 0.1570 0.1124
0.1419 0.4272

 , F42 =

 0.3454
0.1216

 ,
H32 = 0, H52 = 0, F32 = 0, F52 = 0,

K12 =

 −0.0012 −0.0004
−0.0002 −0.0010

 , M12 =

 0.0005
0.0007

 ,
K22 =

 0.0152 0.0256
0.0352 0.0264

 , M22 =

 −0.0523
−0.0743

 ,
K32 =

 0.0420 0.0284
0.0412 0.0653

 , M32 =

 0.0451
0.1112

 ,
K42 =

 −0.0150 −0.0423
−0.0412 −0.0621

 , M42 =

 −0.0588
−0.0450

 ,
K52 =

 0.0514 0.0348
0.0319 0.0521

 , M52 =

 0.3416
0.3256

 ,
R12 =

 −0.1252
−0.3451

 .
The fuzzy rules membership functions are

θ1(k) = sin2(3k), θ2(k) = cos2(3k).

The FNNs initial states are as follows:

s(0) =

 1
−2

 , x1(0) =

 2
5

 , x2(0) =

 −3
1

 ,
x3(0) =

 −1
−2

 , x4(0) =

 −4
−3

 , x5(0) =

 −2
4

 ,

Under the above conditions, the states of our three fuzzy
neural nodes with impulsive control, general control, and
without control are shown in Figures 2–4, respectively. We
can see that in these three kinds, both impulsive control
and general control will achieve synchronization along the
expected trajectory over time, and the synchronization time
is almost the same.

(a) with impulsive control

(b) with general control

(c) without control

Figure 2. The state trajectories x1(k), s(k) without
and with the impulsive control.
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(a) with impulsive control

(b) with general control

(c) without control

Figure 3. The state trajectories x2(k), s(k) without
and with the impulsive control.

(a) with impulsive control

(b) with general control

(c) without control

Figure 4. The state trajectories x3(k), s(k) without
and with the impulsive control.

However, as shown in Table 1, the control times
of impulsive control to achieve synchronization are less
than those of general control; that is, although the time
required for impulsive control and general control to achieve
synchronization is the same, the efficiency of impulsive
control is higher than that of general control.

Mathematical Modelling and Control Volume 4, Issue 1, 17–31.
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Table 1. Description of the model state variables.

Synchronization error Impulsive control times General control times

|e1| ≤ 0.01 16 27
|e2| ≤ 0.01 15 26
|e3| ≤ 0.01 19 27

6. Conclusions

In this paper, we investigate the synchronization property
of a set of discrete-time FNNs, considering the case of
uncertain information exchange caused by uncertain weights
of nodes between FNNs nodes. Based on the measured
partial states of FNNs, the controller based on the impulse
observer is designed, the IAES is derived, and by proving the
stability of IAES, the synchronization sufficient conditions
of FNNs and the corresponding gain matrices of the observer
and controller are obtained. Finally, a numerical example is
given to illustrate the validity of our results.
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